An Overview on G Protein-coupled Receptor-induced Signal Transduction in Acute Myeloid Leukemia

Author(s): Frode Selheim*, Elise Aasebø, Catalina Ribas, Anna M. Aragay*.

Journal Name: Current Medicinal Chemistry

Volume 26 , Issue 28 , 2019

  Journal Home
Translate in Chinese

Abstract:

Background: Acute Myeloid Leukemia (AML) is a genetically heterogeneous disease characterized by uncontrolled proliferation of precursor myeloid-lineage cells in the bone marrow. AML is also characterized by patients with poor long-term survival outcomes due to relapse. Many efforts have been made to understand the biological heterogeneity of AML and the challenges to develop new therapies are therefore enormous. G Protein-coupled Receptors (GPCRs) are a large attractive drug-targeted family of transmembrane proteins, and aberrant GPCR expression and GPCR-mediated signaling have been implicated in leukemogenesis of AML. This review aims to identify the molecular players of GPCR signaling, focusing on the hematopoietic system, which are involved in AML to help developing novel drug targets and therapeutic strategies.

Methods: We undertook an exhaustive and structured search of bibliographic databases for research focusing on GPCR, GPCR signaling and expression in AML.

Results and Conclusion: Many scientific reports were found with compelling evidence for the involvement of aberrant GPCR expression and perturbed GPCR-mediated signaling in the development of AML. The comprehensive analysis of GPCR in AML provides potential clinical biomarkers for prognostication, disease monitoring and therapeutic guidance. It will also help to provide marker panels for monitoring in AML. We conclude that GPCR-mediated signaling is contributing to leukemogenesis of AML, and postulate that mass spectrometrybased protein profiling of primary AML cells will accelerate the discovery of potential GPCR related biomarkers for AML.

Keywords: Leukemia, AML, G protein, GPCR, cell signaling, clinical biomarkers.

[1]
Noone, A.M.H.N.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; Chen, H.S.; Feuer, E.J.; Cronin, K.A. Leukemia. SEER Cancer Statistics Review, Available from: https://seer.cancer.gov/csr/1975_2015/ (Accessed September 2018)
[2]
Löwenberg, B.; Downing, J.R.; Burnett, A. Acute myeloid leukemia. N. Engl. J. Med., 1999, 341(14), 1051-1062.
[http://dx.doi.org/10.1056/NEJM199909303411407] [PMID: 10502596]
[3]
Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood, 2016, 127(20), 2391-2405.
[http://dx.doi.org/10.1182/blood-2016-03-643544] [PMID: 27069254]
[4]
Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; Levine, R.L.; Lo-Coco, F.; Naoe, T.; Niederwieser, D.; Ossenkoppele, G.J.; Sanz, M.; Sierra, J.; Tallman, M.S.; Tien, H.F.; Wei, A.H.; Löwenberg, B.; Bloomfield, C.D. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood, 2017, 129(4), 424-447.
[http://dx.doi.org/10.1182/blood-2016-08-733196] [PMID: 27895058]
[5]
Acharya, U.H.; Halpern, A.B.; Wu, Q.V.; Voutsinas, J.M.; Walter, R.B.; Yun, S.; Kanaan, M.; Estey, E.H. Impact of region of diagnosis, ethnicity, age, and gender on survival in acute myeloid leukemia (AML). J. Drug Assess., 2018, 7(1), 51-53.
[http://dx.doi.org/10.1080/21556660.2018.1492925] [PMID: 30034924]
[6]
Estey, E.H. Acute myeloid leukemia: 2014 update on risk-stratification and management. Am. J. Hematol., 2014, 89(11), 1063-1081.
[http://dx.doi.org/10.1002/ajh.23834] [PMID: 25318680]
[7]
Eppert, K.; Takenaka, K.; Lechman, E.R.; Waldron, L.; Nilsson, B.; van Galen, P.; Metzeler, K.H.; Poeppl, A.; Ling, V.; Beyene, J.; Canty, A.J.; Danska, J.S.; Bohlander, S.K.; Buske, C.; Minden, M.D.; Golub, T.R.; Jurisica, I.; Ebert, B.L.; Dick, J.E. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med., 2011, 17(9), 1086-1093.
[http://dx.doi.org/10.1038/nm.2415] [PMID: 21873988]
[8]
Zhang, L.; Shi, G. Gq-coupled receptors in autoimmunity. J. Immunol. Res., 2016, 20163969023
[http://dx.doi.org/10.1155/2016/3969023] [PMID: 26885533]
[9]
Olsnes, A.M.; Hatfield, K.J.; Bruserud, Ø. The chemokine system and its contribution to leukemogenesis and treatment responsiveness in patients with acute myeloid leukemia. J. BUON, 2009, 14(Suppl. 1), S131-S140.
[PMID: 19785055]
[10]
Pierce, K.L.; Premont, R.T.; Lefkowitz, R.J. Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol., 2002, 3(9), 639-650.
[http://dx.doi.org/10.1038/nrm908] [PMID: 12209124]
[11]
Hepler, J.R.; Gilman, A.G. G proteins. Trends Biochem. Sci., 1992, 17(10), 383-387.
[http://dx.doi.org/10.1016/0968-0004(92)90005-T] [PMID: 1455506]
[12]
Kobilka, B.K. G protein coupled receptor structure and activation. Biochim. Biophys. Acta, 2007, 1768(4), 794-807.
[http://dx.doi.org/10.1016/j.bbamem.2006.10.021] [PMID: 17188232]
[13]
Alqinyah, M.; Hooks, S.B. Regulating the regulators: Epigenetic, transcriptional, and post-translational regulation of RGS proteins. Cell. Signal., 2018, 42, 77-87.
[http://dx.doi.org/10.1016/j.cellsig.2017.10.007] [PMID: 29042285]
[14]
Magalhaes, A.C.; Dunn, H.; Ferguson, S.S. Regulation of GPCR activity, trafficking and localization by GPCR-interacting proteins. Br. J. Pharmacol., 2012, 165(6), 1717-1736.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01552.x] [PMID: 21699508]
[15]
Wilden, U. Duration and amplitude of the light-induced cGMP hydrolysis in vertebrate photoreceptors are regulated by multiple phosphorylation of rhodopsin and by arrestin binding. Biochemistry, 1995, 34(4), 1446-1454.
[http://dx.doi.org/10.1021/bi00004a040] [PMID: 7827093]
[16]
Chaturvedi, M.; Schilling, J.; Beautrait, A.; Bouvier, M.; Benovic, J.L.; Shukla, A.K. Emerging paradigm of intracellular targeting of G protein-coupled receptors. Trends Biochem. Sci., 2018, 43(7), 533-546.
[http://dx.doi.org/10.1016/j.tibs.2018.04.003] [PMID: 29735399]
[17]
DeWire, S.M.; Ahn, S.; Lefkowitz, R.J.; Shenoy, S.K. Beta-arrestins and cell signaling. Annu. Rev. Physiol., 2007, 69, 483-510.
[http://dx.doi.org/10.1146/annurev.physiol.69.022405.154749] [PMID: 17305471]
[18]
Wootten, D.; Christopoulos, A.; Marti-Solano, M.; Babu, M.M.; Sexton, P.M. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol., 2018, 19(10), 638-653.
[http://dx.doi.org/10.1038/s41580-018-0049-3] [PMID: 30104700]
[19]
Rosenbaum, D.M.; Rasmussen, S.G.; Kobilka, B.K. The structure and function of G-protein-coupled receptors. Nature, 2009, 459(7245), 356-363.
[http://dx.doi.org/10.1038/nature08144] [PMID: 19458711]
[20]
Stevens, R.C.; Cherezov, V.; Katritch, V.; Abagyan, R.; Kuhn, P.; Rosen, H.; Wüthrich, K. The GPCR Network: a large-scale collaboration to determine human GPCR structure and function. Nat. Rev. Drug Discov., 2013, 12(1), 25-34.
[http://dx.doi.org/10.1038/nrd3859] [PMID: 23237917]
[21]
Ye, L.; Van Eps, N.; Zimmer, M.; Ernst, O.P.; Prosser, R.S. Activation of the A2A adenosine G-protein-coupled receptor by conformational selection. Nature, 2016, 533(7602), 265-268.
[http://dx.doi.org/10.1038/nature17668] [PMID: 27144352]
[22]
Ghosh, E.; Kumari, P.; Jaiman, D.; Shukla, A.K. Methodological advances: the unsung heroes of the GPCR structural revolution. Nat. Rev. Mol. Cell Biol., 2015, 16(2), 69-81.
[http://dx.doi.org/10.1038/nrm3933] [PMID: 25589408]
[23]
Keri, D.; Barth, P. Reprogramming G protein coupled receptor structure and function. Curr. Opin. Struct. Biol., 2018, 51, 187-194.
[http://dx.doi.org/10.1016/j.sbi.2018.07.008] [PMID: 30055347]
[24]
Sánchez-Fernández, G.; Cabezudo, S.; García-Hoz, C.; Benincá, C.; Aragay, A.M.; Mayor, F., Jr; Ribas, C. Gαq signalling: The new and the old. Cell. Signal., 2014, 26(5), 833-848.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.010] [PMID: 24440667]
[25]
Flock, T.; Hauser, A.S.; Lund, N.; Gloriam, D.E.; Balaji, S.; Babu, M.M. Selectivity determinants of GPCR-G-protein binding. Nature, 2017, 545(7654), 317-322.
[http://dx.doi.org/10.1038/nature22070] [PMID: 28489817]
[26]
Milligan, G.; Kostenis, E. Heterotrimeric G-proteins: A short history. Br. J. Pharmacol., 2006, 147(Suppl. 1), S46-S55.
[http://dx.doi.org/10.1038/sj.bjp.0706405] [PMID: 16402120]
[27]
Strathmann, M.P.; Simon, M.I. G alpha 12 and G alpha 13 subunits define a fourth class of G protein alpha subunits. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5582-5586.
[http://dx.doi.org/10.1073/pnas.88.13.5582] [PMID: 1905812]
[28]
Wilkie, T.M.; Scherle, P.A.; Strathmann, M.P.; Slepak, V.Z.; Simon, M.I. Characterization of G-protein alpha subunits in the Gq class: expression in murine tissues and in stromal and hematopoietic cell lines. Proc. Natl. Acad. Sci. USA, 1991, 88(22), 10049-10053.
[http://dx.doi.org/10.1073/pnas.88.22.10049] [PMID: 1946421]
[29]
Li, L.; Zhang, X. Differential inhibition of the TRPM8 ion channel by Gαq and Gα 11. Channels (Austin), 2013, 7(2), 115-118.
[http://dx.doi.org/10.4161/chan.23466] [PMID: 23334401]
[30]
Orth, J.H.; Preuss, I.; Fester, I.; Schlosser, A.; Wilson, B.A.; Aktories, K. Pasteurella multocida toxin activation of heterotrimeric G proteins by deamidation. Proc. Natl. Acad. Sci. USA, 2009, 106(17), 7179-7184.
[http://dx.doi.org/10.1073/pnas.0900160106] [PMID: 19369209]
[31]
Johnson, G.J.; Leis, L.A.; Dunlop, P.C. Specificity of G alpha q and G alpha 11 gene expression in platelets and erythrocytes. Expressions of cellular differentiation and species differences. Biochem. J., 1996, 318(Pt 3), 1023-1031.
