Effects of Flavonoids and Its Derivatives on Immune Cell Responses

Author(s): Gricelis Martínez, Michael R. Mijares, Juan B. De Sanctis*.

Journal Name: Recent Patents on Inflammation & Allergy Drug Discovery

Volume 13 , Issue 2 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Various pieces of evidence have shown that people who consume foods rich in polyphenolic and flavonoids compounds have a lower incidence of inflammatory, autoimmune diseases and cancer.

Objective: The study aimed to review the most potent compounds that affect the immune response and diseases associated with it.

Methods: Publications in PubMed and EmBase, from 1974-2018, and patents form Free patents online, Scifinder, Espacenet and Mendeley in which flavonoids, their semi-synthetic and synthetic derivatives are involved in immunosuppressive or immunostimulatory responses in vitro and in vivo.

Results: In vitro, flavonoids and their derivatives inhibit various transcriptional factors, which modulate differentiation, proliferation, activation of immune cells and enhance regulatory T cell generation. Some flavonoids exert anti-inflammatory effects through: Blockade of NF-κB, and NLRP3 inflammasome, inhibition of pro-inflammatory cytokine production, IL-1β, IL-2, IL-6, TNF-α, IL-17A, down regulation of chemokines, and reduction of reactive oxygen and nitrogen species. Nevertheless, several reports have shown that some flavonoids enhance immune response by enhancing: oxygen and nitrogen radicals, antibody production, cytotoxic activity against tumours by increasing activating receptors and down regulating inhibitory receptors. In consequence, flavonoids may be potentially useful for treatment of infectious diseases and cancer.

Conclusion: The most potent flavonoids in inflammation that modify immune responses are apigenin, quercetin and Epigallocatechin-3-Gallate (EGCG) although, other compounds are still under study and cannot be excluded. The most relevant patents concerning the use of flavones and other polyphenols were revised. A promising future of these compounds in different therapies is discussed.

Keywords: Anthoxyanidin, chalcones isoflavonoids, flavan-3 ols, flavanones, flavones, flavonols, flavanonol.

[1]
Castellano G, González-Santander JL, Lara A, Torrens F. Classification of flavonoid compounds by using entropy of information theory. Phytochemistry 2013; 93: 182-91.
[2]
Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142: 213-28.
[3]
Koes R, Verweij W, Quattrocchio F. Flavonoids: A colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 2005; 10(5): 236-42.
[4]
Amić D, Davidović-Amić D, Beslo D, Rastija V, Lucić B, Trinajstić N. SAR and QSAR of the antioxidant activity of flavonoids. Curr Med Chem 2007; 14(7): 827-45.
[5]
Šmejkal K, Malaník M, Zhaparkulova K, et al. Kazakh Ziziphora species as sources of bioactive substances. Molecules 2016; 21(7)E826
[6]
Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal 2013; 2013162750
[7]
Middleton E Jr. Effect of plant flavonoids on immune and inflammatory cell function. Adv Exp Med Biol 1998; 439: 175-82.
[8]
Madunić J, Madunić IV, Gajski G, Popić J, Garaj-Vrhovac V. Apigenin: A dietary flavonoid with diverse anticancer properties. Cancer Lett 2018; 413: 11-22.
[9]
Chirumbolo S. The role of quercetin, flavonols and flavones in modulating inflammatory cell function. Inflamm Allergy Drug Targets 2010; 9(4): 263-85.
[10]
Nichenametla SN1. Taruscio TG, Barney DL, Exon JH. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 2006; 46(2): 161-83.
[11]
Mallavadhani UV1. Mahapatra A. A new aurone and two rare metabolites from the leaves of Diospyros melanoxylon. Nat Prod Res 2005; 19(1): 91-7.
[12]
Nile SH, Keum YS, Nile AS, Jalde SS, Patel RV. Antioxidant, anti-inflammatory, and enzyme inhibitory activity of natural plant flavonoids and their synthesized derivatives. J Biochem Mol Toxicol 2018; 32(1)
[http://dx.doi.org/10.1002/jbt.22002]
[13]
Shankar E, Goel A, Gupta K, Gupta S. Plant flavone apigenin: An emerging anticancer agent. Curr Pharmacol Rep 2017; 3(6): 423-46.
[14]
Wang J, Wang H, Sun K, et al. Chrysin suppresses proliferation, migration, and invasion in glioblastoma cell lines via mediating the ERK/Nrf2 signalling pathway. Drug Des Devel Ther 2018; 12: 721-33.
[15]
Khan NM, Haseeb A, Ansari MY, Haqqi TM. A wogonin-rich-fraction of Scutellaria baicalensis root extract exerts chondroprotective effects by suppressing IL-1β-induced activation of AP-1 in human OA chondrocytes. Sci Rep 2017; 7: 43789.
[16]
Liu LL, Li FH, Zhang Y, Zhang XF, Yang J. Tangeretin has anti-asthmatic effects via regulating PI3K and Notch signalling and modulating Th1/Th2/Th17 cytokine balance in neonatal asthmatic mice. Braz J Med Biol Res 2017; 50(8)e5991
[17]
Yuan ZW, Li YZ, Liu ZQ, et al. Role of tangeretin as a potential bioavailability enhancer for silybin: Pharmacokinetic and pharmacological studies. Pharmacol Res 2018; 128: 153-66.
[18]
Panche AN, Diwan AD, Chandra SR. Flavonoids: An overview. J Nutr Sci 2016; 29; 5: e47.
[19]
Mays JR1. Hill SA, Moyers JT, Blagg BS. The synthesis and evaluation of flavone and isoflavone chimeras of novobiocin and derrubone. Bioorg Med Chem 2010; 18(1): 249-66.
[20]
Tandon V, Das B. Genistein: Is the multifarious botanical a natural anthelmintic too? J Parasit Dis 2018; 42(2): 151-61.
[21]
Jung W, Yu O, Lau SM, et al. Identification and expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat Biotechnol 2000; 18(2): 208-12.
[22]
Lapcík O. Isoflavonoids in non-leguminous taxa: A rarity or a rule? Phytochemistry 2007; 68(22-24): 2909-16.
[23]
Chakrawarti L, Agrawal R, Dang S, Gupta S, Gabrani R. Therapeutic effects of EGCG: A patent review. Expert Opin Ther Pat 2016; 26(8): 907-16.
[24]
Tsao R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010; 2: 1231-46.
