Controlled Delivery of Nitric Oxide for Cancer Therapy

Author(s): Houman Alimoradi, Khaled Greish*, Allan B. Gamble, Gregory I. Giles*.

Journal Name: Pharmaceutical Nanotechnology

Volume 7 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Nitric oxide (NO) is a short-lived, endogenously produced, signaling molecule which plays multiple roles in mammalian physiology. Underproduction of NO is associated with several pathological processes; hence a broad range of NO donors have emerged as potential therapeutics for cardiovascular and respiratory disorders, wound healing, the immune response to infection, and cancer. However, short half-lives, chemical reactivity, rapid systemic clearance, and cytotoxicity have hindered the clinical development of most low molecular weight NO donors. Hence, for controlled NO delivery, there has been extensive effort to design novel NO-releasing biomaterials for tumor targeting. This review covers the effects of NO in cancer biology, NO releasing moieties which can be used for NO delivery, and current advances in the design of NO releasing biomaterials focusing on their applications for tumor therapy.

Keywords: Cancer therapy, controlled delivery, nanoparticles, nitric oxide donors, nitric oxide releasing biomaterials, nitric oxide.

[1]
Duong HT, Kamarudin ZM, Erlich RB, et al. Intracellular nitric oxide delivery from stable NO-polymeric nanoparticle carriers. Chem Commun 2013; 49(39): 4190-2.
[2]
Wang PG, Xian M, Tang X, et al. Nitric oxide donors: chemical activities and biological applications. Chem Rev 2002; 102(4): 1091-134.
[3]
Ignarro LJ. Nitric oxide: a unique endogenous signaling molecule in vascular biology (Nobel lecture). Angew Chem Int Ed 1999; 38(13‐14): 1882-92.
[4]
Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991; 43(2): 109-42.
[5]
Ignarro LJ. Biosynthesis and metabolism of endothelium-derived nitric oxide. Annu Rev Pharmacol Toxicol 1990; 30(1): 535-60.
[6]
Shaw AW, Vosper AJ. Solubility of nitric oxide in aqueous and nonaqueous solvents. J Chem Soc, Faraday Trans I 1977; 73: 1239-44.
[7]
Malinski T, Taha Z, Grunfeld S, Patton S, Kapturczak M, Tomboulian P. Diffusion of nitric oxide in the aorta wall monitored in situ by porphyrinic microsensors. Biochem Biophys Res Commun 1993; 193(3): 1076-82.
[8]
Moller MN, Denicola A. Diffusion of nitric oxide and oxygen in lipoproteins and membranes studied by pyrene fluorescence quenching. Free Radic Biol Med 2018; 128: 137-43.
[9]
Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V. Nitric oxide and cancer: a review. World J Surg Oncol 2013; 11(1): 118.
[10]
Lincoln J, Hoyle CH, Burnstock G. Nitric oxide in health and disease: Burnstock. Cambridge University Press: Cambridge 1997.
[11]
Wink DA, Vodovotz Y, Laval J, Laval F, Dewhirst MW, Mitchell JB. The multifaceted roles of nitric oxide in cancer. Carcinogenesis 1998; 19(5): 711-21.
[12]
Wink DA, Mitchell JB. Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Biol Med 1998; 25(4): 434-56.
[13]
Maruyama K, Zhang E, Maruyama J. Clinical application of inhaled nitric oxide. In: Yoshikawa T, Naito Y, Eds. Gas Biology Research in Clinical Practice.. Karger Publishers: Basel, Switzerland 2011; pp. 43-55.
[14]
Wu HW, Li ZG, Liu G, Lu GZ, Liang HY. Effect of nitric oxide inhalation for the treatment of neonatal pulmonary hypertension. Eur Rev Med Pharmaco 2016; 20(21): 4607-11.
[15]
Troncy E, Francoeur M, Blaise G. Inhaled nitric oxide: clinical applications, indications, and toxicology. Can J Anaesth 1997; 44(9): 973-88.
[16]
Cooper CE. Nitric oxide and iron proteins. Biochim Biophys Acta 1999; 1411(2): 290-309.
[17]
Martin E, Davis K, Bian K, Lee Y, Murad F, Eds. Cellular signaling with nitric oxide and cyclic guanosine monophosphate. Semin Perinatol 2000; 24(1): 2-6.
[18]
Cohen RA, Weisbrod RM, Gericke M, Yaghoubi M, Bierl C, Bolotina VM. Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ Res 1999; 84(2): 210-9.
[19]
Paterno R, Heistad DD, Faraci FM. Functional activity of Ca2+-dependent K+ channels is increased in basilar artery during chronic hypertension. Am J Physiol Heart Circ 1997; 272(3): H1287-91.