[http://dx.doi.org/10.1042/bj3181023] [PMID: 8836152]
[32]
Kleppisch, T.; Voigt, V.; Allmann, R.; Offermanns, S.G. (alpha)q-deficient mice lack metabotropic glutamate receptor-dependent long-term depression but show normal long-term potentiation in the hippocampal CA1 region. J. Neurosci., 2001, 21(14), 4943-4948.
[http://dx.doi.org/10.1523/JNEUROSCI.21-14-04943.2001] [PMID: 11438569]
[33]
Benincá, C.; Planagumà, J.; de Freitas Shuck, A.; Acín-Perez, R.; Muñoz, J.P.; de Almeida, M.M.; Brown, J.H.; Murphy, A.N.; Zorzano, A.; Enríquez, J.A.; Aragay, A.M. A new non-canonical pathway of Gα(q) protein regulating mitochondrial dynamics and bioenergetics. Cell. Signal., 2014, 26(5), 1135-1146.
[http://dx.doi.org/10.1016/j.cellsig.2014.01.009] [PMID: 24444709]
[34]
Wettschureck, N.; Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev., 2005, 85(4), 1159-1204.
[http://dx.doi.org/10.1152/physrev.00003.2005] [PMID: 16183910]
[35]
Giannone, F.; Malpeli, G.; Lisi, V.; Grasso, S.; Shukla, P.; Ramarli, D.; Sartoris, S.; Monsurró, V.; Krampera, M.; Amato, E.; Tridente, G.; Colombatti, M.; Parenti, M.; Innamorati, G. The puzzling uniqueness of the heterotrimeric G15 protein and its potential beyond hematopoiesis. J. Mol. Endocrinol., 2010, 44(5), 259-269.
[http://dx.doi.org/10.1677/JME-09-0134] [PMID: 20150327]
[36]
Amatruda, T.T., III; Steele, D.A.; Slepak, V.Z.; Simon, M.I. G alpha 16, a G protein alpha subunit specifically expressed in hematopoietic cells. Proc. Natl. Acad. Sci. USA, 1991, 88(13), 5587-5591.
[http://dx.doi.org/10.1073/pnas.88.13.5587] [PMID: 1905813]
[37]
Offermanns, S.; Simon, M.I. G alpha 15 and G alpha 16 couple a wide variety of receptors to phospholipase C. J. Biol. Chem., 1995, 270(25), 15175-15180.
[http://dx.doi.org/10.1074/jbc.270.25.15175] [PMID: 7797501]
[38]
Su, Y.; Ho, M.K.C.; Wong, Y.H. A hematopoietic perspective on the promiscuity and specificity of Galpha16 signaling. Neurosignals, 2009, 17(1), 71-81.
[http://dx.doi.org/10.1159/000186691] [PMID: 19212141]
[39]
Aragay, A.M.; Quick, M.W. Functional regulation of Galpha16 by protein kinase C. J. Biol. Chem., 1999, 274(8), 4807-4815.
[http://dx.doi.org/10.1074/jbc.274.8.4807] [PMID: 9988720]
[40]
Szekeres, P.G. Functional assays for identifying ligands at orphan G protein-coupled receptors. Receptors Channels, 2002, 8(5-6), 297-308.
[http://dx.doi.org/10.1080/10606820214642] [PMID: 12690957]
[41]
Touhara, K. Deorphanizing vertebrate olfactory receptors: recent advances in odorant-response assays. Neurochem. Int., 2007, 51(2-4), 132-139.
[http://dx.doi.org/10.1016/j.neuint.2007.05.020] [PMID: 17640771]
[42]
Berman, D.M.; Wilkie, T.M.; Gilman, A.G. GAIP and RGS4 are GTPase-activating proteins for the Gi subfamily of G protein alpha subunits. Cell, 1996, 86(3), 445-452.
[http://dx.doi.org/10.1016/S0092-8674(00)80117-8] [PMID: 8756726]
[43]
Tesmer, J.J.; Berman, D.M.; Gilman, A.G.; Sprang, S.R. Structure of RGS4 bound to AlF4--activated G(i alpha1): Stabilization of the transition state for GTP hydrolysis. Cell, 1997, 89(2), 251-261.
[http://dx.doi.org/10.1016/S0092-8674(00)80204-4] [PMID: 9108480]
[44]
Ross, E.M.; Wilkie, T.M. GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu. Rev. Biochem., 2000, 69, 795-827.
[http://dx.doi.org/10.1146/annurev.biochem.69.1.795] [PMID: 10966476]
[45]
Kosloff, M.; Travis, A.M.; Bosch, D.E.; Siderovski, D.P.; Arshavsky, V.Y. Integrating energy calculations with functional assays to decipher the specificity of G protein-RGS protein interactions. Nat. Struct. Mol. Biol., 2011, 18(7), 846-853.
[http://dx.doi.org/10.1038/nsmb.2068] [PMID: 21685921]
[46]
Gerber, K.J.; Squires, K.E.; Hepler, J.R. Roles for regulator of G protein signaling proteins in synaptic signaling and plasticity. Mol. Pharmacol., 2016, 89(2), 273-286.
[http://dx.doi.org/10.1124/mol.115.102210] [PMID: 26655302]
[47]
Stewart, A.; Fisher, R.A. Introduction: G protein-coupled receptors and RGS proteins. Prog. Mol. Biol. Transl. Sci., 2015, 133, 1-11.
[http://dx.doi.org/10.1016/bs.pmbts.2015.03.002] [PMID: 26123299]
[48]
Squires, K.E.; Montañez-Miranda, C.; Pandya, R.R.; Torres, M.P.; Hepler, J.R. Genetic analysis of rare human variants of regulators of g protein signaling proteins and their role in human physiology and disease. Pharmacol. Rev., 2018, 70(3), 446-474.
[http://dx.doi.org/10.1124/pr.117.015354] [PMID: 29871944]
[49]
Aragay, A.M.; Ruiz-Gómez, A.; Penela, P.; Sarnago, S.; Elorza, A.; Jiménez-Sainz, M.C.; Mayor, F., Jr G protein-coupled receptor kinase 2 (GRK2): mechanisms of regulation and physiological functions. FEBS Lett., 1998, 430(1-2), 37-40.
[http://dx.doi.org/10.1016/S0014-5793(98)00495-5] [PMID: 9678590]
[50]
Penela, P.; Murga, C.; Ribas, C.; Lafarga, V.; Mayor, F., Jr The complex G protein-coupled receptor kinase 2 (GRK2) interactome unveils new physiopathological targets. Br. J. Pharmacol., 2010, 160(4), 821-832.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00727.x] [PMID: 20590581]
[51]
Penela, P.; Ribas, C.; Mayor, F., Jr Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. Cell. Signal., 2003, 15(11), 973-981.
[http://dx.doi.org/10.1016/S0898-6568(03)00099-8] [PMID: 14499340]
[52]
Moore, C.A.; Milano, S.K.; Benovic, J.L. Regulation of receptor trafficking by GRKs and arrestins. Annu. Rev. Physiol., 2007, 69, 451-482.
[http://dx.doi.org/10.1146/annurev.physiol.69.022405.154712] [PMID: 17037978]
[53]
Ferguson, S.S. Phosphorylation-independent attenuation of GPCR signaling. Trends Pharmacol. Sci., 2007, 28(4), 173-179.
[http://dx.doi.org/10.1016/j.tips.2007.02.008] [PMID: 17350109]
[54]
Ribas, C.; Penela, P.; Murga, C.; Salcedo, A.; García-Hoz, C.; Jurado-Pueyo, M.; Aymerich, I.; Mayor, F., Jr The G protein-coupled receptor kinase (GRK) interactome: Role of GRKs in GPCR regulation and signaling. Biochim. Biophys. Acta, 2007, 1768(4), 913-922.
[http://dx.doi.org/10.1016/j.bbamem.2006.09.019] [PMID: 17084806]
[55]
Premont, R.T.; Gainetdinov, R.R. Physiological roles of G protein-coupled receptor kinases and arrestins. Annu. Rev. Physiol., 2007, 69, 511-534.
[http://dx.doi.org/10.1146/annurev.physiol.69.022405.154731] [PMID: 17305472]
[56]
Reiter, E.; Lefkowitz, R.J. GRKs and beta-arrestins: Roles in receptor silencing, trafficking and signaling. Trends Endocrinol. Metab., 2006, 17(4), 159-165.
[http://dx.doi.org/10.1016/j.tem.2006.03.008] [PMID: 16595179]
[57]
Gurevich, E.V.; Gurevich, V.V. Arrestins: Ubiquitous regulators of cellular signaling pathways. Genome Biol., 2006, 7(9), 236.
[http://dx.doi.org/10.1186/gb-2006-7-9-236] [PMID: 17020596]
[58]
Krupnick, J.G.; Gurevich, V.V.; Benovic, J.L. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin. J. Biol. Chem., 1997, 272(29), 18125-18131.
[http://dx.doi.org/10.1074/jbc.272.29.18125] [PMID: 9218446]
[59]
Benovic, J.L.; Kühn, H.; Weyand, I.; Codina, J.; Caron, M.G.; Lefkowitz, R.J. Functional desensitization of the isolated beta-adrenergic receptor by the beta-adrenergic receptor kinase: Potential role of an analog of the retinal protein arrestin (48-kDa protein). Proc. Natl. Acad. Sci. USA, 1987, 84(24), 8879-8882.
[http://dx.doi.org/10.1073/pnas.84.24.8879] [PMID: 2827157]
[60]
Ferguson, S.S.; Downey, W.E., III; Colapietro, A.M.; Barak, L.S.; Ménard, L.; Caron, M.G. Role of beta-arrestin in mediating agonist-promoted G protein-coupled receptor internalization. Science, 1996, 271(5247), 363-366.
[http://dx.doi.org/10.1126/science.271.5247.363] [PMID: 8553074]
[61]
Goodman, O.B., Jr; Krupnick, J.G.; Santini, F.; Gurevich, V.V.; Penn, R.B.; Gagnon, A.W.; Keen, J.H.; Benovic, J.L. Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature, 1996, 383(6599), 447-450.
[http://dx.doi.org/10.1038/383447a0] [PMID: 8837779]
[62]
Rajagopal, S.; Rajagopal, K.; Lefkowitz, R.J. Teaching old receptors new tricks: Biasing seven-transmembrane receptors. Nat. Rev. Drug Discov., 2010, 9(5), 373-386.
[http://dx.doi.org/10.1038/nrd3024] [PMID: 20431569]
[63]
Smith, J.S.; Lefkowitz, R.J.; Rajagopal, S. Biased signaling: From simple switches to allosteric microprocessors. Nat. Rev. Drug Discov., 2018, 17(4), 243-260.
[http://dx.doi.org/10.1038/nrd.2017.229] [PMID: 29302067]
[64]
Gurevich, V.V.; Gurevich, E.V.; Uversky, V.N. Arrestins: structural disorder creates rich functionality. Protein Cell, 2018, 9(12), 986-1003.