[25]
Nichenametla SN, Taruscio TG, Barney DL, Exon JH. A review of the effects and mechanisms of polyphenolics in cancer. Crit Rev Food Sci Nutr 2006; 46(2): 161-83.
[26]
Hua S. Zhang, Liu J, Dong L, Huang J, Lin D, Fu X. Ethnomedicine, phytochemistry and pharmacology of Smilax glabra: An important traditional Chinese medicine. Am J Chin Med 2018; 46(2): 261-97.
[27]
D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 2007; 43(4): 348-61.
[28]
Stalikas C. Extraction, separation, and detection methods for phenolic acids and flavonoids. J Sep Sci 2007; 30: 3268-95.
[29]
Raffa D, Maggio B, Raimondi MV, Plescia F, Daidone G. Recent discoveries of anticancer flavonoids. Eur J Med Chem 2017; 142: 213-28.
[30]
Sahu NK, Balbhadra SS, Choudhary J, Kohli DV. Exploring the pharmacological significance of chalcone scaffold: A review. Curr Med Chem 2012; 19(2): 209-25.
[31]
Yang N, Patil S, Zhuge J, Wen MC, Bolleddula J, Doddaga S, et al. Glycyrrhiza uralensis flavonoids present in the anti-asthma formula, ASHMI™, inhibit memory Th2 responses in vitro and in vivo. Phytother Res 2013; 27(9): 1381-91.
[32]
Mercader AG, Pomilio AB. Naturally-occurring dimers of flavonoids as anticarcinogens. Anticancer Agents Med Chem 2013; 13(8): 1217-35.
[33]
Silva V, Dos Santos MH, Viegas C. Biological and chemical aspects of natural biflavonoids from plants: A brief review. Mini Rev Med Chem 2017; 17: 834-62.
[34]
Yu S, Yan H, Zhang L, et al. A review on the phytochemistry, pharmacology, and pharmacokinetics of amentoflavone. A naturally-occurring biflavonoid. Molecules 2017; 22(2)E299
[35]
Kabashima K, Nakashima C, Nonomura Y, Otsuka A, Cardamone C, Parente R, et al. Biomarkers for evaluation of mast cell and basophil activation. Immunol Rev 2018; 282: 114-20.
[36]
DeBruin EJ1, Gold M, Lo BC, Snyder K, Cait A, Lasic N, et al. Mast cells in human health and disease. Methods Mol Biol 2015; 1220: 93-119.
[37]
Karasuyama H, Miyake K, Yoshikawa S, Yamanishi Y. Multifaceted roles of basophils in health and disease. J Allergy Clin Immunol 2018; 142(2): 370-80.
[38]
Matsuda H, Nakamura S, Yoshikawa M. Degranulation inhibitors from medicinal plants in antigen-stimulated rat basophilic leukemia (RBL-2H3) cells. Chem Pharm Bull 2016; 64(2): 96-103.
[39]
Tanaka T. Flavonoids for allergic diseases: Present evidence and future perspective. Curr Pharm Des 2014; 20(6): 879-85.
[40]
Castell M, Pérez-Cano FJ, Abril-Gil M, Franch À. Flavonoids on allergy. Curr Pharm Des 2014; 20(6): 973-87.
[41]
Hagenlocher Y, Lorentz A. Immunomodulation of mast cells by nutrients. Mol Immunol 2015; 63: 25-31.
[42]
Chirumbolo S, Conforti A, Ortolani R, Vella A, Marzotto M, Bellavite P. Stimulus-specific regulation of CD63 and CD203c membrane expression in human basophils by the flavonoid quercetin. Int Immunopharmacol 2010; 10: 183-92.
[43]
Noshita T, Tai A, Matsumoto T, Miura K, Ikeda K, Hamada Y. Structure-activity relationship of flavanone. Anti-degranulation activity of 7-O-substituted hesperetin. Nat Prod Res 2017; 31(18): 2137-42.
[44]
Gao W, Zan Y, Wang ZJ, Hu XY, Huang F. Quercetin ameliorates paclitaxel-induced neuropathic pain by stabilizing mast cells, and subsequently blocking PKCε-dependent activation of TRPV1. Acta Pharmacol Sin 2016; 37(9): 1166-77.
[45]
Furue M, Yamamura K, Kido-Nakahara M, Nakahara T, Fukui Y. Emerging role of interleukin-31 and interleukin-31 receptor in pruritus in atopic dermatitis. Allergy 2018; 73(1): 29-36.
[46]
Che DN, Cho BO, Shin JY, Kang HJ, Kim YS, Jang SI. Fisetin inhibits IL-31 production in stimulated human mast cells: Possibilities of fisetin being exploited to treat histamine-independent pruritus. Life Sci 2018; 201: 121-9.
[47]
Sakai-Kashiwabara M, Abe S, Asano K. Suppressive activity of quercetin on the production of eosinophil chemoattractants from eosinophils in vitro. In Vivo 2014; 28(4): 515-22.
[48]
Ramirez GA, Yacoub MR, Ripa M, Mannina D, Cariddi A, Saporiti N, et al. Eosinophils from physiology to disease: A comprehensive review. BioMed Res Int 2018; 20189095275
[49]
Karo-Atar D, Bitton A, Benhar I, Munitz A. Therapeutic targeting of the interleukin-4/interleukin-13 signaling pathway: In allergy and beyond. BioDrugs 2018; 7.
[50]
Nakajima T, Imanishi M, Yamamoto K, Cyong JC, Hirai K. Inhibitory effect of baicalein, a flavonoid in Scutellaria root, on eotaxin production by human dermal fibroblasts. Planta Med 2001; 67(2): 132-5.
[51]
Oh HA, Han NR, Kim MJ, Kim HM, Jeong HJ. Evaluation of the effect of kaempferol in a murine allergic rhinitis model. Eur J Pharmacol 2013; 718(1-3): 48-56.
[52]
Lucas CD, Dorward DA, Sharma S, Rennie J, Felton JM, Alessandri AL, et al. Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation. Am J Respir Crit Care Med 2015; 191(6): 626-36.
[53]
Sagit M, Polat H, Gurgen SG, Berk E, Guler S, Yasar M. Effectiveness of quercetin in an experimental rat model of allergic rhinitis. Eur Arch Otorhinolaryngol 2017; 274(8): 3087-95.
[54]
Xu B, Huang S, Wang C, Zhang H, Fang S, Zhang Y. Anti-inflammatory effects of dihydromyricetin in a mouse model of asthma. Mol Med Rep 2012; 15(6): 3674-80.