[20]
Paternò R, Faraci FM, Heistad DD. Role of Ca2+-dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat. Stroke 1996; 27(9): 1603-8.
[21]
Blough NV, Zafiriou OC. Reaction of superoxide with nitric oxide to form peroxonitrite in alkaline aqueous solution. Inorg Chem 1985; 24(22): 3502-4.
[22]
Rubbo H, Radi R, Trujillo M, et al. Nitric oxide regulation of superoxide and peroxynitrite-dependent lipid peroxidation. Formation of novel nitrogen-containing oxidized lipid derivatives. J Biol Chem 1994; 269(42): 26066-75.
[23]
Fukumura D, Kashiwagi S, Jain RK. The role of nitric oxide in tumour progression. Nat Rev Cancer 2006; 6(7): 521-34.
[24]
Hirst D, Robson T. Targeting nitric oxide for cancer therapy. J Pharm Pharmacol 2007; 59(1): 3-13.
[25]
Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol 2015; 6(Suppl. C): 334-43.
[26]
Huang Z, Fu J, Zhang Y. Nitric oxide donor-based cancer therapy: advances and prospects. J Med Chem 2017; 60(18): 7617-35.
[27]
Predonzani A, Calì B, Agnellini AH, Molon B. Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med 2015; 5(2): 64.
[28]
Wink DA, Hines HB, Cheng RY, et al. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 2011; 89(6): 873-91.
[29]
Thomas DD, Espey MG, Ridnour LA, et al. Hypoxic inducible factor 1alpha, extracellular signal-regulated kinase, and p53 are regulated by distinct threshold concentrations of nitric oxide. Proc Natl Acad Sci USA 2004; 101(24): 8894-9.
[30]
Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci USA 2005; 102(37): 13147-52.
[31]
Wink DA, Hines HB, Cheng RY, et al. Nitric oxide and redox mechanisms in the immune response. J Leukoc Biol 2011; 89(6): 873-91.
[32]
Brown GC. Nitric oxide and mitochondrial respiration. Biochim Biophys Acta 1999; 1411(2): 351-69.
[33]
Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 1995; 369(2-3): 136-9.
[34]
Bal-Price A, Brown GC. Nitric-oxide-induced necrosis and apoptosis in PC12 cells mediated by mitochondria. J Neurochem 2000; 75(4): 1455-64.
[35]
Heller R, Polack T, Gräbner R, Till U. Nitric oxide inhibits proliferation of human endothelial cells via a mechanism independent of cGMP. Atherosclerosis 1999; 144(1): 49-57.
[36]
Kanamaru Y, Takada T, Saura R, Mizuno K. Effect of nitric oxide on mouse clonal osteogenic cell, MC3T3-E1, proliferation in vitro. Kobe J Med Sci 2001; 47(1): 1-12.
[37]
Xie K, Huang S, Dong Z, et al. Transfection with the inducible nitric oxide synthase gene suppresses tumorigenicity and abrogates metastasis by K-1735 murine melanoma cells. J Exp Med 1995; 181(4): 1333-43.
[38]
Lala PK, Chakraborty C. Role of nitric oxide in carcinogenesis and tumour progression. The Lancet Oncol 2001; 2(3): 149-56.
[39]
Zhang R, Ma A, Urbanski SJ, McCafferty D-M. Induction of inducible nitric oxide synthase: a protective mechanism in colitis-induced adenocarcinoma. Carcinogenesis 2006; 28(5): 1122-30.
[40]
Cheng H, Wang L, Mollica M, Re AT, Wu S, Zuo L. Nitric oxide in cancer metastasis. Cancer Lett 2014; 353(1): 1-7.
[41]
Kalluri R, Weinberg RA. The basics of epithelialmesenchymal transition. J Clin Invest 2009; 119(6): 1420-8.
[42]
Min C, Eddy SF, Sherr DH, Sonenshein GE. NF-κB and epithelial to mesenchymal transition of cancer. J Cell Biochem 2008; 104(3): 733-44.
[43]
Bonavida B, Baritaki S, Eds. Inhibition of epithelial-to-mesenchymal transition (EMT) in cancer by nitric oxide: pivotal roles of nitrosylation of NF-κB, YY1 and Snail. For Immunopathol Dis Therap 2012; 3(2): 125-33.
[44]
Pan X, Wang X, Lei W, et al. Nitric oxide suppresses transforming growth factor‐β1-induced epithelial-to-mesenchymal transition and apoptosis in mouse hepatocytes. Hepatology 2009; 50(5): 1577-87.
[45]
Powan P, Chanvorachote P. Nitric oxide mediates cell aggregation and mesenchymal to epithelial transition in anoikis-resistant lung cancer cells. Mol Cell Biochem 2014; 393(1-2): 237-45.