[http://dx.doi.org/10.1007/s13238-017-0501-8] [PMID: 29453740]
[65]
Scott, M.G.; Le Rouzic, E.; Périanin, A.; Pierotti, V.; Enslen, H.; Benichou, S.; Marullo, S.; Benmerah, A. Differential nucleocytoplasmic shuttling of beta-arrestins. Characterization of a leucine-rich nuclear export signal in beta-arrestin2. J. Biol. Chem., 2002, 277(40), 37693-37701.
[http://dx.doi.org/10.1074/jbc.M207552200] [PMID: 12167659]
[66]
Song, X.; Raman, D.; Gurevich, E.V.; Vishnivetskiy, S.A.; Gurevich, V.V. Visual and both non-visual arrestins in their “inactive” conformation bind JNK3 and Mdm2 and relocalize them from the nucleus to the cytoplasm. J. Biol. Chem., 2006, 281(30), 21491-21499.
[http://dx.doi.org/10.1074/jbc.M603659200] [PMID: 16737965]
[67]
Luttrell, L.M.; Ferguson, S.S.; Daaka, Y.; Miller, W.E.; Maudsley, S.; Della Rocca, G.J.; Lin, F.; Kawakatsu, H.; Owada, K.; Luttrell, D.K.; Caron, M.G.; Lefkowitz, R.J. Beta-arrestin-dependent formation of beta2 adrenergic receptor-Src protein kinase complexes. Science, 1999, 283(5402), 655-661.
[http://dx.doi.org/10.1126/science.283.5402.655] [PMID: 9924018]
[68]
Kovacs, J.J.; Hara, M.R.; Davenport, C.L.; Kim, J.; Lefkowitz, R.J. Arrestin development: Emerging roles for beta-arrestins in developmental signaling pathways. Dev. Cell, 2009, 17(4), 443-458.
[http://dx.doi.org/10.1016/j.devcel.2009.09.011] [PMID: 19853559]
[69]
Schulte, G.; Schambony, A.; Bryja, V. beta-Arrestins - scaffolds and signalling elements essential for WNT/Frizzled signalling pathways? Br. J. Pharmacol., 2010, 159(5), 1051-1058.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00466.x] [PMID: 19888962]
[70]
Grundmann, M.; Merten, N.; Malfacini, D.; Inoue, A.; Preis, P.; Simon, K.; Rüttiger, N.; Ziegler, N.; Benkel, T.; Schmitt, N.K.; Ishida, S.; Müller, I.; Reher, R.; Kawakami, K.; Inoue, A.; Rick, U.; Kühl, T.; Imhof, D.; Aoki, J.; König, G.M.; Hoffmann, C.; Gomeza, J.; Wess, J.; Kostenis, E. Lack of beta-arrestin signaling in the absence of active G proteins. Nat. Commun., 2018, 9(1), 341.
[http://dx.doi.org/10.1038/s41467-017-02661-3] [PMID: 29362459]
[71]
O’Hayre, M.; Eichel, K.; Avino, S.; Zhao, X.; Steffen, D.J.; Feng, X.; Kawakami, K.; Aoki, J.; Messer, K.; Sunahara, R.; Inoue, A.; von Zastrow, M.; Gutkind, J.S. Genetic evidence that β-arrestins are dispensable for the initiation of β2-adrenergic receptor signaling to ERK. Sci. Signal., 2017, 10(484)eaal3395
[http://dx.doi.org/10.1126/scisignal.aal3395] [PMID: 28634209]
[72]
Gutkind, J.S.; Kostenis, E. Arrestins as rheostats of GPCR signalling. Nat. Rev. Mol. Cell Biol., 2018, 19(10), 615-616.
[http://dx.doi.org/10.1038/s41580-018-0041-y] [PMID: 30026541]
[73]
Peterson, Y.K.; Luttrell, L.M. The diverse roles of arrestin scaffolds in G protein-coupled receptor signaling. Pharmacol. Rev., 2017, 69(3), 256-297.
[http://dx.doi.org/10.1124/pr.116.013367] [PMID: 28626043]
[74]
Nevius, E.; Gomes, A.C.; Pereira, J.P. Inflammatory cell migration in rheumatoid arthritis: A comprehensive review. Clin. Rev. Allergy Immunol., 2016, 51(1), 59-78.
[http://dx.doi.org/10.1007/s12016-015-8520-9] [PMID: 26511861]
[75]
Nie, Y.; Han, Y.C.; Zou, Y.R. CXCR4 is required for the quiescence of primitive hematopoietic cells. J. Exp. Med., 2008, 205(4), 777-783.
[http://dx.doi.org/10.1084/jem.20072513] [PMID: 18378795]
[76]
Sugiyama, T.; Kohara, H.; Noda, M.; Nagasawa, T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity, 2006, 25(6), 977-988.
[http://dx.doi.org/10.1016/j.immuni.2006.10.016] [PMID: 17174120]
[77]
Lin, T.L.; Uy, G.L.; Wieduwilt, M.J.; Newell, L.F.; Stu-art, R.K.; Medeiros, B.C.; Schiller, G.J.; Rubenstein, E.; Stock, W.; Warlick, E.D.; Foster, M.; Bixby, D.L.; Podoltsev, N.A.; An, Q.; Faderl, S.; Louie, A.C.; Lancet, J.E. Subanalysis of Patients with Secondary Acute Myeloid Leukemia (sAML) with Refractory Anemia with Excess of Blasts in Transformation (RAEB-t) enrolled in a phase 3 study of CPX-351 versus conventional 7+3 cytarabine and daunorubicin. Blood, 2018, 24(3), S228-S229.
[78]
Petit, I.; Szyper-Kravitz, M.; Nagler, A.; Lahav, M.; Peled, A.; Habler, L.; Ponomaryov, T.; Taichman, R.S.; Arenzana-Seisdedos, F.; Fujii, N.; Sandbank, J.; Zipori, D.; Lapidot, T. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat. Immunol., 2002, 3(7), 687-694.
[http://dx.doi.org/10.1038/ni813] [PMID: 12068293]
[79]
Walter, D.H.; Rochwalsky, U.; Reinhold, J.; Seeger, F.; Aicher, A.; Urbich, C.; Spyridopoulos, I.; Chun, J.; Brinkmann, V.; Keul, P.; Levkau, B.; Zeiher, A.M.; Dimmeler, S.; Haendeler, J. Sphingosine-1-phosphate stimulates the functional capacity of progenitor cells by activation of the CXCR4-dependent signaling pathway via the S1P3 receptor. Arterioscler. Thromb. Vasc. Biol., 2007, 27(2), 275-282.
[http://dx.doi.org/10.1161/01.ATV.0000254669.12675.70] [PMID: 17158356]
[80]
Kimura, T.; Boehmler, A.M.; Seitz, G.; Kuçi, S.; Wiesner, T.; Brinkmann, V.; Kanz, L.; Möhle, R. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood, 2004, 103(12), 4478-4486.
[http://dx.doi.org/10.1182/blood-2003-03-0875] [PMID: 14988150]
[81]
Seitz, G.; Boehmler, A.M.; Kanz, L.; Möhle, R. The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells. Ann. N. Y. Acad. Sci., 2005, 1044, 84-89.
[http://dx.doi.org/10.1196/annals.1349.011] [PMID: 15958700]
[82]
Whetton, A.D.; Lu, Y.; Pierce, A.; Carney, L.; Spooncer, E. Lysophospholipids synergistically promote primitive hematopoietic cell chemotaxis via a mechanism involving Vav 1. Blood, 2003, 102(8), 2798-2802.
[http://dx.doi.org/10.1182/blood-2002-12-3635] [PMID: 12829605]
[83]
Reca, R.; Mastellos, D.; Majka, M.; Marquez, L.; Ratajczak, J.; Franchini, S.; Glodek, A.; Honczarenko, M.; Spruce, L.A.; Janowska-Wieczorek, A.; Lambris, J.D.; Ratajczak, M.Z. Functional receptor for C3a anaphylatoxin is expressed by normal hematopoietic stem/progenitor cells, and C3a enhances their homing-related responses to SDF-1. Blood, 2003, 101(10), 3784-3793.
[http://dx.doi.org/10.1182/blood-2002-10-3233] [PMID: 12511407]
[84]
Ratajczak, J.; Reca, R.; Kucia, M.; Majka, M.; Allendorf, D.J.; Baran, J.T.; Janowska-Wieczorek, A.; Wetsel, R.A.; Ross, G.D.; Ratajczak, M.Z. Mobilization studies in mice deficient in either C3 or C3a receptor (C3aR) reveal a novel role for complement in retention of hematopoietic stem/progenitor cells in bone marrow. Blood, 2004, 103(6), 2071-2078.
[http://dx.doi.org/10.1182/blood-2003-06-2099] [PMID: 14604969]
[85]
Jiang, S.; Alberich-Jorda, M.; Zagozdzon, R.; Parmar, K.; Fu, Y.; Mauch, P.; Banu, N.; Makriyannis, A.; Tenen, D.G.; Avraham, S.; Groopman, J.E.; Avraham, H.K. Cannabinoid receptor 2 and its agonists mediate hematopoiesis and hematopoietic stem and progenitor cell mobilization. Blood, 2011, 117(3), 827-838.
[http://dx.doi.org/10.1182/blood-2010-01-265082] [PMID: 21063029]
[86]
Möhle, R.; Drost, A.C. G protein-coupled receptor crosstalk and signaling in hematopoietic stem and progenitor cells. Ann. N. Y. Acad. Sci., 2012, 1266, 63-67.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06559.x] [PMID: 22901257]
[87]
Bautz, F.; Denzlinger, C.; Kanz, L.; Möhle, R. Chemotaxis and transendothelial migration of CD34(+) hematopoietic progenitor cells induced by the inflammatory mediator leukotriene D4 are mediated by the 7-transmembrane receptor CysLT1. Blood, 2001, 97(11), 3433-3440.
[http://dx.doi.org/10.1182/blood.V97.11.3433] [PMID: 11369634]
[88]
Xue, X.; Cai, Z.; Seitz, G.; Kanz, L.; Weisel, K.C.; Möhle, R. Differential effects of G protein coupled receptors on hematopoietic progenitor cell growth depend on their signaling capacities. Ann. N. Y. Acad. Sci., 2007, 1106, 180-189.
[http://dx.doi.org/10.1196/annals.1392.014] [PMID: 17360805]
[89]
Lim, V.Y.; Zehentmeier, S.; Fistonich, C.; Pereira, J.P. Chapter Two - A chemoattractant-guided walk through lymphopoiesis: From hematopoietic stem cells to mature B lymphocytes.Advances in Immunology; Alt, F.W., Ed.; Academic Press, 2017, Vol. 134, pp. 47-88.
[90]
Peng, Y.M.; van de Garde, M.D.; Cheng, K.F.; Baars, P.A.; Remmerswaal, E.B.; van Lier, R.A.; Mackay, C.R.; Lin, H.H.; Hamann, J. Specific expression of GPR56 by human cytotoxic lymphocytes. J. Leukoc. Biol., 2011, 90(4), 735-740.
