Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Carrageenan: A Wonder Polymer from Marine Algae for Potential Drug Delivery Applications

Author(s): Dilshad Qureshi, Suraj Kumar Nayak, Samarendra Maji, Doman Kim, Indranil Banerjee and Kunal Pal*

Volume 25, Issue 11, 2019

Page: [1172 - 1186] Pages: 15

DOI: 10.2174/1381612825666190425190754

Price: $65

Abstract

Background: With the advancement in the field of medical science, the idea of sustained release of the therapeutic agents in the patient’s body has remained a major thrust for developing advanced drug delivery systems (DDSs). The critical requirement for fabricating these DDSs is to facilitate the delivery of their cargos in a spatio-temporal and pharmacokinetically-controlled manner. Albeit the synthetic polymer-based DDSs normally address the above-mentioned conditions, their potential cytotoxicity and high cost have ultimately constrained their success. Consequently, the utilization of natural polymers for the fabrication of tunable DDSs owing to their biocompatible, biodegradable, and non-toxic nature can be regarded as a significant stride in the field of drug delivery. Marine environment serves as an untapped resource of varied range of materials such as polysaccharides, which can easily be utilized for developing various DDSs.

Methods: Carrageenans are the sulfated polysaccharides that are extracted from the cell wall of red seaweeds. They exhibit an assimilation of various biological activities such as anti-thrombotic, anti-viral, anticancer, and immunomodulatory properties. The main aim of the presented review is threefold. The first one is to describe the unique physicochemical properties and structural composition of different types of carrageenans. The second is to illustrate the preparation methods of the different carrageenan-based macro- and micro-dimensional DDSs like hydrogels, microparticles, and microspheres respectively. Fabrication techniques of some advanced DDSs such as floating hydrogels, aerogels, and 3-D printed hydrogels have also been discussed in this review. Next, considerable attention has been paid to list down the recent applications of carrageenan-based polymeric architectures in the field of drug delivery.

Results: Presence of structural variations among the different carrageenan types helps in regulating their temperature and ion-dependent sol-to-gel transition behavior. The constraint of low mechanical strength of reversible gels can be easily eradicated using chemical crosslinking techniques. Carrageenan based-microdimesional DDSs (e.g. microspheres, microparticles) can be utilized for easy and controlled drug administration. Moreover, carrageenans can be fabricated as 3-D printed hydrogels, floating hydrogels, and aerogels for controlled drug delivery applications.

Conclusion: In order to address the problems associated with many of the available DDSs, carrageenans are establishing their worth recently as potential drug carriers owing to their varied range of properties. Different architectures of carrageenans are currently being explored as advanced DDSs. In the near future, translation of carrageenan-based advanced DDSs in the clinical applications seems inevitable.

Keywords: Marine polysaccharide, carrageenan, drug delivery, hydrogel, microparticles, microspheres.

[1]
Juergen S, Ronald S, Michael R. Fundamentals and Applications of Controlled Release Drug Delivery 2012.
[2]
Kharkwal H, Malhotra B, Janaswamy S. 1 Natural Polymers for Drug Delivery: An Introduction 2017.
[3]
Tiwari P, Panthari P, Katare DP, Kharkwal H. Natural polymers in drug delivery. World J Pharm Pharm Sci 2014; 3(9): 1395-409.
[4]
Miao T, Wang J, Zeng Y, Liu G, Chen X. Polysaccharide-Based Controlled Release Systems for Therapeutics Delivery and Tissue Engineering: From Bench to Bedside. Adv Sci (Weinh) 2018; 5(4)1700513
[http://dx.doi.org/10.1002/advs.201700513] [PMID: 29721408]
[5]
García-González C, Alnaief M, Smirnova I. Polysaccharide-based aerogels-Promising biodegradable carriers for drug delivery systems. Carbohydr Polym 2011; 86(4): 1425-38.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.066]
[6]
Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol 2014; 25(5): 448-60.
[http://dx.doi.org/10.1002/pat.3266]
[7]
Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev 2008; 60(15): 1650-62.
[http://dx.doi.org/10.1016/j.addr.2008.09.001] [PMID: 18848591]
[8]
Ruso JM. Biopolymers for Medical Applications 2016.
[9]
Bhatia S. Systems for Drug Delivery 2016.