[46]
Jain KK. Drug Delivery Systems. Springer Science and Business Media: Switzerland 2008.
[47]
Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B Biointerfaces 2010; 75(1): 1-18.
[48]
Hughes GA. Nanostructure-mediated drug delivery. Nanomedicine 2017; 1(1): 22-30.
[49]
Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 2005; 307(5706): 58-62.
[50]
Vaupel P, Harrison L. Tumor hypoxia: causative factors, compensatory mechanisms, and cellular response. Oncologist 2004; 9(Suppl. 5): 4-9.
[51]
Secomb TW, Hsu R, Park EY, Dewhirst MW. Green’s function methods for analysis of oxygen delivery to tissue by microvascular networks. Ann Biomed Eng 2004; 32(11): 1519-29.
[52]
Dewhirst M, Ong E, Braun R, et al. Quantification of longitudinal tissue pO2 gradients in window chamber tumours: impact on tumour hypoxia. Br J Cancer 1999; 79(11-12): 1717.
[53]
Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer 2008; 8(6): 425-37.
[54]
Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285(21): 1182-6.
[55]
Vaupel P, Thews O, Hoeckel M. Treatment resistance of solid tumors. Med Oncol 2001; 18(4): 243-59.
[56]
Gacche RN. Compensatory angiogenesis and tumor refractoriness. Oncogenesis 2015; 4e153
[57]
Maki S, Konno T, Maeda H. Image enhancement in computerized tomography for sensitive diagnosis of liver cancer and semiquantitation of tumor selective drug targeting with oily contrast medium. Cancer 1985; 56(4): 751-7.
[58]
Taurin S, Nehoff H, Greish K. Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J Control Release 2012; 164(3): 265-75.
[59]
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 2000; 65(1): 271-84.
[60]
Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev 2011; 63(3): 136-51.
[61]
Iyer AK, Khaled G, Fang J, Maeda H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov Today 2006; 11(17): 812-8.
[62]
Wu J, Akaike T, Maeda H. Modulation of enhanced vascular permeability in tumors by a bradykinin antagonist, a cyclooxygenase inhibitor, and a nitric oxide scavenger. Cancer Res 1998; 58(1): 159-65.
[63]
Akaike T, Horie H, Noguchi Y, et al. Excessive production of nitric oxide in rat solid tumor and its implication in rapid tumor growth. Cancer 1996; 77(8): 1598-604.
[64]
Seki T, Fang J, Maeda H. Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application. Cancer Sci 2009; 100(12): 2426-30.
[65]
Vannini F, Kashfi K, Nath N. The dual role of iNOS in cancer. Redox Biol 2015; 6: 334-43.
[66]
Lind M, Hayes A, Caprnda M, et al. Inducible nitric oxide synthase: Good or bad? Biomed Pharmacother 2017; 93: 370-5.
[67]
Kubota M, Sakakihara Y, Mori M, Yamagata T, Momoi-Yoshida M. Beneficial effect of L-arginine for stroke-like episode in MELAS. Brain Dev 2004; 26(7): 481-3.
[68]
Finsterer J, Zarrouk-Mahjoub S. A beneficial effect of l-arginine for stroke-like episodes is currently unsupported. Mol Genet Metab Rep 2018; 15: 67.
[69]
Howell K, Costello CM, Sands M, Dooley I, McLoughlin P. L-Arginine promotes angiogenesis in the chronically hypoxic lung: a novel mechanism ameliorating pulmonary hypertension. Am J Physiol-Lung C 2009; 296(6): 1042-50.
[70]
Barbul A, Lazarou SA, Efron DT, Wasserkrug HL, Efron G. Arginine enhances wound healing and lymphocyte immune responses in humans. Surgery 1990; 108(2): 331-6.
[71]
Clement B, Schade D, Kotthaus J. inventors; Christian Albrechts Universitaet Kiel, assignee. N-ω- hydroxy-L-arginine derivatives for the treatment of diseases. United States patent US 9,387,185.. 2016.
[72]
Reid KM, Tsung A, Kaizu T, et al. Liver I/R injury is improved by the arginase inhibitor, N ω-hydroxy-nor-L-arginine (nor-NOHA). Am J Physiol-Gastr L 2007; 292(2): 512-7.
[73]
Münzel T, Steven S, Daiber A. Organic nitrates: update on mechanisms underlying vasodilation, tolerance and endothelial dysfunction. Vascul Pharmacol 2014; 63(3): 105-13.
[74]
Schroder H. Cytochrome P-450 mediates bioactivation of organic nitrates. J Pharmacol Exp Ther 1992; 262(1): 298-302.