[http://dx.doi.org/10.1189/jlb.0211092] [PMID: 21724806]
[91]
Peters, M.J.; Joehanes, R.; Pilling, L.C.; Schurmann, C.; Conneely, K.N.; Powell, J.; Reinmaa, E.; Sutphin, G.L.; Zhernakova, A.; Schramm, K.; Wilson, Y.A.; Kobes, S.; Tukiainen, T.; Ramos, Y.F.; Göring, H.H.; Fornage, M.; Liu, Y.; Gharib, S.A.; Stranger, B.E.; De Jager, P.L.; Aviv, A.; Levy, D.; Murabito, J.M.; Munson, P.J.; Huan, T.; Hofman, A.; Uitterlinden, A.G.; Rivadeneira, F.; van Rooij, J.; Stolk, L.; Broer, L.; Verbiest, M.M.; Jhamai, M.; Arp, P.; Metspalu, A.; Tserel, L.; Milani, L.; Samani, N.J.; Peterson, P.; Kasela, S.; Codd, V.; Peters, A.; Ward-Caviness, C.K.; Herder, C.; Waldenberger, M.; Roden, M.; Singmann, P.; Zeilinger, S.; Illig, T.; Homuth, G.; Grabe, H.J.; Völzke, H.; Steil, L.; Kocher, T.; Murray, A.; Melzer, D.; Yaghootkar, H.; Bandinelli, S.; Moses, E.K.; Kent, J.W.; Curran, J.E.; Johnson, M.P.; Williams-Blangero, S.; Westra, H.J.; McRae, A.F.; Smith, J.A.; Kardia, S.L.; Hovatta, I.; Perola, M.; Ripatti, S.; Salomaa, V.; Henders, A.K.; Martin, N.G.; Smith, A.K.; Mehta, D.; Binder, E.B.; Nylocks, K.M.; Kennedy, E.M.; Klengel, T.; Ding, J.; Suchy-Dicey, A.M.; Enquobahrie, D.A.; Brody, J.; Rotter, J.I.; Chen, Y.D.; Houwing-Duistermaat, J.; Kloppenburg, M.; Slagboom, P.E.; Helmer, Q.; den Hollander, W.; Bean, S.; Raj, T.; Bakhshi, N.; Wang, Q.P.; Oyston, L.J.; Psaty, B.M.; Tracy, R.P.; Montgomery, G.W.; Turner, S.T.; Blangero, J.; Meulenbelt, I.; Ressler, K.J.; Yang, J.; Franke, L.; Kettunen, J.; Visscher, P.M.; Neely, G.G.; Korstanje, R.; Hanson, R.L.; Prokisch, H.; Ferrucci, L.; Esko, T.; Teumer, A.; van Meurs, J.B.; Johnson, A.D.; John-son, A.D. The transcriptional landscape of age in human peripheral blood. Nat. Commun., 2015, 6, 8570.
[http://dx.doi.org/10.1038/ncomms9570] [PMID: 26490707]
[92]
Arai, H.; Charo, I.F. Differential regulation of G-protein-mediated signaling by chemokine receptors. J. Biol. Chem., 1996, 271(36), 21814-21819.
[http://dx.doi.org/10.1074/jbc.271.36.21814] [PMID: 8702980]
[93]
Shi, G.; Partida-Sánchez, S.; Misra, R.S.; Tighe, M.; Borchers, M.T.; Lee, J.J.; Simon, M.I.; Lund, F.E. Identification of an alternative Galphaq-dependent chemokine receptor signal transduction pathway in dendritic cells and granulocytes. J. Exp. Med., 2007, 204(11), 2705-2718.
[http://dx.doi.org/10.1084/jem.20071267] [PMID: 17938235]
[94]
Tian, Y.; Lee, M.M.; Yung, L.Y.; Allen, R.A.; Slocombe, P.M.; Twomey, B.M.; Wong, Y.H. Differential involvement of Galpha16 in CC chemokine-induced stimulation of phospholipase Cbeta, ERK, and chemotaxis. Cell. Signal., 2008, 20(6), 1179-1189.
[http://dx.doi.org/10.1016/j.cellsig.2008.02.014] [PMID: 18406577]
[95]
Vatter, P.; Schuhholz, J.; Koenig, C.; Pfreimer, M.; Moepps, B. Ligand-dependent serum response factor activation by the human CC chemokine receptors CCR2a and CCR2b is mediated by G proteins of the Gq family. J. Leukoc. Biol., 2016, 99(6), 979-991.
[http://dx.doi.org/10.1189/jlb.2MA0815-386R] [PMID: 26823487]
[96]
Thelen, M.; Stein, J.V. How chemokines invite leukocytes to dance. Nat. Immunol., 2008, 9(9), 953-959.
[http://dx.doi.org/10.1038/ni.f.207] [PMID: 18711432]
[97]
Soede, R.D.; Wijnands, Y.M.; Kamp, M.; van der Valk, M.A.; Roos, E. Gi and Gq/11 proteins are involved in dissemination of myeloid leukemia cells to the liver and spleen, whereas bone marrow colonization involves Gq/11 but not Gi. Blood, 2000, 96(2), 691-698.
[PMID: 10887136]
[98]
Ngai, J.; Inngjerdingen, M.; Berge, T.; Taskén, K. Interplay between the heterotrimeric G-protein subunits Galphaq and Galphai2 sets the threshold for chemotaxis and TCR activation. BMC Immunol., 2009, 10, 27.
[http://dx.doi.org/10.1186/1471-2172-10-27] [PMID: 19426503]
[99]
Lippert, E.; Baltensperger, K.; Jacques, Y.; Hermouet, S.G. alpha16 protein expression is up- and down-regulated following T-cell activation: disruption of this regulation impairs activation-induced cell responses. FEBS Lett., 1997, 417(3), 292-296.
[http://dx.doi.org/10.1016/S0014-5793(97)01308-2] [PMID: 9409736]
[100]
Pfeilstöcker, M.; Karlic, H.; Salamon, J.; Mühlberger, H.; Pavlova, B.; Selim, U.; Strobl, H.; Pittermann, E.; Heinz, R. Monitoring of hematopoietic recovery after autologous stem cell transplantation by analysis of G alpha 16 mRNA and CD34 surface glycoprotein. Ann. Hematol., 1998, 76(3-4), 153-158.
[http://dx.doi.org/10.1007/s002770050380] [PMID: 9619733]
[101]
Pfeilstöcker, M.; Karlic, H.; Salamon, J.; Mühlberger, H.; Pavlova, B.; Strobl, H.; Pittermann, E.; Heinz, R. Hematopoietic recovery after IEV chemotherapy for malignant lymphoma followed by different cytokines can be monitored by analysis of Galpha 16 and CD34. Am. J. Hematol., 2000, 64(3), 156-160.
[http://dx.doi.org/10.1002/1096-8652(200007)64:3<156:AID-AJH3>3.0.CO;2-F] [PMID: 10861809]
[102]
Yang, M.; Sang, H.; Rahman, A.; Wu, D.; Malik, A.B.; Ye, R.D. G alpha 16 couples chemoattractant receptors to NF-kappa B activation. J. Immunol., 2001, 166(11), 6885-6892.
[http://dx.doi.org/10.4049/jimmunol.166.11.6885] [PMID: 11359849]
[103]
Tian, Y.; Lee, M.M.K.; Yung, L.Y.; Allen, R.A.; Slocombe, P.M.; Twomey, B.M.; Wong, Y.H. Differential involvement of Galpha16 in CC chemokine-induced stimulation of phospholipase Cbeta, ERK, and chemotaxis. Cell. Signal., 2008, 20(6), 1179-1189.
[http://dx.doi.org/10.1016/j.cellsig.2008.02.014] [PMID: 18406577]
[104]
Hsu, M.H.; Wang, M.; Browning, D.D.; Mukaida, N.; Ye, R.D. NF-kappaB activation is required for C5a-induced interleukin-8 gene expression in mononuclear cells. Blood, 1999, 93(10), 3241-3249.
[PMID: 10233875]
[105]
Lee, M.M.K.; Wong, Y.H. CCR1-mediated activation of Nuclear Factor-kappaB in THP-1 monocytic cells involves pertussis toxin-insensitive Galpha(14) and Galpha(16) signaling cascades. J. Leukoc. Biol., 2009, 86(6), 1319-1329.
[http://dx.doi.org/10.1189/jlb.0209052] [PMID: 19687291]
[106]
Davignon, I.; Catalina, M.D.; Smith, D.; Montgomery, J.; Swantek, J.; Croy, J.; Siegelman, M.; Wilkie, T.M. Normal hematopoiesis and inflammatory responses despite discrete signaling defects in Galpha15 knockout mice. Mol. Cell. Biol., 2000, 20(3), 797-804.
[http://dx.doi.org/10.1128/MCB.20.3.797-804.2000] [PMID: 10629036]
[107]
Louwette, S.; Van Geet, C.; Freson, K. Regulators of G protein signaling: Role in hematopoiesis, megakaryopoiesis and platelet function. J. Thromb. Haemost., 2012, 10(11), 2215-2222.
[http://dx.doi.org/10.1111/j.1538-7836.2012.04903.x] [PMID: 22908964]
[108]
Xie, Z.; Chan, E.C.; Druey, K.M. R4 Regulator of G Protein Signaling (RGS) proteins in inflammation and immunity. AAPS J., 2016, 18(2), 294-304.
[http://dx.doi.org/10.1208/s12248-015-9847-0] [PMID: 26597290]
[109]
Jules, J.; Yang, S.; Chen, W.; Li, Y.P. Role of regulators of G protein signaling proteins in bone physiology and pathophysiology. Prog. Mol. Biol. Transl. Sci., 2015, 133, 47-75.
[http://dx.doi.org/10.1016/bs.pmbts.2015.02.002] [PMID: 26123302]
[110]
Bowman, E.P.; Campbell, J.J.; Druey, K.M.; Scheschonka, A.; Kehrl, J.H.; Butcher, E.C. Regulation of chemotactic and proadhesive responses to chemoattractant receptors by RGS (regulator of G-protein signaling) family members. J. Biol. Chem., 1998, 273(43), 28040-28048.
[http://dx.doi.org/10.1074/jbc.273.43.28040] [PMID: 9774420]
[111]
Lippert, E.; Yowe, D.L.; Gonzalo, J.A.; Justice, J.P.; Webster, J.M.; Fedyk, E.R.; Hodge, M.; Miller, C.; Gutierrez-Ramos, J.C.; Borrego, F.; Keane-Myers, A.; Druey, K.M. Role of regulator of G protein signaling 16 in inflammation-induced T lymphocyte migration and activation. J. Immunol., 2003, 171(3), 1542-1555.
[http://dx.doi.org/10.4049/jimmunol.171.3.1542] [PMID: 12874248]
[112]
Moratz, C.; Kang, V.H.; Druey, K.M.; Shi, C.S.; Scheschonka, A.; Murphy, P.M.; Kozasa, T.; Kehrl, J.H. Regulator of G protein signaling 1 (RGS1) markedly impairs Gi alpha signaling responses of B lymphocytes. J. Immunol., 2000, 164(4), 1829-1838.
[http://dx.doi.org/10.4049/jimmunol.164.4.1829] [PMID: 10657631]
[113]
Reif, K.; Cyster, J.G. RGS molecule expression in murine B lymphocytes and ability to down-regulate chemotaxis to lymphoid chemokines. J. Immunol., 2000, 164(9), 4720-4729.