[55]
Huang W, Li ML, Xia MY, Shao JY. Fisetin-treatment alleviates airway inflammation through inhibition of MyD88/NF-κB signalling pathway. Int J Mol Med 2018; 42(1): 208-18.
[56]
Hellebrekers P, Vrisekoop N, Koenderman L. Neutrophil phenotypes in health and disease. Eur J Clin Invest 2018; 48(Suppl. 2).e12943
[57]
Polverino E, Rosales-Mayor E, Dale GE, Dembowsky K, Torres A. The role of neutrophil elastase inhibitors in lung diseases. Chest 2017; 152(2): 249-62.
[58]
Tan XF, Kim DW, Song YH, Kim JY, Yuk HJ, Wang Y, et al. Human neutrophil elastase inhibitory potential of flavonoids from Campylotropis hirtella and their kinetics. J Enzyme Inhib Med Chem 2016; 31: 16-22.
[59]
Reddy MV, Hwang TL, Leu YL, Chiou WF, Wu TS. Inhibitory effects of Mannich bases of heterocyclic chalcones on NO production by activated RAW 264.7 macrophages and superoxide anion generation and elastase release by activated human neutrophils. Bioorg Med Chem 2011; 19(8): 2751-6.
[60]
Kim JY, Wang Y, Uddin Z, et al. Competitive neutrophil elastase inhibitory isoflavones from the roots of Flemingia philippinensis. Bioorg Chem 2018; 78: 249-57.
[61]
Ciz M, Denev P, Kratchanova M, Vasicek O, Ambrozova G, Lojek A. Flavonoids inhibit the respiratory burst of neutrophils in mammals. Oxid Med Cell Longev 2012; 2012181295
[62]
Ribeiro D, Freitas M, Tomé SM, et al. Flavonoids inhibit COX-1 and COX-2 enzymes and cytokine/chemokine production in human whole blood. Inflammation 2015; 38(2): 858-70.
[63]
Ribeiro D, Freitas M, Lima JL, Fernandes E. Proinflammatory pathways: The modulation by flavonoids. Med Res Rev 2015; 35(5): 877-93.
[64]
Bukhari SN, Tajuddin Y, Benedict VJ, Lam KW, Jantan I, Jalil J, et al. Synthesis and evaluation of chalcone derivatives as inhibitors of neutrophils’ chemotaxis, phagocytosis and production of reactive oxygen species. Chem Biol Drug Des 2014; 83(2): 198-206.
[65]
Saroni Arwa P, Zeraik ML, Ximenes VF, da Fonseca LM, Bolzani Vda S, Siqueira Silva DH. Redox-active biflavonoids from Garcinia brasiliensis as inhibitors of neutrophil oxidative burst and human erythrocyte membrane damage. J Ethnopharmacol 2015; 174: 410-8.
[66]
Tian R, Ding Y, Peng YY, Lu N. Inhibition of myeloperoxidase and neutrophil mediated hypochlorous acid formation in vitro and endothelial cell injury by (-)-epigallocatechin gallate. J Agric Food Chem 2017; 65(15): 3198-203.
[67]
Boersma BJ, D’Alessandro T, Benton MR, Kirk M, Wilson LS, Prasain J, et al. Neutrophil myeloperoxidase chlorinates and nitrates soy isoflavones and enhances their antioxidant properties. Free Radic Biol Med 2003; 35(11): 1417-30.
[68]
Park JW, Shin NR, Shin IS, Kwon OK, Kim JS, Oh SR, et al. Silibinin inhibits neutrophilic inflammation and mucus secretion induced by cigarette smoke via suppression of ERK-SP1 pathway. Phytother Res 2016; 30(12): 1926-36.
[69]
Takano K, Nakaima K, Nitta M, Shibata F, Nakagawa H. Inhibitory effect of (-)-epigallocatechin 3-gallate, a polyphenol of green tea, on neutrophil chemotaxis in vitro and in vivo. J Agric Food Chem 2004; 52(14): 4571-6.
[70]
Souto FO, Zarpelon AC, Staurengo-Ferrari L, Fattori V, Casagrande R, Fonseca MJ, et al. Quercetin reduces neutrophil recruitment induced by CXCL8, LTB4, and fMLP: Inhibition of actin polymerization. J Nat Prod 2011; 74(2): 113-8.
[71]
Dinda B, Dinda S, DasSharma S, Banik R, Chakraborty A, Dinda M. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem 2017; 131: 68-80.
[72]
Qin S, Alcorn JF, Craigo JK, et al. Epigallocatechin-3-gallate reduces airway inflammation in mice through binding to proinflammatory chemokines and inhibiting inflammatory cell recruitment. J Immun 159 2011; 186(6): 3693-700.
[73]
Liu JJ, Song CW, Yue Y, et al. Quercetin inhibits LPS-induced delay in spontaneous apoptosis and activation of neutrophils. Inflamm Res 2005; 54(12): 500-7.
[74]
Lucas CD, Allen KC, Dorward DA, Hoodless LJ, Melrose LA, Marwick JA, et al. Flavones induce neutrophil apoptosis by down-regulation of Mcl-1 via a proteasomal-dependent pathway. FASEB J 2013; 27(3): 1084-94.
[75]
Zielińska-Przyjemska M, Ignatowicz E. Citrus fruit flavonoids influence on neutrophil apoptosis and oxidative metabolism. Phytother Res 2008; 22(12): 1557-62.
[76]
Collin M, Bigley V. Monocyte, macrophage, and dendritic cell development: The human perspective. Microbiol Spectr 2016; 154(1): 3-20.
[77]
Murray PJ. Immune regulation by monocytes. Semin Immunol 2018; 35: 12-8.
[78]
Rahimifard M, Maqbool F, Moeini-Nodeh S, Niaz K, Abdollahi M, Braidy N, et al. Targeting the TLR4 signalling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res Rev 2017; 36: 11-9.
[79]
Leyva-López N, Gutierrez-Grijalva EP, Ambriz-Perez DL, Heredia JB. Flavonoids as cytokine modulators: A possible therapy for inflammation-related diseases. Int J Mol Sci 2016; 17(6)E921
[80]
Jia Z, Nallasamy P, Liu D, Shah H, Li JZ, Chitrakar R, et al. Luteolin protects against vascular inflammation in mice and TNF-alpha-induced monocyte adhesion to endothelial cells via suppressing IKBα/NF-κB signalling pathway. J Nutr Biochem 2015; 26(3): 293-302.