[75]
McDonald BJ, Bennett BM. Biotransformation of glyceryl trinitrate by rat aortic cytochrome P450. Biochem Pharmacol 1993; 45(1): 268-70.
[76]
Kenkare SR, Han C, Benet LZ. Correlation of the response to nitroglycerin in rabbit aorta with the activity of the mu class glutathione S-transferase. Biochem Pharmacol 1994; 48(12): 2231-5.
[77]
Loscalzo J. N-Acetylcysteine potentiates inhibition of platelet aggregation by nitroglycerin. J Clin Invest 1985; 76(2): 703-8.
[78]
Hutter J, Schmidt M, Rittler J. Effects of sulfhydryl-containing compounds on nitroglycerin-induced coronary dilatation in isolated working rat hearts. Eur J Pharmacol 1988; 156(2): 215-22.
[79]
Ignarro LJ, Napoli C, Loscalzo J. Nitric oxide donors and cardiovascular agents modulating the bioactivity of nitric oxide. Circ Res 2002; 90(1): 21-8.
[80]
Thompson A. Counselling in practice: Glyceryl trinitrate for acute angina. Australian Pharmacist 2016; 35(1): 46.
[81]
Ahlner J, Andersson R, Torfgård K, Axelsson K. Organic nitrate esters: clinical use and mechanisms of actions. Pharmacol Rev 1991; 43(3): 351-423.
[82]
Gardiner S, Compton A, Kemp P, Bennett T. Regional and cardiac haemodynamic responses to glyceryl trinitrate, acetylcholine, bradykinin and endothelin‐1 in conscious rats: effects of NG‐nitro‐l‐arginine methyl ester. Br J Pharmacol 1990; 101(3): 632-9.
[83]
Akhras F, Jackson G. Efficacy of nifedipine and isosorbide mononitrate in combination with atenolol in stable angina. The Lancet 1991; 338(8774): 1036-9.
[84]
Goldstein S, Czapski G. Mechanism of the nitrosation of thiols and amines by oxygenated NO solutions: the nature of the nitrosating intermediates. J Am Chem Soc 1996; 118(14): 3419-25.
[85]
Cederqvist B, Persson MG, Gustafsson LE. Direct demonstration of NO formation in vivo from organic nitrites and nitrates, and correlation to effects on blood pressure and to in vitro effects. Biochem Pharmacol 1994; 47(6): 1047-53.
[86]
Omar SA, Artime E, Webb AJ. A comparison of organic and inorganic nitrates/nitrites. Nitric Oxide 2012; 26(4): 229-40.
[87]
Bauer JA, Nolan T, Fung HL. Vascular and hemodynamic differences between organic nitrates and nitrites. J Pharmacol Exp Ther 1997; 280(1): 326-31.
[88]
Williams R. Nitric oxide in biology: its role as a ligand. Chem Soc Rev 1996; 25(2): 77-83.
[89]
Lim MH, Lippard SJ. Metal-based turn-on fluorescent probes for sensing nitric oxide. Acc Chem Res 2007; 40(1): 41-51.
[90]
Tinker JH, Michenfelder JD. Sodium nitroprusside: pharmacology, toxicology and therapeutics. Anesthesiology 1976; 45(3): 340-54.
[91]
Hottinger DG, Beebe DS, Kozhimannil T, Prielipp RC, Belani KG. Sodium nitroprusside in 2014: a clinical concepts review. J Anaesthesiol Clin Pharmacol 2014; 30(4): 462-71.
[92]
Amaranath L, Kellermeyer WF. Tachyphylaxis to sodium nitroprusside. Anesthesiology 1976; 44(4): 345-8.
[93]
Perschau RA, Modell JH, Bright RW, Shirley PD. Suspected sodium nitroprusside-induced cyanide intoxication. Anesth Analg 1977; 56(4): 533-7.
[94]
Fry NL, Mascharak PK. Photoactive ruthenium nitrosyls as NO donors: how to sensitize them toward visible light. Acc Chem Res 2011; 44(4): 289-98.
[95]
Bezerra CW, da Silva SC, Gambardella MT, et al. Water π-donation in trans-tetraammineruthenium (II): effect on coordinated-water properties induced by a trans NO ligand. Inorg Chem 1999; 38(25): 5660-7.
[96]
Mascharak PK. Recent progress in photoinduced no delivery with designed ruthenium nitrosyl complexes. Adv Inorg Chem 2015; 67: 145-70.
[97]
Miller M, Megson I. Recent developments in nitric oxide donor drugs. Br J Pharmacol 2007; 151(3): 305-21.
[98]
Morley D, Keefer LK. Nitric oxide/nucleophile complexes: a unique class of nitric oxide-based vasodilators. J Cardiovasc Pharmacol 1993; 22: S3-9.