[http://dx.doi.org/10.4049/jimmunol.164.9.4720] [PMID: 10779778]
[114]
Shi, G.X.; Harrison, K.; Wilson, G.L.; Moratz, C.; Kehrl, J.H. RGS13 regulates germinal center B lymphocytes responsiveness to CXC chemokine ligand (CXCL)12 and CXCL13. J. Immunol., 2002, 169(5), 2507-2515.
[http://dx.doi.org/10.4049/jimmunol.169.5.2507] [PMID: 12193720]
[115]
Moratz, C.; Hayman, J.R.; Gu, H.; Kehrl, J.H. Abnormal B-cell responses to chemokines, disturbed plasma cell localization, and distorted immune tissue architecture in Rgs1-/- mice. Mol. Cell. Biol., 2004, 24(13), 5767-5775.
[http://dx.doi.org/10.1128/MCB.24.13.5767-5775.2004] [PMID: 15199133]
[116]
Oliveira-Dos-Santos, A.J.; Matsumoto, G.; Snow, B.E.; Bai, D.; Houston, F.P.; Whishaw, I.Q.; Mariathasan, S.; Sasaki, T.; Wakeham, A.; Ohashi, P.S.; Roder, J.C.; Barnes, C.A.; Siderovski, D.P.; Penninger, J.M. Regulation of T cell activation, anxiety, and male aggression by RGS2. Proc. Natl. Acad. Sci. USA, 2000, 97(22), 12272-12277.
[http://dx.doi.org/10.1073/pnas.220414397] [PMID: 11027316]
[117]
Heximer, S.P.; Knutsen, R.H.; Sun, X.; Kaltenbronn, K.M.; Rhee, M.H.; Peng, N.; Oliveira-dos-Santos, A.; Penninger, J.M.; Muslin, A.J.; Steinberg, T.H.; Wyss, J.M.; Mecham, R.P.; Blumer, K.J. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J. Clin. Invest., 2003, 111(4), 445-452.
[http://dx.doi.org/10.1172/JCI15598] [PMID: 12588882]
[118]
Semplicini, A.; Lenzini, L.; Sartori, M.; Papparella, I.; Calò, L.A.; Pagnin, E.; Strapazzon, G.; Benna, C.; Costa, R.; Avogaro, A.; Ceolotto, G.; Pessina, A.C. Reduced expression of regulator of G-protein signaling 2 (RGS2) in hypertensive patients increases calcium mobilization and ERK1/2 phosphorylation induced by angiotensin II. J. Hypertens., 2006, 24(6), 1115-1124.
[http://dx.doi.org/10.1097/01.hjh.0000226202.80689.8f] [PMID: 16685212]
[119]
Yang, J.; Kamide, K.; Kokubo, Y.; Takiuchi, S.; Tanaka, C.; Banno, M.; Miwa, Y.; Yoshii, M.; Horio, T.; Okayama, A.; Tomoike, H.; Kawano, Y.; Miyata, T. Genetic variations of regulator of G-protein signaling 2 in hypertensive patients and in the general population. J. Hypertens., 2005, 23(8), 1497-1505.
[http://dx.doi.org/10.1097/01.hjh.0000174606.41651.ae] [PMID: 16003176]
[120]
Bansal, G.; Xie, Z.; Rao, S.; Nocka, K.H.; Druey, K.M. Suppression of immunoglobulin E-mediated allergic responses by regulator of G protein signaling 13. Nat. Immunol., 2008, 9(1), 73-80.
[http://dx.doi.org/10.1038/ni1533] [PMID: 18026105]
[121]
Estes, J.D.; Thacker, T.C.; Hampton, D.L.; Kell, S.A.; Keele, B.F.; Palenske, E.A.; Druey, K.M.; Burton, G.F. Follicular dendritic cell regulation of CXCR4-mediated germinal center CD4 T cell migration. J. Immunol., 2004, 173(10), 6169-6178.
[http://dx.doi.org/10.4049/jimmunol.173.10.6169] [PMID: 15528354]
[122]
Yowe, D.; Weich, N.; Prabhudas, M.; Poisson, L.; Errada, P.; Kapeller, R.; Yu, K.; Faron, L.; Shen, M.; Cleary, J.; Wilkie, T.M.; Gutierrez-Ramos, C.; Hodge, M.R. RGS18 is a myeloerythroid lineage-specific regulator of G-protein-signalling molecule highly expressed in megakaryocytes. Biochem. J., 2001, 359(Pt 1), 109-118.
[http://dx.doi.org/10.1042/bj3590109] [PMID: 11563974]
[123]
Aragay, A.M.; Mellado, M.; Frade, J.M.; Martin, A.M.; Jimenez-Sainz, M.C.; Martinez-A, C.; Mayor, F. Jr Monocyte chemoattractant protein-1-induced CCR2B receptor desensitization mediated by the G protein-coupled receptor kinase 2. Proc. Natl. Acad. Sci. USA, 1998, 95(6), 2985-2990.
[http://dx.doi.org/10.1073/pnas.95.6.2985] [PMID: 9501202]
[124]
Vroon, A.; Heijnen, C.J.; Kavelaars, A. GRKs and arrestins: Regulators of migration and inflammation. J. Leukoc. Biol., 2006, 80(6), 1214-1221.
[http://dx.doi.org/10.1189/jlb.0606373] [PMID: 16943386]
[125]
Jiménez-Sainz, M.C.; Murga, C.; Kavelaars, A.; Jurado-Pueyo, M.; Krakstad, B.F.; Heijnen, C.J.; Mayor, F., Jr; Aragay, A.M. G protein-coupled receptor kinase 2 negatively regulates chemokine signaling at a level downstream from G protein subunits. Mol. Biol. Cell, 2006, 17(1), 25-31.
[http://dx.doi.org/10.1091/mbc.e05-05-0399] [PMID: 16221891]
[126]
Vroon, A.; Heijnen, C.J.; Lombardi, M.S.; Cobelens, P.M.; Mayor, F., Jr; Caron, M.G.; Kavelaars, A. Reduced GRK2 level in T cells potentiates chemotaxis and signaling in response to CCL4. J. Leukoc. Biol., 2004, 75(5), 901-909.
[http://dx.doi.org/10.1189/jlb.0403136] [PMID: 14761932]
[127]
Penela, P.; Ribas, C.; Aymerich, I.; Eijkelkamp, N.; Barreiro, O.; Heijnen, C.J.; Kavelaars, A.; Sánchez-Madrid, F.; Mayor, F., Jr G protein-coupled receptor kinase 2 positively regulates epithelial cell migration. EMBO J., 2008, 27(8), 1206-1218.
[http://dx.doi.org/10.1038/emboj.2008.55] [PMID: 18369319]
[128]
Su, A.I.; Cooke, M.P.; Ching, K.A.; Hakak, Y.; Walker, J.R.; Wiltshire, T.; Orth, A.P.; Vega, R.G.; Sapinoso, L.M.; Moqrich, A.; Patapoutian, A.; Hampton, G.M.; Schultz, P.G.; Hogenesch, J.B. Large-scale analysis of the human and mouse transcriptomes. Proc. Natl. Acad. Sci. USA, 2002, 99(7), 4465-4470.
[http://dx.doi.org/10.1073/pnas.012025199] [PMID: 11904358]
[129]
Wu, C.; Macleod, I.; Su, A.I. BioGPS and MyGene.info: organizing online, gene-centric information. Nucleic Acids Res., 2013, 41(Database issue), D561-D565.
[http://dx.doi.org/10.1093/nar/gks1114] [PMID: 23175613]
[130]
Tarrant, T.K.; Rampersad, R.R.; Esserman, D.; Rothlein, L.R.; Liu, P.; Premont, R.T.; Lefkowitz, R.J.; Lee, D.M.; Patel, D.D. Granulocyte chemotaxis and disease expression are differentially regulated by GRK subtype in an acute inflammatory arthritis model (K/BxN). Clin. Immunol., 2008, 129(1), 115-122.
[http://dx.doi.org/10.1016/j.clim.2008.06.008] [PMID: 18662895]
[131]
Eijkelkamp, N.; Heijnen, C.J.; Lucas, A.; Premont, R.T.; Elsenbruch, S.; Schedlowski, M.; Kavelaars, A. G protein-coupled receptor kinase 6 controls chronicity and severity of dextran sodium sulphate-induced colitis in mice. Gut, 2007, 56(6), 847-854.
[http://dx.doi.org/10.1136/gut.2006.107094] [PMID: 17229795]
[132]
Nakaya, M.; Tajima, M.; Kosako, H.; Nakaya, T.; Hashimoto, A.; Watari, K.; Nishihara, H.; Ohba, M.; Komiya, S.; Tani, N.; Nishida, M.; Taniguchi, H.; Sato, Y.; Matsumoto, M.; Tsuda, M.; Kuroda, M.; Inoue, K.; Kurose, H. GRK6 deficiency in mice causes autoimmune disease due to impaired apoptotic cell clearance. Nat. Commun., 2013, 4, 1532.
[http://dx.doi.org/10.1038/ncomms2540] [PMID: 23443560]
[133]
Chudziak, D.; Spohn, G.; Karpova, D.; Dauber, K.; Wiercinska, E.; Miettinen, J.A.; Papayannopoulou, T.; Bönig, H. Functional consequences of perturbed CXCL12 signal processing: analyses of immature hematopoiesis in GRK6-deficient mice. Stem Cells Dev., 2015, 24(6), 737-746.
[http://dx.doi.org/10.1089/scd.2014.0284] [PMID: 25316534]
[134]
Fong, A.M.; Premont, R.T.; Richardson, R.M.; Yu, Y.R.; Lefkowitz, R.J.; Patel, D.D. Defective lymphocyte chemotaxis in beta-arrestin2- and GRK6-deficient mice. Proc. Natl. Acad. Sci. USA, 2002, 99(11), 7478-7483.
[http://dx.doi.org/10.1073/pnas.112198299] [PMID: 12032308]
[135]
Arraes, S.M.; Freitas, M.S.; da Silva, S.V.; de Paula Neto, H.A.; Alves-Filho, J.C.; Auxiliadora Martins, M.; Basile-Filho, A.; Tavares-Murta, B.M.; Barja-Fidalgo, C.; Cunha, F.Q. Impaired neutrophil chemotaxis in sepsis associates with GRK expression and inhibition of actin assembly and tyrosine phosphorylation. Blood, 2006, 108(9), 2906-2913.
[http://dx.doi.org/10.1182/blood-2006-05-024638] [PMID: 16849637]
[136]
Chen, Z.; Gaudreau, R.; Le Gouill, C.; Rola-Pleszczynski, M.; Stanková, J. Agonist-induced internalization of leukotriene B(4) receptor 1 requires G-protein-coupled receptor kinase 2 but not arrestins. Mol. Pharmacol., 2004, 66(3), 377-386.
[http://dx.doi.org/10.1124/mol.66.3] [PMID: 15322228]
[137]
Loudon, R.P.; Perussia, B.; Benovic, J.L. Differentially regulated expression of the G-protein-coupled receptor kinases, betaARK and GRK6, during myelomonocytic cell development in vitro. Blood, 1996, 88(12), 4547-4557.