[http://dx.doi.org/10.1007/978-3-319-41926-8]
[10]
Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 2013; 65(9): 1148-71.
[http://dx.doi.org/10.1016/j.addr.2013.04.016] [PMID: 23639519]
[11]
Silva TH, Alves A, Popa EG, et al. Marine algae sulfated polysaccharides for tissue engineering and drug delivery approaches. Biomatter 2012; 2(4): 278-89.
[http://dx.doi.org/10.4161/biom.22947] [PMID: 23507892]
[12]
de Jesus Raposo MF, de Morais AMB, de Morais RMSC. Marine polysaccharides from algae with potential biomedical applications. Mar Drugs 2015; 13(5): 2967-3028.
[http://dx.doi.org/10.3390/md13052967] [PMID: 25988519]
[13]
Cunha L, Grenha A. Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar Drugs 2016; 14(3): 42.
[http://dx.doi.org/10.3390/md14030042] [PMID: 26927134]
[14]
Cardoso MJ, Costa RR, Mano JF. Marine origin polysaccharides in drug delivery systems. Mar Drugs 2016; 14(2): 34.
[http://dx.doi.org/10.3390/md14020034] [PMID: 26861358]
[15]
Necas J, Bartosikova L. Carrageenan: A review. Vet Med 2013; 58(4): 187-205.
[http://dx.doi.org/10.17221/6758-VETMED]
[16]
Barth CR, Funchal GA, Luft C, de Oliveira JR, Porto BN, Donadio MV. Carrageenan-induced inflammation promotes ROS generation and neutrophil extracellular trap formation in a mouse model of peritonitis. Eur J Immunol 2016; 46(4): 964-70.
[http://dx.doi.org/10.1002/eji.201545520] [PMID: 26786873]
[17]
Buck CB, Thompson CD, Roberts JN, Müller M, Lowy DR, Schiller JT. Carrageenan is a potent inhibitor of papillomavirus infection. PLoS Pathog 2006; 2(7)e69
[http://dx.doi.org/10.1371/journal.ppat.0020069] [PMID: 16839203]
[18]
Sudha PN. Industrial Applications of Marine Biopolymers 2017.
[19]
Chakraborty S. Carrageenan for encapsulation and immobilization of flavor, fragrance, probiotics, and enzymes: A review. J Carbohydr Chem 2017; 36(1): 1-19.
[http://dx.doi.org/10.1080/07328303.2017.1347668]
[20]
Kalsoom Khan A, Saba AU, Nawazish S, et al. Carrageenan based bionanocomposites as drug delivery tool with special emphasis on the influence of ferromagnetic nanoparticles. Oxid Med Cell Longev 2017; 20178158315
[http://dx.doi.org/10.1155/2017/8158315]
[21]
Blakemore WR, Harpell AR. Carrageenan Food stabilisers, thickeners and gelling agents 2010.
[22]
Venkatesan J, Anil S, Kim S-K. Seaweed Polysaccharides: Isolation. Biological and Biomedical Applications 2017. 73-94.
[23]
Li L, Ni R, Shao Y, Mao S. Carrageenan and its applications in drug delivery. Carbohydr Polym 2014; 103: 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.008] [PMID: 24528694]
[24]
Campo VL, Kawano DF, da Silva DB Jr, Carvalho I. Carrageenans: Biological properties, chemical modifications and structural analysis–A review. Carbohydr Polym 2009; 77(2): 167-80.
[http://dx.doi.org/10.1016/j.carbpol.2009.01.020]
[25]
Kariduraganavar MY, Kittur AA, Kamble RR. Polymer synthesis and processing Natural and Synthetic Biomedical Polymers 2014. 1-31.
[26]
Rampelotto PH, Trincone A. Grand Challenges in Marine Biotechnology 2018.
[http://dx.doi.org/10.1007/978-3-319-69075-9]
[27]
Guan J, Li L, Mao S. Applications of carrageenan in advanced drug delivery. Seaweed Polysaccharides 2017; pp. 283-303.
[28]
Sakamoto K, Lochhead R, Maibach H, Yamashita Y. Cosmetic Science and Technology: Theoretical Principles and Applications 2017.
[29]
Evageliou VI, Ryan PM, Morris ER. Effect of monovalent cations on calcium-induced assemblies of kappa carrageenan. Food Hydrocoll 2019; 86: 141-5.