[99]
Hrabie JA, Klose JR, Wink DA, Keefer LK. New nitric oxide-releasing zwitterions derived from polyamines. J Org Chem 1993; 58(6): 1472-6.
[100]
Brilli RJ, Krafte-Jacobs B, Smith DJ, et al. Intratracheal instillation of a novel NO/nucleophile adduct selectively reduces pulmonary hypertension. J Appl Physiol 1997; 83(6): 1968-75.
[101]
Lavery KS, Rhodes C, Mcgraw A, Eppihimer MJ. Anti-thrombotic technologies for medical devices. Adv Drug Deliv Rev 2017; 112: 2-11.
[102]
Krausz A, Friedman AJ. Nitric oxide as a surgical adjuvant. Fut Sci OA 2015; 1(1)
[103]
Diodati JG, Quyyumi AA, Hussain N, Keefer LK. Complexes of nitric oxide with nucleophiles as agents for the controlled biological release of nitric oxide: antiplatelet effect. Thromb Haemost 1993; 70(4): 654-8.
[104]
Maragos CM, Morley D, Wink DA, et al. Complexes of NO with nucleophiles as agents for the controlled biological release of nitric oxide. Vasorelaxant effects. J Med Chem 1991; 34(11): 3242-7.
[105]
Pearce CG, Najjar SF, Kapadia MR, et al. Beneficial effect of a short-acting NO donor for the prevention of neointimal hyperplasia. Free Radic Biol Med 2008; 44(1): 73-81.
[106]
Hermann M, Kapiotis S, Hofbauer R, et al. Salicylate inhibits LDL oxidation initiated by superoxide/nitric oxide radicals. FEBS Lett 1999; 445(1): 212-4.
[107]
Blaylock MG, Cuthbertson BH, Galley HF, Ferguson NR, Webster NR. The effect of nitric oxide and peroxynitrite on apoptosis in human polymorphonuclear leukocytes. Free Radic Biol Med 1998; 25(6): 748-52.
[108]
Feelisch M, Ostrowski J, Noack E. On the mechanism of NO release from sydnonimines. J Cardiovasc Pharmacol Ther 1989; 14: S13-22.
[109]
Reden J. Molsidomine. Blood Vessels 1990; 27(2-5): 282-94.
[110]
Peng W, Hoidal JR, Farrukh IS. Regulation of Ca(2+)-activated K+ channels in pulmonary vascular smooth muscle cells: role of nitric oxide. J Appl Physiol 1996; 81(3): 1264-72.
[111]
Megson IL, Webb DJ. Nitric oxide donor drugs: current status and future trends. Expert Opin Investig Drugs 2002; 11(5): 587-601.
[112]
Al-Sa’doni H, Ferro A. S-nitrosothiols as nitric oxide-donors: chemistry, biology and possible future therapeutic applications. Curr Med Chem 2004; 11(20): 2679-90.
[113]
Williams DLH. The chemistry of S-nitrosothiols. Acc Chem Res 1999; 32(10): 869-76.
[114]
Zhang C, Biggs TD, Devarie-Baez NO, Shuang S, Dong C, Xian M. S-Nitrosothiols: chemistry and reactions. Chem Commun 2017; 53(82): 11266-77.
[115]
Giles NM, Kumari S, Gang BP, Yuen CW, Billaud EM, Giles GI. The molecular design of s‐nitrosothiols as photodynamic agents for controlled nitric oxide release. Chem Biol Drug Des 2012; 80(3): 471-8.
[116]
Adeghate E, Parvez SH. Nitric oxide and neuronal and pancreatic beta cell death. Toxicology 2000; 153(1-3): 143-56.
[117]
Spinas GA. The dual role of nitric oxide in islet β-cells. Physiology 1999; 14(2): 49-54.
[118]
McGill AD, Zhang W, Wittbrodt J, Wang J, Schlegel HB, Wang PG. Para-Substituted N-nitroso-N-oxyben-zenamine ammonium salts: a new class of redox-sensitive nitric oxide releasing compounds. Bioorg Med Chem 2000; 8(2): 405-12.
[119]
Hecker M, Vorhoff W, Bara AT, Mordvintcev PI, Busse R. Characterization of furoxans as a new class of tolerance-resistant nitrovasodilators. Naunyn Schmiedebergs Arch Pharmacol 1995; 351(4): 426-32.
[120]
Bohn H, Brendel J, Martorana PA, Schonafinger K. Cardiovascular actions of the furoxan CAS 1609, a novel nitric oxide donor. Br J Pharmacol 1995; 114(8): 1605-12.
[121]
Serafim RA, Pernichelle FG, Ferreira EI. The latest advances in the discovery of nitric oxide hybrid drug compounds. Expert Opin Drug Discov 2017; 12(9): 941-53.