[PMID: 8977246]
[138]
Le, Q.; Yao, W.; Chen, Y.; Yan, B.; Liu, C.; Yuan, M.; Zhou, Y.; Ma, L. GRK6 regulates ROS response and maintains hematopoietic stem cell self-renewal. Cell Death Dis., 2016, 7(11)e2478
[http://dx.doi.org/10.1038/cddis.2016.377] [PMID: 27882944]
[139]
Jiang, D.; Xie, T.; Liang, J.; Noble, P.W. β-Arrestins in the immune system. Prog. Mol. Biol. Transl. Sci., 2013, 118, 359-393.
[http://dx.doi.org/10.1016/B978-0-12-394440-5.00014-0] [PMID: 23764061]
[140]
Cheung, R.; Malik, M.; Ravyn, V.; Tomkowicz, B.; Ptasznik, A.; Collman, R.G. An arrestin-dependent multi-kinase signaling complex mediates MIP-1beta/CCL4 signaling and chemotaxis of primary human macrophages. J. Leukoc. Biol., 2009, 86(4), 833-845.
[http://dx.doi.org/10.1189/jlb.0908551] [PMID: 19620252]
[141]
Barlic, J.; Andrews, J.D.; Kelvin, A.A.; Bosinger, S.E.; DeVries, M.E.; Xu, L.; Dobransky, T.; Feldman, R.D.; Ferguson, S.S.; Kelvin, D.J. Regulation of tyrosine kinase activation and granule release through beta-arrestin by CXCRI. Nat. Immunol., 2000, 1(3), 227-233.
[http://dx.doi.org/10.1038/79767] [PMID: 10973280]
[142]
Imamura, T.; Huang, J.; Dalle, S.; Ugi, S.; Usui, I.; Luttrell, L.M.; Miller, W.E.; Lefkowitz, R.J.; Olefsky, J.M. beta -Arrestin-mediated recruitment of the Src family kinase Yes mediates endothelin-1-stimulated glucose transport. J. Biol. Chem., 2001, 276(47), 43663-43667.
[http://dx.doi.org/10.1074/jbc.M105364200] [PMID: 11546805]
[143]
Basher, F.; Fan, H.; Zingarelli, B.; Borg, K.T.; Luttrell, L.M.; Tempel, G.E.; Halushka, P.V.; Cook, J.A. beta-Arrestin 2: A negative regulator of inflammatory responses in polymorphonuclear leukocytes. Int. J. Clin. Exp. Med., 2008, 1(1), 32-41.
[PMID: 19079685]
[144]
Witherow, D.S.; Garrison, T.R.; Miller, W.E.; Lefkowitz, R.J. beta-Arrestin inhibits NF-kappaB activity by means of its interaction with the NF-kappaB inhibitor IkappaBalpha. Proc. Natl. Acad. Sci. USA, 2004, 101(23), 8603-8607.
[http://dx.doi.org/10.1073/pnas.0402851101] [PMID: 15173580]
[145]
Yu, M.C.; Su, L.L.; Zou, L.; Liu, Y.; Wu, N.; Kong, L.; Zhuang, Z.H.; Sun, L.; Liu, H.P.; Hu, J.H.; Li, D.; Strominger, J.L.; Zang, J.W.; Pei, G.; Ge, B.X. An essential function for beta-arrestin 2 in the inhibitory signaling of natural killer cells. Nat. Immunol., 2008, 9(8), 898-907.
[http://dx.doi.org/10.1038/ni.1635] [PMID: 18604210]
[146]
Yue, R.; Kang, J.; Zhao, C.; Hu, W.; Tang, Y.; Liu, X.; Pei, G. Beta-arrestin1 regulates zebrafish hematopoiesis through binding to YY1 and relieving polycomb group repression. Cell, 2009, 139(3), 535-546.
[http://dx.doi.org/10.1016/j.cell.2009.08.038] [PMID: 19879840]
[147]
Sriram, K.; Insel, P.A.G. G protein-coupled receptors as targets for approved drugs: How many targets and how many drugs? Mol. Pharmacol., 2018, 93(4), 251-258.
[http://dx.doi.org/10.1124/mol.117.111062] [PMID: 29298813]
[148]
Arakaki, A.K.S.; Pan, W.A.; Trejo, J. GPCRs in cancer: Protease-activated receptors, endocytic adaptors and signaling. Int. J. Mol. Sci., 2018, 19(7)E1886
[http://dx.doi.org/10.3390/ijms19071886] [PMID: 29954076]
[149]
Bar-Shavit, R.; Maoz, M.; Kancharla, A.; Nag, J.K.; Agranovich, D.; Grisaru-Granovsky, S.; Uziely, B. G protein-coupled receptors in cancer. Int. J. Mol. Sci., 2016, 17(8)E1320
[http://dx.doi.org/10.3390/ijms17081320] [PMID: 27529230]
[150]
Lappano, R.; Maggiolini, M. G protein-coupled receptors: novel targets for drug discovery in cancer. Nat. Rev. Drug Discov., 2011, 10(1), 47-60.
[http://dx.doi.org/10.1038/nrd3320] [PMID: 21193867]
[151]
Liu, Y.; An, S.; Ward, R.; Yang, Y.; Guo, X.X.; Li, W.; Xu, T.R. G protein-coupled receptors as promising cancer targets. Cancer Lett., 2016, 376(2), 226-239.
[http://dx.doi.org/10.1016/j.canlet.2016.03.031] [PMID: 27000991]
[152]
O’Hayre, M.; Degese, M.S.; Gutkind, J.S. Novel insights into G protein and G protein-coupled receptor signaling in cancer. Curr. Opin. Cell Biol., 2014, 27, 126-135.
[http://dx.doi.org/10.1016/j.ceb.2014.01.005] [PMID: 24508914]
[153]
O’Hayre, M.; Vázquez-Prado, J.; Kufareva, I.; Stawiski, E.W.; Handel, T.M.; Seshagiri, S.; Gutkind, J.S. The emerging mutational landscape of G proteins and G-protein-coupled receptors in cancer. Nat. Rev. Cancer, 2013, 13(6), 412-424.
[http://dx.doi.org/10.1038/nrc3521] [PMID: 23640210]
[154]
Forbes, S.A.; Bindal, N.; Bamford, S.; Cole, C.; Kok, C.Y.; Beare, D.; Jia, M.; Shepherd, R.; Leung, K.; Menzies, A.; Teague, J.W.; Campbell, P.J.; Stratton, M.R.; Futreal, P.A. COSMIC: Mining complete cancer genomes in the catalogue of somatic mutations in cancer. Nucleic Acids Res., 2011, 39(Database issue), D945-D950.
[http://dx.doi.org/10.1093/nar/gkq929] [PMID: 20952405]
[155]
Insel, P.A.; Sriram, K.; Wiley, S.Z.; Wilderman, A.; Katakia, T.; McCann, T.; Yokouchi, H.; Zhang, L.; Corriden, R.; Liu, D.; Feigin, M.E.; French, R.P.; Lowy, A.M.; Murray, F. GPCRomics: GPCR expression in cancer cells and tumors identifies new, potential biomarkers and therapeutic targets. Front. Pharmacol., 2018, 9, 431.
[http://dx.doi.org/10.3389/fphar.2018.00431] [PMID: 29872392]
[156]
Wobus, M.; Bornhäuser, M.; Jacobi, A.; Kräter, M.; Otto, O.; Ortlepp, C.; Guck, J.; Ehninger, G.; Thiede, C.; Oelschlägel, U. Association of the EGF-TM7 receptor CD97 expression with FLT3-ITD in acute myeloid leukemia. Oncotarget, 2015, 6(36), 38804-38815.
[http://dx.doi.org/10.18632/oncotarget.5661] [PMID: 26462154]
[157]
Maiga, A.; Lemieux, S.; Pabst, C.; Lavallée, V.P.; Bouvier, M.; Sauvageau, G.; Hébert, J. Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets. Blood Cancer J., 2016, 6(6)e431
[http://dx.doi.org/10.1038/bcj.2016.36] [PMID: 27258612]
[158]
Rombouts, E.J.C.; Pavic, B.; Löwenberg, B.; Ploemacher, R.E. Relation between CXCR-4 expression, Flt3 mutations, and unfavorable prognosis of adult acute myeloid leukemia. Blood, 2004, 104(2), 550-557.
[http://dx.doi.org/10.1182/blood-2004-02-0566] [PMID: 15054042]
[159]
Spoo, A.C.; Lübbert, M.; Wierda, W.G.; Burger, J.A. CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood, 2007, 109(2), 786-791.
[http://dx.doi.org/10.1182/blood-2006-05-024844] [PMID: 16888090]
[160]
Konoplev, S.; Rassidakis, G.Z.; Estey, E.; Kantarjian, H.; Liakou, C.I.; Huang, X.; Xiao, L.; Andreeff, M.; Konopleva, M.; Medeiros, L.J. Overexpression of CXCR4 predicts adverse overall and event-free survival in patients with unmutated FLT3 acute myeloid leukemia with normal karyotype. Cancer, 2007, 109(6), 1152-1156.
[http://dx.doi.org/10.1002/cncr.22510] [PMID: 17315232]
[161]
Chua, V.; Lapadula, D.; Randolph, C.; Benovic, J.L.; Wedegaertner, P.B.; Aplin, A.E. Dysregulated GPCR signaling and therapeutic options in uveal melanoma. Mol. Cancer Res., 2017, 15(5), 501-506.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0007] [PMID: 28223438]
[162]
Haouas, H.; Haouas, S.; Uzan, G.; Hafsia, A. Identification of new markers discriminating between myeloid and lymphoid acute leukemia. Hematology, 2010, 15(4), 193-203.
[http://dx.doi.org/10.1179/102453310X12647083620769] [PMID: 20670477]
[163]
Carreras, J.; Kikuti, Y.Y.; Beà, S.; Miyaoka, M.; Hiraiwa, S.; Ikoma, H.; Nagao, R.; Tomita, S.; Martin-Garcia, D.; Salaverria, I.; Sato, A.; Ichiki, A.; Roncador, G.; Garcia, J.F.; Ando, K.; Campo, E.; Nakamura, N. Clinicopathological characteristics and genomic profile of primary sinonasal tract diffuse large B cell lymphoma (DLBCL) reveals gain at 1q31 and RGS1 encoding protein; high RGS1 immunohistochemical expression associates with poor overall survival in DLBCL not otherwise specified (NOS). Histopathology, 2017, 70(4), 595-621.
[http://dx.doi.org/10.1111/his.13106] [PMID: 27775850]
[164]
Pise-Masison, C.A.; Radonovich, M.; Dohoney, K.; Morris, J.C.; O’Mahony, D.; Lee, M.J.; Trepel, J.; Waldmann, T.A.; Janik, J.E.; Brady, J.N. Gene expression profiling of ATL patients: Compilation of disease-related genes and evidence for TCF4 involvement in BIRC5 gene expression and cell viability. Blood, 2009, 113(17), 4016-4026.
[http://dx.doi.org/10.1182/blood-2008-08-175901] [PMID: 19131553]
[165]
Sethakorn, N.; Dulin, N.O. RGS expression in cancer: Oncomining the cancer microarray data. J. Recept. Signal Transduct. Res., 2013, 33(3), 166-171.