[81]
Lupinacci E, Meijerink J, Vincken JP, Gabriele B, Gruppen H, Witkamp RF. Xanthohumol from hop (Humulus lupulus L.) is an efficient inhibitor of monocyte chemoattractant protein-1 and tumor necrosis factor-alpha release in LPS-stimulated RAW 264.7 mouse macrophages and U937 human monocytes. J Agric Food Chem 2009; 57(16): 7274-81.
[82]
Wu J, Zhou J, Chen X, et al. Attenuation of LPS-induced inflammation by ICT, a derivate of icariin, via inhibition of the CD14/TLR4 signaling pathway in human monocytes. Int Immunopharmacol 2012; 12(1): 74-9.
[83]
Peluso MR, Miranda CL, Hobbs DJ, Proteau RR, Stevens JF. Xanthohumol and related prenylated flavonoids inhibit inflammatory cytokine production in LPS-activated THP-1 monocytes: Structure-activity relationships and in silico binding to Myeloid Differentiation protein-2 (MD-2). Planta Med 2010; 76(14): 1536-43.
[84]
Awad F, Assrawi E, Louvrier C, Jumeau C, Georgin-Lavialle S, Grateau G, et al. Inflammasome biology, molecular pathology and therapeutic implications. Pharmacol Ther 2018; 187: 133-49.
[85]
Yi YS. Regulatory roles of flavonoids on inflammasome activation during inflammatory responses. Mol Nutr Food Res 2018; 62(13)e1800147
[86]
Zhang B, Wang B, Cao S, Wang Y, Wu D. Silybin attenuates LPS-induced lung injury in mice by inhibiting NF-κB signaling and NLRP3 activation. Int J Mol Med 2017; 39(5): 1111-8.
[87]
Ahn H, Lee GS. Isorhamnetin and hyperoside derived from water dropwort inhibits inflammasome activation. Phytomedicine 2017; 24: 77-86.
[88]
Kim JK, Jin HS, Suh HW, Jo EK. Negative regulators and their mechanisms in NLRP3 inflammasome activation and signaling. Immunol Cell Biol 2017; 95: 584-92.
[89]
Liu Y, Jing YY, Zeng CY, Li CG, Xu LH, Yan L, et al. Scutellarin suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Front Pharmacol 2018; 8: 975.
[90]
Takahama M, Akira S, Saitoh T. Autophagy limits activation of the inflammasomes. Immunol Rev 2018; 281(1): 62-7.
[91]
Zhou W, Liu X, Cheng K, Zhang X, Lu J, Hu R. X-11-5-27, a daidzein derivative, inhibits NLRP3 inflammasome activity via promoting autophagy. Exp Cell Res 2017; 360(2): 320-7.
[92]
Dhanasekar C, Rasool M. Morin, a dietary bioflavonol suppresses monosodium urate crystal-induced inflammation in an animal model of acute gouty arthritis with reference to NLRP3 inflammasome, hypo-xanthine phospho-ribosyl transferase, and inflammatory mediators. Eur J Pharmacol 2016; 786: 116-27.
[93]
Yang Y, Zhang X, Xu M, Wu X, Zhao F, Zhao C. Quercetin attenuates collagen-induced arthritis by restoration of Th17/Treg balance and activation of Heme Oxygenase 1-mediated anti-inflammatory effect. Int Immunopharmacol 2018; 54: 153-62.
[94]
Liu C, Zhu L, Fukuda K, Ouyang S, Chen X, Wang C, et al. The flavonoid cyanidin blocks binding of the cytokine interleukin-17A to the IL-17RA subunit to alleviate inflammation in vivo. Sci Signal 2017; 10(467)eaaf8823
[95]
Meng M. Digitoflavone (DG) attenuates LPS-induced acute lung injury through reducing oxidative stress and inflammatory response dependent on the suppression of TXNIP/NLRP3 and NF-κB. Biomed Pharmacother 2017; 94: 712-25.
[96]
Chen L, You Q, Hu L, Gao J, Meng Q, Liu W, et al. The antioxidant procyanidin reduces reactive oxygen species signaling in macrophages and ameliorates experimental colitis in mice. Front Immunol 2018; 8: 1910.
[97]
Márquez-Flores YK, Villegas I, Cárdeno A, Rosillo MÁ, Alarcón-de-la-Lastra C. Apigenin supplementation protects the development of dextran sulfate sodium-induced murine experimental colitis by inhibiting canonical and non-canonical inflammasome signaling pathways. J Nutr Biochem 2016; 30: 143-52.
[98]
Yuan R, Fan H, Cheng S, Gao W, Xu X, Lv S, et al. Silymarin prevents NLRP3 inflammasome activation and protects against intracerebral hemorrhage. Biomed Pharmacother 2017; 93: 308-15.
[99]
Feng J, Wang J, Du Y, Liu Y, Zhang W, Chen J, et al. Dihydromyricetin inhibits microglial activation and neuroinflammation by suppressing NLRP3 inflammasome activation in APP/PS1 transgenic mice. CNS Neurosci Ther 2018; 24(12): 1207-18.
[100]
Chen CY, Yang CH, Tsai YF, Liaw CC, Chang WY, Hwang TL. Stimulates NLRP3 inflammasome activation and enhances inflammasome-mediated pathogen clearance. Redox Biol 2017; 11: 263-74.
[101]
Nam SY, Jeong HJ, Kim HM. Kaempferol impedes IL-32-induced monocyte-macrophage differentiation. Chem Biol Interact 2017; 274: 107-15.
[102]
Noy R, Pollard JW. Tumor-associated macrophages: From mechanisms to therapy. Immunity 2014; 41(1): 49-61.
[103]
Feng X, Qin H, Shi Q, Zhang Y, Zhou F, Wu H, et al. Chrysin attenuates inflammation by regulating M1/M2 status via activating PPARγ. Biochem Pharmacol 2014; 89(4): 503-14.
[104]
Woo JH, Ahn JH, Jang DS, Lee KT, Choi JH. Effect of kumatakenin isolated from cloves on the apoptosis of cancer cells and the alternative activation of tumor-associated macrophages. J Agric Food Chem 2017; 65(36): 7893-9.
[105]
Khan N, Haseeb A, Ansari MY, Devarapalli P, Haynie S, Haqqi TM. Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radic Biol Med 2017; 106: 288-301.
[106]
Dress RJ, Wong AY, Ginhoux F. Homeostatic cotrol of dendritic cell numbers and differentiation. Immunol Cell Biol 2018; 96(5): 463-76.