[122]
Bandarage UK, Chen L, Fang X, et al. Nitrosothiol esters of diclofenac: synthesis and pharmacological characterization as gastrointestinal-sparing prodrugs. J Med Chem 2000; 43(21): 4005-16.
[123]
Turnbull CM, Cena C, Fruttero R, Gasco A, Rossi AG, Megson IL. Mechanism of action of novel NO-releasing furoxan derivatives of aspirin in human platelets. Br J Pharmacol 2006; 148(4): 517-26.
[124]
Tesei A, Zoli W, Fabbri F, et al. NCX 4040, an NO-donating acetylsalicylic acid derivative: efficacy and mechanisms of action in cancer cells. Nitric Oxide 2008; 19(2): 225-36.
[125]
Kashfi K, Rigas B. Molecular targets of nitric-oxide-donating aspirin in cancer. Biochem Soc Trans 2005; 33(Pt 4): 701-4.
[126]
Chegaev K, Riganti C, Lazzarato L, et al. Nitric oxide donor doxorubicins accumulate into doxorubicin-resistant human colon cancer cells inducing cytotoxicity. ACS Med Chem Lett 2011; 2(7): 494-7.
[127]
Chegaev K, Fraix A, Gazzano E, et al. Light-regulated NO release as a novel strategy to overcome doxorubicin multidrug resistance. ACS Med Chem Lett 2017; 8(3): 361-5.
[128]
Lane AA, Chabner BA. Histone deacetylase inhibitors in cancer therapy. J Clin Oncol 2009; 27(32): 5459-68.
[129]
Duan W, Li J, Inks ES, et al. Design, synthesis, and antitumor evaluation of novel histone deacetylase inhibitors equipped with a phenylsulfonylfuroxan module as a nitric oxide donor. J Med Chem 2015; 58(10): 4325-38.
[130]
Riccio DA, Schoenfisch MH. Nitric oxide release: part I. Macromolecular scaffolds. Chem Soc Rev 2012; 41(10): 3731-41.
[131]
Carpenter AW, Schoenfisch MH. Nitric oxide release: part II. Therapeutic applications. Chem Soc Rev 2012; 41(10): 3742-52.
[132]
Coneski PN, Schoenfisch MH. Nitric oxide release: part III. Measurement and reporting. Chem Soc Rev 2012; 41(10): 3753-8.
[133]
Wilcox DT, Glick PL, Karamanoukian HL, Leach C, Morin FC, Fuhrman BP. Perfluorocarbon-associated gas exchange improves pulmonary mechanics, oxygenation, ventilation, and allows nitric oxide delivery in the hypoplastic lung congenital diaphragmatic hernia lamb model. Crit Care Med 1995; 23(11): 1858-63.
[134]
Tao Z, Ghoroghchian PP. Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes. Trends Biotechnol 2014; 32(9): 466-73.
[135]
Rafikova O, Sokolova E, Rafikov R, Nudler E. Control of plasma nitric oxide bioactivity by perfluorocarbons. Circulation 2004; 110(23): 3573-80.
[136]
Cavalieri F, Finelli I, Tortora M, et al. Polymer microbubbles as diagnostic and therapeutic gas delivery device. Chem Mater 2008; 20(10): 3254-8.
[137]
Huang S-L, Kee PH, Kim H, et al. Nitric oxide-loaded echogenic liposomes for nitric oxide delivery and inhibition of intimal hyperplasia. Am J Cardiol 2009; 54(7): 652-9.
[138]
Gomes AJ, Barbougli PA, Espreafico EM, Tfouni E. Trans-[Ru(NO)(NH3)4(py)](BF4)3.H2O encapsulated in PLGA microparticles for delivery of nitric oxide to B16-F10 cells: Cytotoxicity and phototoxicity. J Inorg Biochem 2008; 102(4): 757-66.
[139]
Bohlender C, Landfester K, Crespy D, Schiller A. Unconventional non‐aqueous emulsions for the encapsulation of a phototriggerable NO‐donor complex in polymer nanoparticles. Part Part Syst Charact 2013; 30(2): 138-42.
[140]
Suchyta DJ, Schoenfisch MH. Controlled release of nitric oxide from liposomes. ACS Biomater Sci Eng 2017; 3(9): 2136-43.
[141]
Suchyta DJ, Schoenfisch MH. Encapsulation of N-diazeniumdiolates within liposomes for enhanced nitric oxide donor stability and delivery. Mol Pharm 2015; 12(10): 3569-74.
[142]
Alimoradi H, Barzegar-Fallah A, Sammut IA, Greish K, Giles G. Encapsulation of tDodSNO generates a nitric oxide releasing nanoparticle. Free Radic Biol Med 2019; 130: 297-305.