[http://dx.doi.org/10.3109/10799893.2013.773450] [PMID: 23464602]
[166]
Nogués, L.; Palacios-García, J.; Reglero, C.; Rivas, V.; Neves, M.; Ribas, C.; Penela, P.; Mayor, F., Jr G protein-coupled receptor kinases (GRKs) in tumorigenesis and cancer progression: GPCR regulators and signaling hubs. Semin. Cancer Biol., 2018, 48, 78-90.
[http://dx.doi.org/10.1016/j.semcancer.2017.04.013] [PMID: 28473253]
[167]
Nogués, L.; Reglero, C.; Rivas, V.; Neves, M.; Penela, P.; Mayor, F., Jr G-protein-coupled receptor kinase 2 as a potential modulator of the hallmarks of cancer. Mol. Pharmacol., 2017, 91(3), 220-228.
[http://dx.doi.org/10.1124/mol.116.107185] [PMID: 27895163]
[168]
Fereshteh, M.; Ito, T.; Kovacs, J.J.; Zhao, C.; Kwon, H.Y.; Tornini, V.; Konuma, T.; Chen, M.; Lefkowitz, R.J.; Reya, T. β-Arrestin2 mediates the initiation and progression of myeloid leukemia. Proc. Natl. Acad. Sci. USA, 2012, 109(31), 12532-12537.
[http://dx.doi.org/10.1073/pnas.1209815109] [PMID: 22773819]
[169]
Qin, R.; Li, K.; Qi, X.; Zhou, X.; Wang, L.; Zhang, P.; Zou, L. β-Arrestin1 promotes the progression of chronic myeloid leukaemia by regulating BCR/ABL H4 acetylation. Br. J. Cancer, 2014, 111(3), 568-576.
[http://dx.doi.org/10.1038/bjc.2014.335] [PMID: 24937675]
[170]
Pillai, S.; Trevino, J.; Rawal, B.; Singh, S.; Kovacs, M.; Li, X.; Schell, M.; Haura, E.; Bepler, G.; Chellappan, S. β-arrestin-1 mediates nicotine-induced metastasis through E2F1 target genes that modulate epithelial-mesenchymal transition. Cancer Res., 2015, 75(6), 1009-1020.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-0681] [PMID: 25600647]
[171]
Rosanò, L.; Cianfrocca, R.; Masi, S.; Spinella, F.; Di Castro, V.; Biroccio, A.; Salvati, E.; Nicotra, M.R.; Natali, P.G.; Bagnato, A. Beta-arrestin links endothelin A receptor to beta-catenin signaling to induce ovarian cancer cell invasion and metastasis. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2806-2811.
[http://dx.doi.org/10.1073/pnas.0807158106] [PMID: 19202075]
[172]
Shenoy, S.K.; Han, S.; Zhao, Y.L.; Hara, M.R.; Oliver, T.; Cao, Y.; Dewhirst, M.W. β-arrestin1 mediates metastatic growth of breast cancer cells by facilitating HIF-1-dependent VEGF expression. Oncogene, 2012, 31(3), 282-292.
[http://dx.doi.org/10.1038/onc.2011.238] [PMID: 21685944]
[173]
Grainger, S.; Traver, D.; Willert, K. Wnt signaling in hematological malignancies. Prog. Mol. Biol. Transl. Sci., 2018, 153, 321-341.
[http://dx.doi.org/10.1016/bs.pmbts.2017.11.002] [PMID: 29389522]
[174]
Lynch, J.R.; Yi, H.; Casolari, D.A.; Voli, F.; Gonzales-Aloy, E.; Fung, T.K.; Liu, B.; Brown, A.; Liu, T.; Haber, M.; Norris, M.D.; Lewis, I.D.; So, C.W.E.; D’Andrea, R.J.; Wang, J.Y. Gaq signaling is required for the maintenance of MLL-AF9-induced acute myeloid leukemia. Leukemia, 2016, 30(8), 1745-1748.
[http://dx.doi.org/10.1038/leu.2016.24] [PMID: 26859074]
[175]
Uy, G.L.; Rettig, M.P.; Motabi, I.H.; McFarland, K.; Trinkaus, K.M.; Hladnik, L.M.; Kulkarni, S.; Abboud, C.N.; Cashen, A.F.; Stockerl-Goldstein, K.E.; Vij, R.; Westervelt, P.; DiPersio, J.F. A phase 1/2 study of chemosensitization with the CXCR4 antagonist plerixafor in relapsed or refractory acute myeloid leukemia. Blood, 2012, 119(17), 3917-3924.
[http://dx.doi.org/10.1182/blood-2011-10-383406] [PMID: 22308295]
[176]
Uy, G. L.; Rettig, M. P.; Stone, R. M.; Konopleva, M. Y.; Andreeff, M.; McFarland, K.; Shannon, W.; Fletcher, T. R.; Reineck, T.; Eades, W.; Stockerl-Goldstein, K.; Abboud, C. N.; Jacoby, M. A.; Westervelt, P.; DiPersio, J. F. A phase 1/2 study of chemosensitization with plerixafor plus G-CSF in relapsed or refractory acute myeloid leukemia. Blood Cancer J., 2017. 7, ARTN e542.
[177]
Shah, K.; Moharram, S.A.; Kazi, J.U. Acute leukemia cells resistant to PI3K/mTOR inhibition display upregulation of P2RY14 expression. Clin. Epigenetics, 2018, 10, 83.
[http://dx.doi.org/10.1186/s13148-018-0516-x] [PMID: 29951132]
[178]
Bonardi, F.; Fusetti, F.; Deelen, P.; van Gosliga, D.; Vellenga, E.; Schuringa, J.J. A proteomics and transcriptomics approach to identify leukemic stem cell (LSC) markers. Mol. Cell. Proteomics, 2013, 12(3), 626-637.
[http://dx.doi.org/10.1074/mcp.M112.021931] [PMID: 23233446]
[179]
Martin, G.H.; Desrichard, A.; Chung, S.S.; Woolthuis, C.; Hu, W.H.; Garrett-Bakelman, F.E.; Hamann, J.; Chan, T.; Park, C.Y. CD97 is a critical regulator of acute myeloid leukemia stem cell function.Blood, 2016. pii, jem.20190598
[180]
Coustan-Smith, E.; Song, G.; Shurtleff, S.; Yeoh, A.E.; Chng, W.J.; Chen, S.P.; Rubnitz, J.E.; Pui, C.H.; Downing, J.R.; Campana, D. Universal monitoring of minimal residual disease in acute myeloid leukemia. JCI Insight, 2018, 3(9), 98561.
[http://dx.doi.org/10.1172/jci.insight.98561] [PMID: 29720577]
[181]
Daria, D.; Kirsten, N.; Muranyi, A.; Mulaw, M.; Ihme, S.; Kechter, A.; Hollnagel, M.; Bullinger, L.; Döhner, K.; Döhner, H.; Feuring-Buske, M.; Buske, C. GPR56 contributes to the development of acute myeloid leukemia in mice. Leukemia, 2016, 30(8), 1734-1741.
[http://dx.doi.org/10.1038/leu.2016.76] [PMID: 27063597]
[182]
Pabst, C.; Bergeron, A.; Lavallée, V.P.; Yeh, J.; Gendron, P.; Norddahl, G.L.; Krosl, J.; Boivin, I.; Deneault, E.; Simard, J.; Imren, S.; Boucher, G.; Eppert, K.; Herold, T.; Bohlander, S.K.; Humphries, K.; Lemieux, S.; Hébert, J.; Sauvageau, G.; Barabé, F. GPR56 identifies primary human acute myeloid leukemia cells with high repopulating potential in vivo. Blood, 2016, 127(16), 2018-2027.
[http://dx.doi.org/10.1182/blood-2015-11-683649] [PMID: 26834243]
[183]
Saito, Y.; Kaneda, K.; Suekane, A.; Ichihara, E.; Nakahata, S.; Yamakawa, N.; Nagai, K.; Mizuno, N.; Kogawa, K.; Miura, I.; Itoh, H.; Morishita, K. Maintenance of the hematopoietic stem cell pool in bone marrow niches by EVI1-regulated GPR56. Leukemia, 2013, 27(8), 1637-1649.
[http://dx.doi.org/10.1038/leu.2013.75] [PMID: 23478665]
[184]
Dietrich, P.A.; Yang, C.; Leung, H.H.; Lynch, J.R.; Gonzales, E.; Liu, B.; Haber, M.; Norris, M.D.; Wang, J.; Wang, J.Y. GPR84 sustains aberrant β-catenin signaling in leukemic stem cells for maintenance of MLL leukemogenesis. Blood, 2014, 124(22), 3284-3294.
[http://dx.doi.org/10.1182/blood-2013-10-532523] [PMID: 25293777]
[185]
Prabhu, V.V.; Madhukar, N.; Tarapore, R.; Garnett, M.; McDermott, U.; Benes, C.; Charter, N.; Deacon, S.; Oster, W.; Andreeff, M.; Elemento, O.; Stogniew, M.; Allen, J. Potent anti-cancer effects of selective GPR132/G2A agonist imipridone ONC212 in leukemia and lymphoma Proceedings of the American Association for Cancer Research Annual Meeting, 2017, p. 77.
[186]
Nii, T.; Ishizawa, J.; Prabhu, V.V.; Ruvolo, V.; Madhukar, N.; Zhao, R.; Mu, H.; Heese, L.; Kojima, K.; Garnett, M.; McDermott, U.; Benes, C.; Charter, N.; Deacon, S.; Ele-mento, O.; Allen, J.E.; Oster, W.; Stogniew, M.; Andreeff, M. The novel imipridone ONC212 highly synergizes with the BCL-2 inhibitor ABT-199 in AML and activates orphan receptor GPR132. Proceedings of the American Association for Cancer Research Annual Meeting 2018, 2018.
[187]
Oncoceutics, Oncoceutics and MD Anderson Expand Alliance to Cover Imipridone ONC212, https://oncoceutics.com/oncoceutics-md-anderson-expand-alliance-cover-imipridone-onc212/2019.
[188]
Boyd, A.L.; Aslostovar, L.; Reid, J.; Ye, W.; Tanasijevic, B.; Porras, D.P.; Shapovalova, Z.; Almakadi, M.; Foley, R.; Leber, B.; Xenocostas, A.; Bhatia, M. Identification of chemotherapy-induced leukemic-regenerating cells re-veals a transient vulnerability of human AML recurrence. Cancer Cell, 2018, •••, 34.
[189]
Charuchandra, S. Targeting the transient group of cells could prevent recurrence of the disease. TheScientist 2018 December, 2018.
[190]
Bosman, M.C.; Schuringa, J.J.; Vellenga, E. Constitutive NF-κB activation in AML: Causes and treatment strategies. Crit. Rev. Oncol. Hematol., 2016, 98, 35-44.
[http://dx.doi.org/10.1016/j.critrevonc.2015.10.001] [PMID: 26490297]
[191]
de Jonge, H.J.M.; Woolthuis, C.M.; Vos, A.Z.; Mulder, A.; van den Berg, E.; Kluin, P.M.; van der Weide, K.; de Bont, E.S.J.M.; Huls, G.; Vellenga, E.; Schuringa, J.J. Gene expression profiling in the leukemic stem cell-enriched CD34+ fraction identifies target genes that predict prognosis in normal karyotype AML. Leukemia, 2011, 25(12), 1825-1833.