[http://dx.doi.org/10.1016/j.foodhyd.2018.03.018]
[30]
Kulkarni V, Shaw C. Use of polymers and thickeners in semisolid and liquid formulations 2016. 43-69.
[http://dx.doi.org/10.1016/B978-0-12-801024-2.00005-4]
[31]
Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R. Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydr Polym 2018; 198: 385-400.
[http://dx.doi.org/10.1016/j.carbpol.2018.06.086] [PMID: 30093014]
[32]
van de Velde F. Structure and function of hybrid carrageenans. Food Hydrocoll 2008; 22(5): 727-34.
[http://dx.doi.org/10.1016/j.foodhyd.2007.05.013]
[33]
Kim S-K, Chojnacka K. Marine algae extracts: processes, products, and applications 2015.
[http://dx.doi.org/10.1002/9783527679577]
[34]
Jiao G, Yu G, Zhang J, Ewart HS. Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Mar Drugs 2011; 9(2): 196-223.
[http://dx.doi.org/10.3390/md9020196] [PMID: 21566795]
[35]
Phillips GO, Williams PA. Handbook of hydrocolloids. 2009.
[http://dx.doi.org/10.1533/9781845695873]
[36]
Khalil H, Lai T, Tye Y, et al. A review of extractions of seaweed hydrocolloids: Properties and applications. Express Polym Lett 2018; 12(4): 296-317.
[37]
Véliz K, Chandía N, Rivadeneira M, Thiel M. Seasonal variation of carrageenans from Chondracanthus chamissoi with a review of variation in the carrageenan contents produced by Gigartinales. J Appl Phycol 2017; 29(6): 3139-50.
[http://dx.doi.org/10.1007/s10811-017-1203-6]
[38]
Laurienzo P. Marine Polysaccharides. 2018; Vol. 3.
[39]
Cao Y, Li S, Fang Y, et al. Specific binding of trivalent metal ions to λ-carrageenan. Int J Biol Macromol 2018; 109: 350-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.095] [PMID: 29269011]
[40]
Brenner T, Tuvikene R, Parker A, Matsukawa S, Nishinari K. Rheology and structure of mixed kappa-carrageenan/iota-carrageenan gels. Food Hydrocoll 2014; 39: 272-9.
[http://dx.doi.org/10.1016/j.foodhyd.2014.01.024]
[41]
Williams P, Phillips G. GUMS| Properties of Individual Gums 2003.
[42]
dos Santos MA, Grenha A. Polysaccharide nanoparticles for protein and Peptide delivery: exploring less-known materials. Adv Protein Chem Struct Biol 2015; 98: 223-61.
[http://dx.doi.org/10.1016/bs.apcsb.2014.11.003]
[43]
Cerqueira MAPR, Pereira RNC, da Silva Ramos OL, Teixeira JAC, Vicente AA. Edible Food Packaging: Materials and Processing Technologies 2016.
[http://dx.doi.org/10.1201/b19468]
[44]
Liu J, Zhan X, Wan J, Wang Y, Wang C. Review for carrageenan-based pharmaceutical biomaterials: favourable physical features versus adverse biological effects. Carbohydr Polym 2015; 121: 27-36.
[http://dx.doi.org/10.1016/j.carbpol.2014.11.063] [PMID: 25659668]
[45]
Zia KM, Tabasum S, Nasif M, et al. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol 2017; 96: 282-301.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.11.095] [PMID: 27914965]
[46]
Hydrocolloids Gluten-free cereal products and beverages 2008; 203-15.
[47]
Imeson A. Carrageenan and furcellaran Handbook of Hydrocolloids. 2nd ed. 2009; pp. 164-85.
[http://dx.doi.org/10.1533/9781845695873.164]
[48]
Siddhanta A, Sanandiya ND, Chejara DR, Kondaveeti S. Functional modification mediated value addition of seaweed polysaccharides–a perspective. RSC Advances 2015; 5(73): 59226-39.
[http://dx.doi.org/10.1039/C5RA09027J]
[49]
Kozlowska J, Pauter K, Sionkowska A. Carrageenan-based hydrogels: Effect of sorbitol and glycerin on the stability, swelling and mechanical properties. Polym Test 2018; 67: 7-11.
[http://dx.doi.org/10.1016/j.polymertesting.2018.02.016]
[50]
Oun AA, Rhim J-W. Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll 2017; 67: 45-53.