[143]
Alimoradi H, Barzegar-Fallah A, Sammut IA, Griesh K, Giles GI. Data characterizing the biophysical and nitric oxide release properties of the tDodSNO - styrene maleic anhydride nanoparticle SMA-tDodSNO. Data Brief 2018; 21: 1771-5.
[144]
Alimoradi H, Greish K, Barzegar-Fallah A, Alshaibani L, Pittalà V. Nitric oxide-releasing nanoparticles improve doxorubicin anticancer activity. Int J Nanomedicine 2018; 13: 7771.
[145]
Tahara Y, Yoshikawa T, Sato H, et al. Encapsulation of a nitric oxide donor into a liposome to boost the enhanced permeation and retention (EPR) effect. MedChemComm 2017; 8(2): 415-21.
[146]
Quinn JF, Whittaker MR, Davis TP. Delivering nitric oxide with nanoparticles. J Control Release 2015; 205: 190-205.
[147]
de Mel A, Murad F, Seifalian AM. Nitric oxide: a guardian for vascular grafts? Chem Rev 2011; 111(9): 5742-67.
[148]
Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 2013; 14(10): 1014.
[149]
Kudo S, Nagasaki Y. A novel nitric oxide-based anticancer therapeutics by macrophage-targeted poly (l-arginine)-based nanoparticles. J Control Release 2015; 217: 256-62.
[150]
Stamler JS, Jaraki O, Osborne J, et al. Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proc Natl Acad Sci USA 1992; 89(16): 7674-7.
[151]
Ishima Y. Albumin-based nitric oxide traffic system for the treatment of intractable cancers. Biol Pharm Bull 2017; 40(2): 128-34.
[152]
Matsushita S, Chuang VTG, Kanazawa M, et al. Recombinant human serum albumin dimer has high blood circulation activity and low vascular permeability in comparison with native human serum albumin. Pharm Res 2006; 23(5): 882-91.
[153]
Ishima Y, Chen D, Fang J, et al. S-Nitrosated human serum albumin dimer is not only a novel anti-tumor drug but also a potentiator for anti-tumor drugs with augmented EPR effects. Bioconjug Chem 2012; 23(2): 264-71.
[154]
Kinoshita R, Ishima Y, Ikeda M, et al. S-Nitrosated human serum albumin dimer as novel nano-EPR enhancer applied to macromolecular anti-tumor drugs such as micelles and liposomes. J Control Release 2015; 217: 1-9.
[155]
Parzuchowski PG, Frost MC, Meyerhoff ME. Synthesis and characterization of polymethacrylate-based nitric oxide donors. J Am Chem Soc 2002; 124(41): 12182-91.
[156]
Stasko NA, Schoenfisch MH. Dendrimers as a scaffold for nitric oxide release. J Am Chem Soc 2006; 128(25): 8265-71.
[157]
Stasko NA, Fischer TH, Schoenfisch MH. S-nitrosothiol-modified dendrimers as nitric oxide delivery vehicles. Biomacromolecules 2008; 9(3): 834-41.
[158]
Ghosh P, Han G, De M, Kim CK, Rotello VM. Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 2008; 60(11): 1307-15.
[159]
Connor EE, Mwamuka J, Gole A, Murphy CJ, Wyatt MD. Gold nanoparticles are taken up by human cells but do not cause acute cytotoxicity. Small 2005; 1(3): 325-7.
[160]
Rothrock AR, Donkers RL, Schoenfisch MH. Synthesis of nitric oxide-releasing gold nanoparticles. J Am Chem Soc 2005; 127(26): 9362-3.
[161]
Pavelic K, Hadzija M. Medical applications of zeolites. In: Scott M. Auerbach, Kathleen A. Carrado, Prabir KD.Handbook of Zeolite Science and Technology,. 1st ed. CRC press: New York: Florida, USA 2003; pp. 1143-74.
[162]
James SL. Metal-organic frameworks. Chem Soc Rev 2003; 32(5): 276-88.
[163]
Hinks NJ, McKinlay AC, Xiao B, Wheatley PS, Morris RE. Metal organic frameworks as NO delivery materials for biological applications. Microporous Mesoporous Mater 2010; 129(3): 330-4.
[164]
Xiao B, Wheatley PS, Zhao X, et al. High-capacity hydrogen and nitric oxide adsorption and storage in a metal- organic framework. J Am Chem Soc 2007; 129(5): 1203-9.
[165]
Nguyen JG, Tanabe KK, Cohen SM. Postsynthetic diazeniumdiolate formation and NO release from MOFs. CrystEngComm 2010; 12(8): 2335-8.