[http://dx.doi.org/10.1038/leu.2011.172] [PMID: 21760593]
[192]
Wang, Y.; Krivtsov, A.V.; Sinha, A.U.; North, T.E.; Goessling, W.; Feng, Z.; Zon, L.I.; Armstrong, S.A. The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science, 2010, 327(5973), 1650-1653.
[http://dx.doi.org/10.1126/science.1186624] [PMID: 20339075]
[193]
Muntean, A.G.; Hess, J.L. The pathogenesis of mixed-lineage leukemia. Annu. Rev. Pathol., 2012, 7, 283-301.
[http://dx.doi.org/10.1146/annurev-pathol-011811-132434] [PMID: 22017583]
[194]
Reynaud, S.; Malissein, E.; Donnard, M.; Bordessoule, D.; Turlure, P.; Trimoreau, F.; Denizot, Y. Functional platelet-activating factor receptors in immature forms of leukemic blasts. Leuk. Res., 2007, 31(3), 399-402.
[http://dx.doi.org/10.1016/j.leukres.2006.06.002] [PMID: 16837045]
[195]
Marjanovic, I.; Kostic, J.; Stanic, B.; Pejanovic, N.; Lucic, B.; Karan-Djurasevic, T.; Janic, D.; Dokmanovic, L.; Jankovic, S.; Vukovic, N.S.; Tomin, D.; Perisic, O.; Rakocevic, G.; Popovic, M.; Pavlovic, S.; Tosic, N. Parallel targeted next generation sequencing of childhood and adult acute myeloid leukemia patients reveals uniform genomic profile of the disease. Tumour Biol., 2016, 37(10), 13391-13401.
[http://dx.doi.org/10.1007/s13277-016-5142-7] [PMID: 27460089]
[196]
Lamba, S.; Felicioni, L.; Buttitta, F.; Bleeker, F.E.; Malatesta, S.; Corbo, V.; Scarpa, A.; Rodolfo, M.; Knowles, M.; Frattini, M.; Marchetti, A.; Bardelli, A. Mutational profile of GNAQQ209 in human tumors. PLoS One, 2009, 4(8)e6833
[http://dx.doi.org/10.1371/journal.pone.0006833] [PMID: 19718445]
[197]
Schwäble, J.; Choudhary, C.; Thiede, C.; Tickenbrock, L.; Sargin, B.; Steur, C.; Rehage, M.; Rudat, A.; Brandts, C.; Berdel, W.E.; Müller-Tidow, C.; Serve, H. RGS2 is an important target gene of Flt3-ITD mutations in AML and functions in myeloid differentiation and leukemic transformation. Blood, 2005, 105(5), 2107-2114.
[http://dx.doi.org/10.1182/blood-2004-03-0940] [PMID: 15536149]
[198]
Mosakhani, N.; Räty, R.; Tyybäkinoja, A.; Karjalainen-Lindsberg, M.L.; Elonen, E.; Knuutila, S. MicroRNA profiling in chemoresistant and chemosensitive acute myeloid leukemia. Cytogenet. Genome Res., 2013, 141(4), 272-276.
[http://dx.doi.org/10.1159/000351219] [PMID: 23689423]
[199]
Chatzikyriakidou, A.; Voulgari, P.V.; Georgiou, I.; Drosos, A.A. miRNAs and related polymorphisms in rheumatoid arthritis susceptibility. Autoimmun. Rev., 2012, 11(9), 636-641.
[http://dx.doi.org/10.1016/j.autrev.2011.11.004] [PMID: 22100329]
[200]
Hooks, S.B.; Callihan, P.; Altman, M.K.; Hurst, J.H.; Ali, M.W.; Murph, M.M. Regulators of G-Protein signaling RGS10 and RGS17 regulate chemoresistance in ovarian cancer cells. Mol. Cancer, 2010, 9, 289.
[http://dx.doi.org/10.1186/1476-4598-9-289] [PMID: 21044322]
[201]
Smith, C.C.; Shah, N.P. The role of kinase inhibitors in the treatment of patients with acute myeloid leukemia. In American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting, , pp. 313-318.
[http://dx.doi.org/10.1200/EdBook_AM.2013.33.313] [PMID: 23714533]
[202]
Xu, Q.; Simpson, S.E.; Scialla, T.J.; Bagg, A.; Carroll, M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood, 2003, 102(3), 972-980.
[http://dx.doi.org/10.1182/blood-2002-11-3429] [PMID: 12702506]
[203]
Martelli, A.M.; Evangelisti, C.; Chiarini, F.; McCubrey, J.A. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget, 2010, 1(2), 89-103.
[http://dx.doi.org/10.18632/oncotarget.114] [PMID: 20671809]
[204]
Evron, T.; Daigle, T.L.; Caron, M.G. GRK2: Multiple roles beyond G protein-coupled receptor desensitization. Trends Pharmacol. Sci., 2012, 33(3), 154-164.
[http://dx.doi.org/10.1016/j.tips.2011.12.003] [PMID: 22277298]
[205]
Staal, F.J.; Famili, F.; Garcia Perez, L.; Pike-Overzet, K. Aberrant Wnt signaling in leukemia. Cancers (Basel), 2016, 8(9)E78
[http://dx.doi.org/10.3390/cancers8090078] [PMID: 27571104]
[206]
Minke, K.S.; Staib, P.; Puetter, A.; Gehrke, I.; Gandhirajan, R.K.; Schlösser, A.; Schmitt, E.K.; Hallek, M.; Kreuzer, K.A. Small molecule inhibitors of WNT signaling effectively induce apoptosis in acute myeloid leukemia cells. Eur. J. Haematol., 2009, 82(3), 165-175.
[http://dx.doi.org/10.1111/j.1600-0609.2008.01188.x] [PMID: 19067737]
[207]
Jimenez, C.R.; Verheul, H.M. Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications. In American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting, , pp. e504-10.
[http://dx.doi.org/10.14694/EdBook_AM.2014.34.e504] [PMID: 24857147]
[208]
Ebhardt, H.A.; Root, A.; Sander, C.; Aebersold, R. Applications of targeted proteomics in systems biology and translational medicine. Proteomics, 2015, 15(18), 3193-3208.
[http://dx.doi.org/10.1002/pmic.201500004] [PMID: 26097198]
[209]
Füzéry, A.K.; Levin, J.; Chan, M.M.; Chan, D.W. Translation of proteomic biomarkers into FDA approved cancer diagnostics: Issues and challenges. Clin. Proteomics, 2013, 10(1), 13.
[http://dx.doi.org/10.1186/1559-0275-10-13] [PMID: 24088261]
[210]
Maes, E.; Mertens, I.; Valkenborg, D.; Pauwels, P.; Rolfo, C.; Baggerman, G. Proteomics in cancer research: Are we ready for clinical practice? Crit. Rev. Oncol. Hematol., 2015, 96(3), 437-448.
[http://dx.doi.org/10.1016/j.critrevonc.2015.07.006] [PMID: 26277237]
[211]
Boja, E.S.; Fehniger, T.E.; Baker, M.S.; Marko-Varga, G.; Rodriguez, H. Analytical validation considerations of multiplex mass-spectrometry-based proteomic platforms for measuring protein biomarkers. J. Proteome Res., 2014, 13(12), 5325-5332.
[http://dx.doi.org/10.1021/pr500753r] [PMID: 25171765]
[212]
Kondo, T. Inconvenient truth: cancer biomarker development by using proteomics. Biochim. Biophys. Acta, 2014, 1844(5), 861-865.
[http://dx.doi.org/10.1016/j.bbapap.2013.07.009] [PMID: 23896458]
[213]
Kelstrup, C.D.; Bekker-Jensen, D.B.; Arrey, T.N.; Hogrebe, A.; Harder, A.; Olsen, J.V. Performance evaluation of the Q exactive HF-X for shotgun proteomics. J. Proteome Res., 2018, 17(1), 727-738.
[http://dx.doi.org/10.1021/acs.jproteome.7b00602] [PMID: 29183128]
[214]
Hernandez-Valladares, M.; Aasebø, E.; Mjaavatten, O.; Vaudel, M.; Bruserud, Ø.; Berven, F.; Selheim, F. Reliable FASP-based procedures for optimal quantitative proteomic and phosphoproteomic analysis on samples from acute myeloid leukemia patients. Biol. Proced. Online, 2016, 18, 13.
[http://dx.doi.org/10.1186/s12575-016-0043-0] [PMID: 27330413]
[215]
Aasebø, E.; Mjaavatten, O.; Vaudel, M.; Farag, Y.; Selheim, F.; Berven, F.; Bruserud, Ø.; Hernandez-Valladares, M. Freezing effects on the acute myeloid leukemia cell proteome and phosphoproteome revealed using optimal quantitative workflows. J. Proteomics, 2016, 145, 214-225.
[http://dx.doi.org/10.1016/j.jprot.2016.03.049] [PMID: 27107777]
[216]
Schaab, C.; Oppermann, F.S.; Klammer, M.; Pfeifer, H.; Tebbe, A.; Oellerich, T.; Krauter, J.; Levis, M.; Perl, A.E.; Daub, H.; Steffen, B.; Godl, K.; Serve, H. Global phosphoproteome analysis of human bone marrow reveals predictive phosphorylation markers for the treatment of acute myeloid leukemia with quizartinib. Leukemia, 2014, 28(3), 716-719.
[http://dx.doi.org/10.1038/leu.2013.347] [PMID: 24247654]
[217]
Gregorc, V.; Novello, S.; Lazzari, C.; Barni, S.; Aieta, M.; Mencoboni, M.; Grossi, F.; De Pas, T.; de Marinis, F.; Bearz, A.; Floriani, I.; Torri, V.; Bulotta, A.; Cattaneo, A.; Grigorieva, J.; Tsypin, M.; Roder, J.; Doglioni, C.; Levra, M.G.; Petrelli, F.; Foti, S.; Viganò, M.; Bachi, A.; Roder, H. Predictive value of a proteomic signature in patients with non-small-cell lung cancer treated with second-line erlotinib or chemotherapy (PROSE): a biomarker-stratified, randomised phase 3 trial. Lancet Oncol., 2014, 15(7), 713-721.
[http://dx.doi.org/10.1016/S1470-2045(14)70162-7] [PMID: 24831979]
[218]
Aasebo, E.; Forthun, R.B.; Berven, F.; Selheim, F.; Her-nandez-Valladares, M. Global cell proteome profiling, phospho-signaling and quantitative proteomics for identification of new biomarkers in acute myeloid leukemia patients. Curr. Pharm. Biotechnol., 2016, 17, 52-70.
[http://dx.doi.org/10.2174/1389201016666150826115626] [PMID: 26306748]
[219]
Peterson, A.C.; Russell, J.D.; Bailey, D.J.; Westphall, M.S.; Coon, J.J. Parallel reaction monitoring for high resolution and high mass accuracy quantitative, targeted proteomics. Mol. Cell. Proteomics, 2012, 11(11), 1475-1488.
[http://dx.doi.org/10.1074/mcp.O112.020131] [PMID: 22865924]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 26
ISSUE: 28
Year: 2019
Page: [5293 - 5316]
Pages: 24
DOI: 10.2174/0929867326666190429153247
Price: $65

Article Metrics

PDF: 23
HTML: 3
PRC: 1