[http://dx.doi.org/10.1016/j.foodhyd.2016.12.040]
[51]
Kara S, Tamerler C, Bermek H, Pekcan O. Cation effects on sol-gel and gel-sol phase transitions of κ-carrageenan-water system. Int J Biol Macromol 2003; 31(4-5): 177-85.
[http://dx.doi.org/10.1016/S0141-8130(02)00080-6] [PMID: 12568926]
[52]
Kalia S. Polymeric hydrogels as smart biomaterials 2016.
[http://dx.doi.org/10.1007/978-3-319-25322-0]
[53]
Rhein-Knudsen N, Ale MT, Meyer AS. Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Mar Drugs 2015; 13(6): 3340-59.
[http://dx.doi.org/10.3390/md13063340] [PMID: 26023840]
[54]
Running CA, Falshaw R, Janaswamy S. Trivalent iron induced gelation in lambda-carrageenan. Carbohydr Polym 2012; 87(4): 2735-9.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.018] [PMID: 22408280]
[55]
Tecante A. Physico-chemical properties of carrageenan gels in presence of various cations. Int J Biol Macromol 1997; 21(1-2): 195-200.
[56]
Michel AS, Mestdagh MM, Axelos MA. Physico-chemical properties of carrageenan gels in presence of various cations. Int J Biol Macromol 1997; 21(1-2): 195-200.
[http://dx.doi.org/10.1016/S0141-8130(97)00061-5] [PMID: 9283036]
[57]
Thrimawithana T, Young S, Dunstan D, Alany R. Texture and rheological characterization of kappa and iota carrageenan in the presence of counter ions. Carbohydr Polym 2010; 82(1): 69-77.
[http://dx.doi.org/10.1016/j.carbpol.2010.04.024]
[58]
Liu S, Li L. Thermoreversible gelation and scaling behavior of Ca2+-induced κ-carrageenan hydrogels. Food Hydrocoll 2016; 61: 793-800.
[http://dx.doi.org/10.1016/j.foodhyd.2016.07.003]
[59]
Wüstenberg T. Cellulose and cellulose derivatives in the food industry: fundamentals and applications 2014.
[http://dx.doi.org/10.1002/9783527682935]
[60]
Daniel-da-Silva AL, Lóio R, Lopes-da-Silva JA, Trindade T, Goodfellow BJ, Gil AM. Effects of magnetite nanoparticles on the thermorheological properties of carrageenan hydrogels. J Colloid Interface Sci 2008; 324(1-2): 205-11.
[http://dx.doi.org/10.1016/j.jcis.2008.04.051] [PMID: 18495143]
[61]
Li P, Wang S, Chen H, et al. A novel ion-activated in situ gelling ophthalmic delivery system based on κ-carrageenan for acyclovir. Drug Dev Ind Pharm 2018; 44(5): 829-36.
[http://dx.doi.org/10.1080/03639045.2017.1414232] [PMID: 29212376]
[62]
Zhang Y, Ye L, Cui M, et al. Physically crosslinked poly (vinyl alcohol)-carrageenan composite hydrogels: pore structure stability and cell adhesive ability. RSC Advances 2015; 5(95): 78180-91.
[http://dx.doi.org/10.1039/C5RA11331H]
[63]
Park JW. Surimi and Surimi Seafood 2013.
[http://dx.doi.org/10.1201/b16009]
[64]
Maciel DJ, de Mello Ferreira IL, da Costa GM, da Silva MR. Nanocomposite hydrogels based on iota-carrageenan and maghemite: Morphological, thermal and magnetic properties. Eur Polym J 2016; 76: 147-55.
[http://dx.doi.org/10.1016/j.eurpolymj.2016.01.043]
[65]
Dasgupta Q, Chatterjee K, Madras G. Controlled release of salicylic acid from biodegradable cross-linked polyesters. Mol Pharm 2015; 12(9): 3479-89.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00515] [PMID: 26284981]
[66]
Distantina S, Rochmadi R, Fahrurrozi M, Wiratni W. Preparation and characterization of glutaraldehyde-crosslinked kappa carrageenan hydrogel. Eng J (NY) 2013; 17(3): 57-66.