[107]
Clark GJ, Silveira PA, Hogarth PM, Hart DNJ. The cell surface phenotype of human dendritic cells. Semin Cell Dev Biol 2019; 86: 3-14.
[108]
Kim JY, Kang JS, Kim HM, Ryu HS, Kim HS, Lee HK. Inhibition of bone marrow-derived dendritic cell maturation by glabridin. Int Immunopharmacol 2010; 10(10): 1185-93.
[109]
del Cornò M, Scazzocchio B, Masella R, Gessani S. Regulation of dendritic cell function by dietary polyphenols. Crit Rev Food Sci Nutr 2016; 56(5): 737-47.
[110]
Yum MK, Jung MY, Cho D, Kim TS. Suppression of dendritic cells’ maturation and functions by daidzein, a phytoestrogen. Toxicol Appl Pharmacol 2011; 257(2): 174-81.
[111]
Liu YZ, Cao YG, Ye JQ, Wang WG, Song KJ, Wang XL, et al. Immunomodulatory effects of proanthocyanidin A-1 derived in vitro from Rhododendron spiciferum. Fitoterapia 2010; 81(2): 108-14.
[112]
Huang RY, Yu YL, Cheng WC, OuYang CN, Fu E, Chu CL. Immunosuppressive effect of quercetin on dendritic cell activation and function. J Immunol 2010; 184(12): 6815-21.
[113]
Li X, Han Y, Zhou Q, Jie H, He Y, Han J, et al. Apigenin, a potent suppressor of dendritic cell maturation and migration, protects against collagen-induced arthritis. J Cell Mol Med 2016; 20(1): 170-80.
[114]
Kim JS, Jobin C. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology 2005; 115(3): 375-87.
[115]
Eun SH, Woo JT, Kim DH. Tangeretin inhibits IL-12 expression and NF-κB activation in dendritic cells and attenuates colitis in mice. Planta Med 2017; 83(6): 527-33.
[116]
De Santis S, Kunde D, Serino G, Galleggiante V, Caruso ML, Mastronardi M, et al. Secretory leukoprotease inhibitor is required for efficient quercetin-mediated suppression of TNFα secretion. Oncotarget 2016; 7(46): 75800-9.
[117]
Galleggiante V, De Santis S, Cavalcanti E, Scarano A, De Benedictis M, Serino G, et al. Dendritic cells modulate iron homeostasis and inflammatory abilities following quercetin exposure. Curr Pharm Des 2017; 23(14): 2139-46.
[118]
Liu SH, Lin CH, Hung SK, Chou JH, Chi CW, Fu SL. Fisetin inhibits lipopolysaccharide-induced macrophage activation and dendritic cell maturation. J Agric Food Chem 58(20): 10831-9.
[119]
Singh D, Tanwar H, Jayashankar B, Sharma J, Murthy S, Chanda S, et al. Quercetin exhibits adjuvant activity by enhancing Th2 immune response in ovalbumin immunized mice. Biomed Pharmacother 2017; 90: 354-60.
[120]
Nickel T, Hanssen H, Sisic Z, Pfeiler S, Summo C, Schmauss D. HetImmunoregulatory effects of the flavonol quercetin in vitro and in vivo. Eur J Nutr 2011; 50(3): 163-72.
[121]
Galicia G, Gommerman JL. Plasmacytoid dendritic cells and autoimmune inflammation. Biol Chem 2014; 395(3): 335-46.
[122]
Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunol Lett 2016; 179: 19-24.
[123]
Lin W, Wang W, Wang D, Ling W. Quercetin protects against atherosclerosis by inhibiting dendritic cell activation. Mol Nutr Food Res 2017; 61(9)
[http://dx.doi.org/10.1002/mnfr.201700031]
[124]
Xuan NT, Shumilina E, Gulbins E, Gu S, Götz F, Lang F. Triggering of dendritic cell apoptosis by xanthohumol. Mol Nutr Food Res 2010; 54(2): S214-24.
[125]
Karuppagounder V, Arumugam S, Thandavarayan RA, Sreedhar R, Giridharan VV, Pitchaimani V. Naringenin ameliorates skin inflammation and accelerates phenotypic reprogramming from M1 to M2 macrophage polarization in atopic dermatitis NC/Nga mouse model. Exp Dermatol 2016; 25(5): 404-7.
[126]
Wang J, Qi Y, Niu X, Tang H, Meydani SN, Wu D. Dietary naringenin supplementation attenuates experimental autoimmune encephalomyelitis by modulating autoimmune inflammatory responses in mice. J Nutr Biochem 2018; 54: 130-9.
[127]
Zhang Y, Huang B. The development and diversity of ILCs, NK Cells and their relevance in health and diseases. Adv Exp Med Biol 2017; 1024: 225-44.
[128]
Kumar S. Natural killer cell cytotoxicity and it’s regulation by inhibitory receptors. Immunology 2018; 154(3): 383-93.
[129]
Geary CD, Sun JC. Memory responses of natural killer cells. Semin Immunol 2017; 31: 11-9.
[130]
Lindqvist C, Bobrowska-Hägerstrand M, Mrówczyńska L, Engblom C, Hägerstrand H. Potentiation of natural killer cell activity with myricetin. Anticancer Res 2014; 34(8): 3975-9.
[131]
Burkard M, Leischner C, Lauer UM, Busch C, Venturelli S, Frank J. Dietary flavonoids and modulation of natural killer cells: Implications in malignant and viral diseases. J Nutr Biochem 2017; 46: 1-12.
[132]
Kim YS, Sayers TJ, Colburn NH, Milner JA, Young HA. Impact of dietary components on NK and Treg cell function for cancer prevention. Mol Carcinog 2015; 54(9): 669-7.
[133]
Leischner C, Burkard M, Pfeiffer MM, Lauer UM, Busch C, Venturelli S. Nutritional immunology: Function of natural killer cells and their modulation by resveratrol for cancer prevention and treatment. Nutr J 2016; 15(1): 47.
[134]
Kilani-Jaziri S, Mustapha N, Mokdad-Bzeouich I, El Gueder D, Ghedira K, Ghedira-Chekir L. Flavones induce immunomodulatory and anti-inflammatory effects by activating cellular anti-oxidant activity: A structure-activity relationship study. Tumour Biol 2016; 37(5): 6571-9.