[166]
McKinlay AC, Xiao B, Wragg DS, Wheatley PS, Megson IL, Morris RE. Exceptional behavior over the whole adsorption-storage-delivery cycle for NO in porous metal organic frameworks. J Am Chem Soc 2008; 130(31): 10440-4.
[167]
Diring S, Wang DO, Kim C, et al. Localized cell stimulation by nitric oxide using a photoactive porous coordination polymer platform. Nat Commun 2013; 4: 2684.
[168]
McKinlay A, Eubank J, Wuttke S, et al. Nitric oxide adsorption and delivery in flexible MIL-88 (Fe) metal-organic frameworks. Chem Mater 2013; 25(9): 1592-9.
[169]
Fan J, He Q, Liu Y, et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via NO-enhanced chemosensitization. ACS Appl Mater Interfaces 2016; 8(22): 13804-11.
[170]
Zhang X, Tian G, Yin W, et al. Controllable generation of nitric oxide by near‐infrared‐sensitized upconversion nanoparticles for tumor therapy. Adv Funct Mater 2015; 25(20): 3049-56.
[171]
Fan W, Bu W, Zhang Z, et al. X‐ray radiation‐controlled NO‐release for on demand depth independent hypoxic radiosensitization. Angew Chem Int Ed Engl 2015; 54(47): 14026-30.
[172]
Zhang K, Xu H, Jia X, et al. Ultrasound-triggered nitric oxide release platform based on energy transformation for targeted inhibition of pancreatic tumor. ACS Nano 2016; 10(12): 10816-28.
[173]
Kim J, Yung BC, Kim WJ, Chen X. Combination of nitric oxide and drug delivery systems: tools for overcoming drug resistance in chemotherapy. J Control Release 2017; 263: 223-30.
[174]
Han JY, Nam BH, Kim HY, Yoon SJ, Kim HT, Lee JS. A randomized phase II study of irinotecan plus cisplatin versus irinotecan plus capecitabine with or without isosorbide-5-mononitrate in advanced non-small-cell lung cancer. Ann Oncol 2012; 23(11): 2925-30.
[175]
Illum H, Wang DH, Dowell JE, et al. Phase I dose escalation trial of nitroglycerin in addition to 5-fluorouracil and radiation therapy for neoadjuvant treatment of operable rectal cancer. Surgery 2015; 158(2): 460-5.
[176]
Yasuda H, Yamaya M, Nakayama K, et al. Randomized phase II trial comparing nitroglycerin plus vinorelbine and cisplatin with vinorelbine and cisplatin alone in previously untreated stage IIIB/IV non-small-cell lung cancer. J Clin Oncol 2006; 24(4): 688-94.
[177]
Arrieta O, Blake M, de la Mata-Moya MD, et al. Phase II study. Concurrent chemotherapy and radiotherapy with nitroglycerin in locally advanced non-small cell lung cancer. Radiother Oncol 2014; 111(2): 311-5.
[178]
Reinmuth N, Meyer A, Hartwigsen D, et al. Randomized, double-blind phase II study to compare nitroglycerin plus oral vinorelbine plus cisplatin with oral vinorelbine plus cisplatin alone in patients with stage IIIB/IV non-small cell lung cancer (NSCLC). Lung Cancer 2014; 83(3): 363-8.
[179]
Siemens DR, Heaton JP, Adams MA, Kawakami J, Graham CH. Phase II study of nitric oxide donor for men with increasing prostate-specific antigen level after surgery or radiotherapy for prostate cancer. Urology 2009; 74(4): 878-83.
[180]
Liu YS, Chuang MT, Tsai YS, Tsai HM, Lin XZ. Nitroglycerine use in transcatheter arterial (chemo) embolization in patients with hepatocellular carcinoma and dual-energy CT assessment of Lipiodol retention. Eur Radiol 2012; 22(10): 2193-200.
[181]
Stevens EV, Carpenter AW, Shin JH, Liu J, Der CJ, Schoenfisch MH. Nitric oxide-releasing silica nanoparticle inhibition of ovarian cancer cell growth. Mol Pharm 2010; 7(3): 775-85.
[182]
Munaweera I, Shi Y, Koneru B, et al. Nitric oxide- and cisplatin-releasing silica nanoparticles for use against non-small cell lung cancer. J Inorg Biochem 2015; 153: 23-31.
[183]
Fan J, He Q, Liu Y, et al. Light-responsive biodegradable nanomedicine overcomes multidrug resistance via no-enhanced chemosensitization. ACS Appl Mater Interfaces 2016; 8(22): 13804-11.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 4
Year: 2019
Page: [279 - 303]
Pages: 25
DOI: 10.2174/2211738507666190429111306

Article Metrics

PDF: 23
HTML: 2
EPUB: 2
PRC: 1