[67]
Muhamad II, Fen LS, Hui NH, Mustapha NA. Genipin-cross-linked kappa-carrageenan/carboxymethyl cellulose beads and effects on beta-carotene release. Carbohydr Polym 2011; 83(3): 1207-12.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.021]
[68]
Paşcalău V, Popescu V, Popescu GL, et al. Obtaining and characterizing alginate/k-carrageenan hydrogel cross-linked with adipic dihydrazide. Adv Mater Sci Eng 2013; 2013380716
[69]
Kulkarni RV, Boppana R, Krishna Mohan G, Mutalik S, Kalyane NV. pH-responsive interpenetrating network hydrogel beads of poly(acrylamide)-g-carrageenan and sodium alginate for intestinal targeted drug delivery: synthesis, in vitro and in vivo evaluation. J Colloid Interface Sci 2012; 367(1): 509-17.
[http://dx.doi.org/10.1016/j.jcis.2011.10.025] [PMID: 22047923]
[70]
Selvakumaran S, Muhamad II. Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: Effect of cross linker. Int J Pharm 2015; 496(2): 323-31.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.005] [PMID: 26453788]
[71]
Selvakumaran S, Muhamad II, Abd Razak SI. Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: Effect of pore forming agents. Carbohydr Polym 2016; 135: 207-14.
[http://dx.doi.org/10.1016/j.carbpol.2015.08.051] [PMID: 26453870]
[72]
Bakarich SE, Balding P, Gorkin R III, Spinks GM. Printed ionic-covalent entanglement hydrogels from carrageenan and an epoxy amine. RSC Advances 2014; 4(72): 38088-92.
[http://dx.doi.org/10.1039/C4RA07109C]
[73]
Diañez I, Gallegos C, Brito-de la Fuente E, et al. 3D printing in situ gelification of κ-carrageenan solutions: Effect of printing variables on the rheological response. Food Hydrocoll 2019; 87: 321-30.
[74]
Ganesan K, Ratke L. Facile preparation of monolithic κ-carrageenan aerogels. Soft Matter 2014; 10(18): 3218-24.
[http://dx.doi.org/10.1039/c3sm52862f] [PMID: 24718695]
[75]
Parida KR, Panda SK, Ravanan P, Roy H, Manickam M, Talwar P. Microparticles based drug delivery systems: preparation and application in cancer therapeutics. Int Arch App Sci Technol 2013; 4(3): 68-75.
[76]
Siepmann J, Siepmann F. Microparticles used as drug delivery systems. Smart Colloidal Materials 2006; pp. 15-21.
[77]
Leong KH, Chung LY, Noordin MI, Onuki Y, Morishita M, Takayama K. Lectin-functionalized carboxymethylated kappa-carrageenan microparticles for oral insulin delivery. Carbohydr Polym 2011; 86(2): 555-65.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.070]
[78]
Chan SW, Mirhosseini H, Taip FS, Ling TC, Nehdi IA, Tan CP. Emulsion formulation optimization and characterization of spray-dried κ-carrageenan microparticles for the encapsulation of CoQ10. Food Sci Biotechnol 2016; 25(1)(Suppl. 1): 53-62.
[http://dx.doi.org/10.1007/s10068-016-0098-3] [PMID: 30263486]
[79]
Sahiner N, Sagbas S, Yılmaz S. Microgels Derived from Different Forms of Carrageenans, Kappa, Iota, and Lambda for Biomedical Applications. MRS Adv 2017; 2(47): 2521-7.
[http://dx.doi.org/10.1557/adv.2017.415]
[80]
Varde NK, Pack DW. Microspheres for controlled release drug delivery. Expert Opin Biol Ther 2004; 4(1): 35-51.
[http://dx.doi.org/10.1517/14712598.4.1.35] [PMID: 14680467]
[81]
Tomoda K, Asahiyama M, Ohtsuki E, et al. Preparation and properties of carrageenan microspheres containing allopurinol and local anesthetic agents for the treatment of oral mucositis. Colloids Surf B Biointerfaces 2009; 71(1): 27-35.
[http://dx.doi.org/10.1016/j.colsurfb.2009.01.003] [PMID: 19181495]
[82]
Kolesnyk I, Konovalova V, Burban A. Alginate/κ-carrageenan microspheres and their application for protein drugs controlled release. Ch&ChT 2015; 9(4): 485-92.