[135]
Sassi A, Mokdad Bzéouich I, Mustapha N, Maatouk M, Ghedira K, Chekir-Ghedira L. Immunomodulatory potential of hesperetin and chrysin through the cellular and humoral response. Eur J Pharmacol 2017; 812: 91-6.
[136]
Sassi A, Maatouk M, El Gueder D, Bzéouich IM, Abdelkefi-Ben Hatira S, Jemni-Yacoub S, et al. Chrysin, a natural and biologically active flavonoid suppresses tumor growth of mouse B16F10 melanoma cells: In vitro and in vivo study. Chem Biol Interact 2018; 283: 10-9.
[137]
Del Carmen Juárez-Vázquez M, Josabad Alonso-Castro A, García-Carrancá A. Kaempferitrin induces immunostimulatory effects in vitro. J Ethnopharmacol 2013; 148(1): 337-40.
[138]
Bae JH, Kim JY, Kim MJ, et al. Quercetin enhances susceptibility to NK cell-mediated lysis of tumor cells through induction of NKG2D ligands and suppression of HSP70. J Immunother 2010; 33(4): 391-401.
[139]
Lin CC, Yu CS, Yang JS, et al. Chrysin, a natural and biologically active flavonoid, influences a murine leukemia model in vivo through enhancing populations of T-and B-cells and promoting macrophage phagocytosis and NK cell cytotoxicity. In Vivo 2012; 26(4): 665-70.
[140]
Guo TL, Chi RP, Hernandez DM, Auttachoat W, Zheng JF. Decreased 7,12-dimethylbenz[a]anthracene-induced carcinogenesis coincides with the induction of antitumor immunities in adult female B6C3F1 mice pretreated with genistein. Carcinogenesis 2007; 28(12): 2560-6.
[141]
Chu M, Xu L, Zhang MB, Chu ZY, Wang YD. Role of baicalin in anti-influenza virus A as a potent inducer of IFN-Gamma. BioMed Res Int 2015; 2015263630
[142]
Berker M, Frank LJ, Geßner AL, Grassl N, Holtermann AV, Höppner S, et al. Allergies- A T cells perspective in the era beyond the TH1/TH2 paradigm. Clin Immunol 2017; 174: 73-83.
[143]
Mittrücker HW, Visekruna A, Huber M. Heterogeneity in the differentiation and function of CD8+ T cells. Arch Immunol Ther Exp (Warsz) 2014; 62(6): 449-58.
[144]
He X, Koenen HJ, Slaats JH, Joosten I. Stabilizing human regulatory T cells for tolerance inducing immunotherapy. Immunotherapy 2017; 9(9): 735-51.
[145]
Kim W, Lee H. Advances in nutritional research on regulatory T-cells. Nutrients 2013; 5(11): 4305-15.
[146]
Gandhi GR, Neta MTSL, Sathiyabama RG, Quintans JSS, de Oliveira E, Silva AM, et al. Flavonoids as Th1/Th2 cytokines immunomodulators: A systematic review of studies on animal models. Phytomedicine 2018; 44: 74-84.
[147]
Yan F, Yang F, Wang R, Yao XJ, Bai L, Zeng X, et al. Isoliquiritigenin suppresses human T lymphocyte activation via covalently binding cysteine 46 of IκB kinase. Oncotarget 2017; 8(21): 34223-35.
[148]
So JS, Kim GC, Song M, Lee CG, Park E, Kim HJ, et al. 6-Methoxyflavone inhibits NFAT translocation into the nucleus and suppresses T cell activation. J Immunol 2014; 193(6): 2772-83.
[149]
Choi JR, Lee CM, Jung ID, Lee JS, Jeong YI, Chang JH, et al. Apigenin protects ovalbumin-induced asthma through the regulation of GATA-3 gene. Int Immunopharmacol 2009; 9(7-8): 918-24.
[150]
Magrone T, Jirillo E. Influence of polyphenols on allergic immune reactions: Mechanisms of action. Proc Nutr Soc 2012; 71(2): 316-21.
[151]
Li J, Zhang B. Apigenin protects ovalbumin-induced asthma through the regulation of Th17 cells. Fitoterapia 2013; 91: 298-304.
[152]
Ma CH, Ma ZQ, Fu Q, Ma SP. Anti-asthmatic effects of baicalin in a mouse model of allergic asthma. Phytother Res 2014; 28: 231-7.
[153]
Liu LL, Li FH, Zhang Y, Zhang XF, Yang J. Tangeretin has anti-asthmatic effects via regulating PI3K and notch signaling and modulating Th1/Th2/Th17 cytokine balance in neonatal asthmatic mice. Braz J Med Biol Res 2017; 50(8)e5991
[154]
Kim SH, Saba E, Kim BK, Yang WK, Park YC, Shin HJ, et al. Luteolin attenuates airway inflammation by inducing the transition of CD4(+) CD25(-) to CD4(+)CD25(+) regulatory T cells. Eur J Pharmacol 2018; 820: 53-64.
[155]
Venturini CL, Macho A, Arunachalam K, de Almeida DAT, Rosa SIG, Pavan E, et al. Vitexin inhibits inflammation in murine ovalbumin-induced allergic asthma. Biomed Pharmacother 2018; 97: 143-51.
[156]
Tanaka S, Furuya K, Yamamoto K, Yamada K, Ichikawa M, Suda M, et al. Procyanidin B2 gallates inhibit IFN-γ and IL-17 production in T cells by suppressing T-bet and RORγt expression. Int Immunopharmacol 2017; 44: 87-96.
[157]
Di TT, Ruan ZT, Zhao JX, Wang Y, Liu X, Wang Y, et al. Astilbin inhibits Th17 cell differentiation and ameliorates imiquimod-induced psoriasis-like skin lesions in BALB/c mice via Jak3/Stat3 signaling pathway. Int Immunopharmacol 2016; 32: 32-8.
[158]
Yu J, Xiao Z, Zhao R, Lu C, Zhang Y. Astilbin emulsion improves guinea pig lesions in a psoriasis-like model by suppressing IL-6 and IL-22 via p38 MAPK. Mol Med Rep 2018; 17(3): 3789-96.
[159]
Guo L, Liu W, Lu T, Guo W, Gao J, Luo Q, et al. Decrease of functional activated T and B cells and treatment of glomerulonephitis in lupus-prone mice using a natural flavonoid astilbin. PLoS One 2015; 10(4)e0124002
[160]
Kang HK, Ecklund D, Liu M, Datta SK. Apigenin, a non-mutagenic dietary flavonoid, suppresses lupus by inhibiting autoantigen presentation for expansion of autoreactive Th1 and Th17 cells. Arthritis Res Ther 2009; 11(2): R59.