[83]
El-Aassar MR, El Fawal GF, Kamoun EA, Fouda MM. Controlled drug release from cross-linked κ-carrageenan/hyaluronic acid membranes. Int J Biol Macromol 2015; 77: 322-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.055] [PMID: 25840148]
[84]
Sharifzadeh G, Wahit MU, Soheilmoghaddam M, Whye WT, Pasbakhsh P. Kappa-carrageenan/halloysite nanocomposite hydrogels as potential drug delivery systems. J Taiwan Inst Chem Eng 2016; 67: 426-34.
[http://dx.doi.org/10.1016/j.jtice.2016.07.027]
[85]
Lim H-P, Ooi C-W, Tey B-T, Chan E-S. Controlled delivery of oral insulin aspart using pH-responsive alginate/κ-carrageenan composite hydrogel beads. React Funct Polym 2017; 120: 20-9.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.08.015]
[86]
Méndez NAN, Barreda CTQ, Vega AF, et al. Design and development of pharmaceutical microprocesses in the production of nanomedicine. Nanostruct Oral Med 2017; pp. 669-97.
[87]
Obaidat RM, Alnaief M, Mashaqbeh H. Investigation of Carrageenan Aerogel Microparticles as a Potential Drug Carrier. AAPS PharmSciTech 2018; 19(5): 2226-36.
[http://dx.doi.org/10.1208/s12249-018-1021-4] [PMID: 29736886]
[88]
Ellis A, Keppeler S, Jacquier J. Responsiveness of κ-carrageenan microgels to cationic surfactants and neutral salts. Carbohydr Polym 2009; 78(3): 384-8.
[http://dx.doi.org/10.1016/j.carbpol.2009.04.014]
[89]
Gavini E, Bonferoni MC, Rassu G, et al. Engineered microparticles based on drug-polymer coprecipitates for ocular-controlled delivery of Ciprofloxacin: influence of technological parameters. Drug Dev Ind Pharm 2016; 42(4): 554-62.
[http://dx.doi.org/10.3109/03639045.2015.1100201] [PMID: 26482534]
[90]
Alnaief M, Obaidat R, Mashaqbeh H. Effect of processing parameters on preparation of carrageenan aerogel microparticles. Carbohydr Polym 2018; 180: 264-75.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.038] [PMID: 29103505]
[91]
Hezaveh H, Muhamad II. The effect of nanoparticles on gastrointestinal release from modified κ-carrageenan nanocomposite hydrogels. Carbohydr Polym 2012; 89(1): 138-45.
[http://dx.doi.org/10.1016/j.carbpol.2012.02.062] [PMID: 24750615]
[92]
Daniel-da-Silva AL, Moreira J, Neto R, Estrada AC, Gil AM, Trindade T. Impact of magnetic nanofillers in the swelling and release properties of κ-carrageenan hydrogel nanocomposites. Carbohydr Polym 2012; 87(1): 328-35.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.051] [PMID: 23218302]
[93]
Salgueiro AM, Daniel-da-Silva AL, Fateixa S, Trindade T. κ-Carrageenan hydrogel nanocomposites with release behavior mediated by morphological distinct Au nanofillers. Carbohydr Polym 2013; 91(1): 100-9.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.004] [PMID: 23044110]
[94]
Mahdavinia GR, Etemadi H. In situ synthesis of magnetic CaraPVA IPN nanocomposite hydrogels and controlled drug release. Mater Sci Eng C 2014; 45: 250-60.
[http://dx.doi.org/10.1016/j.msec.2014.09.023] [PMID: 25491827]
[95]
Varghese JS, Chellappa N, Fathima NN. Gelatin-carrageenan hydrogels: role of pore size distribution on drug delivery process. Colloids Surf B Biointerfaces 2014; 113: 346-51.
[http://dx.doi.org/10.1016/j.colsurfb.2013.08.049] [PMID: 24126319]
[96]
Lefnaoui S, Moulai-Mostefa N. Investigation and optimization of formulation factors of a hydrogel network based on kappa carrageenan-pregelatinized starch blend using an experimental design. Colloids Surf A Physicochem Eng Asp 2014; 458: 117-25.
[http://dx.doi.org/10.1016/j.colsurfa.2014.01.007]
[97]
Padhi JR, Nayak D, Nanda A, Rauta PR, Ashe S, Nayak B. Development of highly biocompatible Gelatin & i-Carrageenan based composite hydrogels: In depth physiochemical analysis for biomedical applications. Carbohydr Polym 2016; 153: 292-301.