[161]
Wang J, Pae M, Meydani SN, Wu D. Green tea epigallocatechin-3-gallate modulates differentiation of naïve CD4+T cells into specific lineage effector cells. J Mol Med (Berl) 2013; 91(4): 485-95.
[162]
Kelepouri D, Mavropoulos A, Bogdanos DP, Sakkas LI. The role of flavonoids in inhibiting Th17 responses in inflammatory arthritis. J Immunol Res 2018; 20189324357
[163]
Wei Y, Liu B, Sun J, et al. Regulation of Th17/Treg function contributes to the attenuation of chronic airway inflammation by icariin in ovalbumin-induced murine asthma model. Immunobiology 2015; 220(6): 789-97.
[164]
Kuo CL, Chen TS, Liou SY, Hsieh CC. Immunomodulatory effects of EGCG fraction of green tea extract in innate and adaptive immunity via T regulatory cells in murine model. Immunopharmacol Immunotoxicol 2014; 36(5): 364-70.
[165]
Shan L, Kang X, Liu F, Cai X, Han X, Shang Y. Epigallocatechin gallate improves airway inflammation through TGF-β1 signaling pathway in asthmatic mice. Mol Med 2018; 18(2): 2088-96.
[166]
Haghmorad D, Mahmoudi MB, Salehipour Z, Jalayer Z, Momtazi Brojeni AA, Rastin M, et al. Hesperidin ameliorates immunological outcome and reduces neuroinflammation in the mouse model of multiple sclerosis. J Neuroimmunol 2017; 302: 23-33.
[167]
Lai R, Xian D, Xiong X, Yang L, Song J, Zhong J. Proanthocyanidins: Novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep 2018; 23(1): 130-5.
[168]
Xu L, Li J, Zhang Y, Zhao P, Zhang X. Regulatory effect of baicalin on the imbalance of Th17/Treg responses in mice with allergic asthma. J Ethnopharmacol 2017; 208: 199-206.
[169]
Kang GD, Kim DH. Poncirin and its metabolite ponciretin attenuate colitis in mice by inhibiting LPS binding on TLR4 of macrophages and correcting Th17/Treg imbalance. J Ethnopharmacol 2016; 189: 175-85.
[170]
Zhang K, Wang Y, Ma W, Hu Z, Zhao P. Genistein improves thyroid function in Hashimoto’s thyroiditis patients through regulating Th1 cytokines. Immunobiology 2017; 222(2): 183-7.
[171]
Zhang L, Wang S, Liu Z, Zhang L, Wang S, Wang B. Procyanidin, a kind of biological flavonoid, induces protective anti-tumor immunity and protects mice from lethal B16F10 challenge. Int Immunopharmacol 2017; 47: 251-8.
[172]
Katiyar SK. Dietary proanthocyanidins inhibit UV radiation-induced skin tumor development through functional activation of the immune system. Mol Nutr Food Res 2016; 60(6): 1374-82.
[173]
Vaid M, Singh T, Li A, Katiyar N, Sharma S, Elmets CA, et al. Proanthocyanidins inhibit UV-induced immunosuppression through IL-12-dependent stimulation of CD8+ effector T cells and inactivation of CD4+T cells. Cancer Prev Res (Phila) 2011; 4(2): 238-47.
[174]
Mantena SK, Meeran SM, Elmets CA, Katiyar SK. Orally administered green tea polyphenols prevent ultraviolet radiation-induced skin cancer in mice through activation of cytotoxic T cells and inhibition of angiogenesis in tumors. J Nutr 2005; 135: 2871-7.
[175]
Zhou J, Wu J, Chen X, Fortenbery N, Eksioglu E, Kodumudi KN, et al. Icariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and Modulate Myeloid Derived Suppressive Cells (MDSCs) functions. Int Immunopharmacol 2011; 11(7): 890-8.
[176]
Gomez-Cadena A, Urueña C, Prieto K, Martinez-Usatorre A, Donda A, Barreto A, et al. Immune-system-dependent anti-tumor activity of a plant-derived polyphenol rich fraction in a melanoma mouse model. Cell Death Dis 2016; 7(6)e2243
[177]
Nelson N, Szekeres K, Iclozan C, Rivera IO, McGill A, Johnson G, et al. Apigenin: Selective CK2 inhibitor increases Ikaros expression and improves T cell homeostasis and function in murine pancreatic cancer. PLoS One 2017; 12(2)e0170197
[178]
Zhang X, Kang Z, Li Q, Zhang J, Cheng S, Chang H, et al. Antigen-adjuvant effects of icariin in enhancing tumor-specific immunity in mastocytoma-bearing DBA/2J mice. Biomed Pharmacother 2018; 99: 810-6.
[179]
Gong SQ, Sun W, Wang M, Fu YY. Role of TLR4 and TCR or BCR against baicalin-induced responses in T and B cells. Int Immunopharmacol 2011; 11(12): 2176-80.
[180]
Dong L, Zhu J, Du H, Nong H, He X, Chen X. Astilbin from Smilax glabra Roxb. attenuates inflammatory responses in complete Freund’s adjuvant-induced arthritis rats. Evid Based Complement Alternat Med 2017; 20178246420
[181]
Novo MC, Osugui L, dos Reis VO, Longo-Maugéri IM, Mariano M, Popi AF. Blockage of Wnt/β-catenin signaling by quercetin reduces survival and proliferation of B-1 cells in vitro. Immunobiology 2015; 220(1): 60-7.
[182]
Lin CC, Lin JJ, Wu PP, Lu CC, Chiang JH, Kuo CL, et al. Wogonin, a natural and biologically-active flavonoid, influences a murine WEHI-3 leukemia model in vivo through enhancing populations of T- and B-cells. In Vivo 2013; 27(6): 733-8.
[183]
Huang AC, Cheng HY, Lin TS, Chen WH, Lin JH, Lin JJ, et al. Epigallocatechin gallate (EGCG), influences a murine WEHI-3 leukemia model in vivo through enhancing phagocytosis of macrophages and populations of T- and B-cells. In Vivo 2013; 27(5): 627-34.
[184]
Xu M, Shi H, Liu D. Chrysin protects against renal ischemia reperfusion induced tubular cell apoptosis and inflammation in mice. Exp Ther Med 2019; 17(3): 2256-62.
[185]
Spagnuolo C, Russo M, Bilotto S, Tedesco I, Laratta B, Russo GL. Dietary polyphenols in cancer prevention: The example of the flavonoid quercetin in leukemia. Ann N Y Acad Sci 2012; 1259: 95-103.
[186]
Kawai K, Tsuno NH, Kitayama J, Sunami E, Takahashi K, Nagawa H. Catechin inhibits adhesion and migration of peripheral blood B cells by blocking CD11b. Immunopharmacol Immunotoxicol 2011; 33(2): 391-7.
[187]
Aparicio-Soto M, Sánchez-Hidalgo M, Alarcón-de-la-Lastra C. An update on diet and nutritional factors in systemic lupus erythematosus management. Nutr Res Rev 2017; 30(1): 118-37.
[188]
Lanzendorfer G, Stab F, Untiedt S. Use of flavonoids as immunomodulating or immuno-protective agents in cosmetic and dermatological preparations. US2009131340 (2009).
[189]
Li X, Liu C, Qin J, Zhu L, Fukuda K. Flavonoid IL-17A inhibitors. US20160068502 (2016).
[190]
Carlavan I. TH17 differentiation markers for acne and uses thereof. US20110195138 (2016).
[191]
Jayaprakasam B, Doddaga S, Wang R, Holmes D, Goldfarb J, Li XM. Licorice flavonoids inhibit eotaxin-1 secretion by human fetal lung fibroblasts in vitro. J Agric Food Chem 2009; 57(3): 820-5.
[192]
Li XM, Sampson HA. Herbal therapy for the treatment of asthma. US20080213298 (2008).
[193]
Li XM, Sampson HA. Herbal therapy for the treatment of food allergy. US20080317878 (2008).
[194]
Dumontet CN, Boumendjel A, Monneret G. Novel chalcone derivatives having an anti-allergic activity. US20160052881 (2016).
[195]
Hu G. Herbal compositions and uses for the treatment of allergic reactions. EP1210094 (2016).
[196]
Cai Y1. Li S1, Li T1, Zhou R, Wai AT, Yan R. Oral pharmacokinetics of baicalin, wogonoside, oroxylin A 7-O-β-D-glucuronide and their aglycones from an aqueous extract of Scutellariae radix in the rat. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1026: 124-33.
[197]
Sharma A, Kashyap D, Sak K, Tuli HS, Sharma AK. Therapeutic charm of quercetin and its derivatives: A review of research and patents. Pharm Pat Anal 2018; 7(1): 15-32.
[198]
Shinke Y, Kuzumi A, Haneza Y, Matsukawa T, Matsui T, Yamada Y. Novel quercetine derivative. JP2013227235 (2013).
[199]
Chin G, Mackman RL, Mish MR, Zablocki J. Toll-like receptor modulator compounds. US2018086755 (2018).
[200]
Phanstiel IVO. Tschammer flavonoid based antiviral targets. US20150209323 (2015).
[201]
Sarwar MW, Riaz A, Dilshad SMR, Al-Qahtani A, Nawaz-Ul-Rehman MS, Mubin M. Structure Activity Relationship (SAR) and Quantitative Structure Activity Relationship (QSAR) studies showed plant flavonoids as potential inhibitors of dengue NS2BNS3 protease. BMC Struct Biol 2018; 19; 18(1): 6.
[202]
Jin J, Chen S, Wang D, Chen Y, Wang Y, Guo M, et al. Oroxylin A suppresses influenza A virus replication correlating with neuraminidase inhibition and induction of IFNs. Biomed Pharmacother 2018; 97: 385-94.
[203]
Olmedo DA, López-Pérez JL, Del Olmo E, Bedoya LM, Sancho R, Alcamí J, et al. Neoflavonoids as inhibitors of HIV-1 replication by targeting the tat and NF-κB pathways. Molecules 2017; 22(2)E321
[204]
Thompson D. Method and composition for preventing and treating viral infections. US20160367517 (2016).
[205]
Brewster R, Manthey J. Manthey, J. Flavonoid compositions and uses thereof. WO2015153648 (2015).
[206]
Asama T, Fukushima S. Urinary system symptom amelioration agent. US20180140643 (2018).
[207]
Jia Q, Nichols TC, Rhoden EE, Waite S. Identification of free-B-ring flavonoids as potent COX-2 inhibitors. US7192611 (2007).
[208]
Park C, Kang J, Kim G. Composition for treatment of osteoarthritis containing apigenin as chondrodegenerative agent. US20070154540 (2007).
[209]
Chen A, Ka SM, Chang JM, Huang JJ. Use of epigallocatechin- 3-gallate for immune regulation. US20120309821 (2012).
[210]
Thimmulappa R, Kumar S, Malhotra SV, Kumar V, Jung-hyun K. Derivatives as Nrf2 activators. US20140088052 (2014).
[211]
Lim H, Ott M, Verdin EM, Kwon H. Use of SIRT1 activators or inhibitors to modulate an immune response. US20140030295 (2014).
[212]
Fantini M, Benvenuto M, Masuelli L, Frajese GV, Tresoldi I, Modesti A, et al. In vitro and in vivo antitumoral effects of combinations of polyphenols, or polyphenols and anticancer drugs: Perspectives on cancer treatment. Int J Mol Sci 2015; 16(5): 9236-82.
[213]
Guthrie N, Kurowska EM, Kitchener K. Compositions and methods of treatment of neoplastic diseases and hypercholesterolemia citrus limonoids and flavonoids and tocotrienols. US6814985 (2001).
[214]
Dranoff G, Jinushi M. Tumor immunity. US20170224793 (2017).
[215]
Elder Jr, E.J., Sacchetti, M.J., Tlachac, R.J., Zenk, J.L. Nanoparticle isoflavone compositions & methods of making and using the same. US20160374984 (2016).
[216]
Liang W, Zhang CL, Zeng WF, Zhang C, Wang LY. Application of naringenin and naringin in tumor radiotherapy. US20180200223 (2018).
[217]
Mukhtar H, Khan N, Mohammad A, Afaq F. Methods of treating androgen dependent prostate cancer by administering an active pharmaceutical ingredient being fisetin, 3,3',4',7- tetrahydroxyflavone or a derivative thereof, in an oral, transdermal or topical dosage form. US20100010078 (2010).


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 13
ISSUE: 2
Year: 2019
Page: [84 - 104]
Pages: 21
DOI: 10.2174/1872213X13666190426164124

Article Metrics

PDF: 20
HTML: 8