[http://dx.doi.org/10.1016/j.carbpol.2016.07.098] [PMID: 27561499]
[98]
Yee CM, Hasan ZAA, Ahmad N, Hazimah A. Development of Carrageenan Hydrogel as a Sustained Release Matrix Containing Tocotrienol-Rich Palm-Based Vitamin E. J Oil Palm Res 2016; 28(3): 373-86.
[http://dx.doi.org/10.21894/jopr.2016.2803.14]
[99]
Mahdavinia GR, Mosallanezhad A, Soleymani M, Sabzi M. Magnetic- and pH-responsive κ-carrageenan/chitosan complexes for controlled release of methotrexate anticancer drug. Int J Biol Macromol 2017; 97: 209-17.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.012] [PMID: 28064053]
[100]
Mahdavinia GR, Etemadi H, Soleymani F. Magnetic/pH-responsive beads based on caboxymethyl chitosan and κ-carrageenan and controlled drug release. Carbohydr Polym 2015; 128: 112-21.
[http://dx.doi.org/10.1016/j.carbpol.2015.04.022] [PMID: 26005146]
[101]
Leong KH, Chung LY, Noordin MI, et al. Carboxymethylation of kappa-carrageenan for intestinal-targeted delivery of bioactive macromolecules. Carbohydr Polym 2011; 83(4): 1507-15.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.062]
[102]
Lohani A, Singh G, Bhattacharya SS, Hegde RR, Verma A. Tailored-interpenetrating polymer network beads of κ-carrageenan and sodium carboxymethyl cellulose for controlled drug delivery. J Drug Deliv Sci Technol 2016; 31: 53-64.
[http://dx.doi.org/10.1016/j.jddst.2015.11.005]
[103]
Sathuvan M, Thangam R, Gajendiran M, et al. κ-Carrageenan: An effective drug carrier to deliver curcumin in cancer cells and to induce apoptosis. Carbohydr Polym 2017; 160: 184-93.
[http://dx.doi.org/10.1016/j.carbpol.2016.12.049] [PMID: 28115093]
[104]
Azizi S, Mohamad R, Abdul Rahim R, Mohammadinejad R, Bin Ariff A. Hydrogel beads bio-nanocomposite based on Kappa-Carrageenan and green synthesized silver nanoparticles for biomedical applications Int J Biol Macromol 2017; 104(Pt A): 423- 31.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.010] [PMID: 28591593]
[105]
Wang Y-W, Chen L-Y, An F-P, Chang M-Q, Song H-B. A novel polysaccharide gel bead enabled oral enzyme delivery with sustained release in small intestine. Food Hydrocoll 2018; 84: 68-74.
[http://dx.doi.org/10.1016/j.foodhyd.2018.05.039]
[106]
Karewicz A, Łęgowik J, Nowakowska M. New bilayer-coated microbead system for controlled release of 5-aminosalicylic acid. Polym Bull 2011; 66(3): 433-43.
[http://dx.doi.org/10.1007/s00289-010-0370-2]
[107]
Sagbas S, Butun S, Sahiner N. Modifiable chemically crosslinked poli (κ-carrageenan) particles. Carbohydr Polym 2012; 87(4): 2718-24.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.064]
[108]
Guzman-Villanueva D, El-Sherbiny IM, Herrera-Ruiz D, Smyth HD. Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin. BioMed Res Int 2013; 2013724763
[109]
Bosio VE, Cacicedo ML, Calvignac B, et al. Synthesis and characterization of CaCO3-biopolymer hybrid nanoporous microparticles for controlled release of doxorubicin. Colloids Surf B Biointerfaces 2014; 123: 158-69.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.011] [PMID: 25260219]
[110]
Cacicedo ML, Cesca K, Bosio VE, Porto LM, Castro GR. Self-assembly of carrageenin-CaCO3 hybrid microparticles on bacterial cellulose films for doxorubicin sustained delivery. J Appl Biomed 2015; 13(3): 239-48.
[http://dx.doi.org/10.1016/j.jab.2015.03.004]
[111]
Sun W, Saldaña MD, Zhao Y, Dong T, Jin Y, Zhang J. New application of kappa-carrageenan: producing pH-sensitive lappaconitine-loaded kappa-carrageenan microparticle using two-step self-assembly. J Appl Phycol 2016; 28(3): 2041-50.
[http://dx.doi.org/10.1007/s10811-015-0712-4]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy