Alginate Nanoparticles for Drug Delivery and Targeting

Author(s): Patricia Severino, Classius F. da Silva, Luciana N. Andrade, Daniele de Lima Oliveira, Joana Campos, Eliana B. Souto*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 11 , 2019

Become EABM
Become Reviewer

Abstract:

Nanotechnology refers to the control, manipulation, study and manufacture of structures and devices at the nanometer size range. The small size, customized surface, improved solubility and multi-functionality of nanoparticles will continue to create new biomedical applications, as nanoparticles allow to dominate stability, solubility and bioavailability, as well controlled release of drugs. The type of a nanoparticle, and its related chemical, physical and morphological properties influence its interaction with living cells, as well as determine the route of clearance and possible toxic effects. This field requires cross-disciplinary research and gives opportunities to design and develop multifunctional devices, which allow the diagnosis and treatment of devastating diseases. Over the past few decades, biodegradable polymers have been studied for the fabrication of drug delivery systems. There was extensive development of biodegradable polymeric nanoparticles for drug delivery and tissue engineering, in view of their applications in controlling the release of drugs, stabilizing labile molecules from degradation and site-specific drug targeting. The primary aim is to reduce dosing frequency and prolong the therapeutic outcomes. For this purpose, inert excipients should be selected, being biopolymers, e.g. sodium alginate, commonly used in controlled drug delivery. Nanoparticles composed of alginate (known as anionic polysaccharide widely distributed in the cell walls of brown algae which, when in contact with water, forms a viscous gum) have emerged as one of the most extensively characterized biomaterials used for drug delivery and targeting a set of administration routes. Their advantages include not only the versatile physicochemical properties, which allow chemical modifications for site-specific targeting but also their biocompatibility and biodegradation profiles, as well as mucoadhesiveness. Furthermore, mechanical strength, gelation, and cell affinity can be modulated by combining alginate nanoparticles with other polymers, surface tailoring using specific targeting moieties and by chemical or physical cross-linking. However, for every physicochemical modification in the macromolecule/ nanoparticles, a new toxicological profile may be obtained. In this paper, the different aspects related to the use of alginate nanoparticles for drug delivery and targeting have been revised, as well as how their toxicological profile will determine the therapeutic outcome of the drug delivery system.

Keywords: Nanotechnology, nanoparticles, alginate, cytotoxicity, drug delivery, site-specific targeting.

[1]
Borel T, Sabliov CM. Nanodelivery of bioactive components for food applications: types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu Rev Food Sci Technol 2014; 5(5): 197-213.
[http://dx.doi.org/10.1146/annurev-food-030713-092354] [PMID: 24387603]
[2]
Singh R, Lillard JW Jr. Nanoparticle-based targeted drug delivery. Exp Mol Pathol 2009; 86(3): 215-23.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[3]
Vega-Villa KR, Takemoto JK, Yáñez JA, Remsberg CM, Forrest ML, Davies NM. Clinical toxicities of nanocarrier systems. Adv Drug Deliv Rev 2008; 60(8): 929-38.
[http://dx.doi.org/10.1016/j.addr.2007.11.007] [PMID: 18313790]
[4]
Tønnesen HH, Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm 2002; 28(6): 621-30.
[http://dx.doi.org/10.1081/DDC-120003853] [PMID: 12149954]
[5]
Devalapally H, Chakilam A, Amiji MM. Role of nanotechnology in pharmaceutical product development. J Pharm Sci 2007; 96(10): 2547-65.
[http://dx.doi.org/10.1002/jps.20875] [PMID: 17688284]
[6]
Alam AK, Khadiza MT, Swarnali I. Rajia. Effect of different excipients on the release of vinpocetine from biodegradable polymeric implants of chitosan and sodium alginate. Pharma Innovation 2017; 6(5, Part C): 146.
[7]
Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6(4): 319-27.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[8]
Zheng Y, Monty J, Linhardt RJ. Polysaccharide-based nanocomposites and their applications. Carbohydr Res 2015; 405: 23-32.
[http://dx.doi.org/10.1016/j.carres.2014.07.016] [PMID: 25498200]
[9]
Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci 2012; 37(1): 106-26.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[10]
Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature 2009; 462(7272): 426-32.
[http://dx.doi.org/10.1038/nature08601] [PMID: 19940912]
[11]
Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 2004; 6: 41-75.
[http://dx.doi.org/10.1146/annurev.bioeng.6.040803.140027] [PMID: 15255762]
[12]
Williams DF. On the nature of biomaterials. Biomaterials 2009; 30(30): 5897-909.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.027] [PMID: 19651435]
[13]
Ahmed TA, Aljaeid BM. Preparation, characterization, and potential application of chitosan, chitosan derivatives, and chitosan metal nanoparticles in pharmaceutical drug delivery. Drug Des Devel Ther 2016; 10: 483-507.
[http://dx.doi.org/10.2147/DDDT.S99651] [PMID: 26869768]
[14]
Singh A, Talekar M, Tran T-H, Samanta A, Sundaram R, Amiji M. Combinatorial approach in the design of multifunctional polymeric nano-delivery systems for cancer therapy. J Mater Chem B Mater Biol Med 2014; 2(46): 8069-84.
[http://dx.doi.org/10.1039/C4TB01083C]
[15]
Ahmad Z, Pandey R, Sharma S, Khuller GK. Alginate nanoparticles as antituberculosis drug carriers: formulation development, pharmacokinetics and therapeutic potential. Indian J Chest Dis Allied Sci 2006; 48(3): 171-6.
[PMID: 18610673]
[16]
Wee S, Gombotz WR. Protein release from alginate matrices. Adv Drug Deliv Rev 1998; 31(3): 267-85.
[http://dx.doi.org/10.1016/S0169-409X(97)00124-5] [PMID: 10837629]
[17]
Prabaharan M. Chitosan-based nanoparticles for tumor-targeted drug delivery. Int J Biol Macromol 2015; 72: 1313-22.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.10.052] [PMID: 25450550]
[18]
Qurrat-ul-Ain , Sharma S, Khuller GK, Garg SK. Alginate-based oral drug delivery system for tuberculosis: pharmacokinetics and therapeutic effects. J Antimicrob Chemother 2003; 51(4): 931-8.
[http://dx.doi.org/10.1093/jac/dkg165] [PMID: 12654730]
[19]
Pandey R, Khuller GK. Chemotherapeutic potential of alginate-chitosan microspheres as anti-tubercular drug carriers. J Antimicrob Chemother 2004; 53(4): 635-40.
[http://dx.doi.org/10.1093/jac/dkh139] [PMID: 14998985]
[20]
Pandey R, Zahoor A, Sharma S, Khuller GK. Nanoparticle encapsulated antitubercular drugs as a potential oral drug delivery system against murine tuberculosis. Tuberculosis (Edinb) 2003; 83(6): 373-8.
[http://dx.doi.org/10.1016/j.tube.2003.07.001] [PMID: 14623168]
[21]
Langer R, Vacanti JP. Tissue engineering. Science 1993; 260(5110): 920-6.
[http://dx.doi.org/10.1126/science.8493529] [PMID: 8493529]
[22]
Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev 2001; 101(7): 1869-79.
[http://dx.doi.org/10.1021/cr000108x] [PMID: 11710233]
[23]
Goh CH, Heng PWS, Chan LW. Alginates as a useful natural polymer for microencapsulation and therapeutic applications. Carbohydr Polym 2012; 88(1): 1-12.
[http://dx.doi.org/10.1016/j.carbpol.2011.11.012]
[24]
Singh E, Anamika DK, Richa S, Utkarsh K, Yadav B. C. Recent Developments in Drug Delivery System via Nanotechnology. Imperial J Interdisciplinary Res 2016; 2(6).
[25]
Sparnacci K, Laus M, Tondelli L, et al. Core–shell microspheres by dispersion polymerization as drug delivery systems. Macromol Chem Phys 2002; 203(10‐11): 1364-9.
[http://dx.doi.org/10.1002/1521-3935(200207)203:10/11<1364:AID-MACP1364>3.0.CO;2-6]
[26]
Brongersma ML. Nanoscale photonics: Nanoshells: gifts in a gold wrapper. Nat Mater 2003; 2(5): 296-7.
[http://dx.doi.org/10.1038/nmat891] [PMID: 12728232]
[27]
Bamrungsap S, Zhao Z, Chen T, et al. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine (Lond) 2012; 7(8): 1253-71.
[http://dx.doi.org/10.2217/nnm.12.87] [PMID: 22931450]
[28]
Klabunde KJ. Introduction to nanotechnology 2001; 1-13. [http://dx.doi.org/10.1002/0471220620.ch1]
[29]
Sahoo SK, Labhasetwar V. Nanotech approaches to drug delivery and imaging. Drug Discov Today 2003; 8(24): 1112-20.
[http://dx.doi.org/10.1016/S1359-6446(03)02903-9] [PMID: 14678737]
[30]
Voura EB, Jaiswal JK, Mattoussi H, Simon SM. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission-scanning microscopy. Nat Med 2004; 10(9): 993-8.
[http://dx.doi.org/10.1038/nm1096] [PMID: 15334072]
[31]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[32]
Probst CE, Zrazhevskiy P, Bagalkot V, Gao X. Quantum dots as a platform for nanoparticle drug delivery vehicle design. Adv Drug Deliv Rev 2013; 65(5): 703-18.
[http://dx.doi.org/10.1016/j.addr.2012.09.036] [PMID: 23000745]
[33]
Strong LE, West JL. Hydrogel-coated near infrared absorbing nanoshells as light-responsive drug delivery vehicles. ACS Biomater Sci Eng 2015; 1(8): 685-92.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00111] [PMID: 26366438]
[34]
Salouti M, Ahangari A. Nanoparticle based drug delivery systems for treatment of infectious diseasesApplication of Nanotechnology in Drug Delivery 2014.
[35]
Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev 2008; 60(15): 1638-49.
[http://dx.doi.org/10.1016/j.addr.2008.08.002] [PMID: 18840488]
[36]
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev 2001; 53(2): 283-318.
[PMID: 11356986]
[37]
Vinogradov SV, Bronich TK, Kabanov AV. Nanosized cationic hydrogels for drug delivery: preparation, properties and interactions with cells. Adv Drug Deliv Rev 2002; 54(1): 135-47.
[http://dx.doi.org/10.1016/S0169-409X(01)00245-9] [PMID: 11755709]
[38]
Schek RM, Hollister SJ, Krebsbach PH. Delivery and protection of adenoviruses using biocompatible hydrogels for localized gene therapy Molecular therapy: the journal of the American Society of Gene Therapy 2004; 9(1): 130-8. [http://dx.doi.org/10.1016/j.ymthe.2003.10.002]
[39]
Tejada-Berges T, Granai CO, Gordinier M, Gajewski W. Caelyx/Doxil for the treatment of metastatic ovarian and breast cancer. Expert Rev Anticancer Ther 2002; 2(2): 143-50.
[http://dx.doi.org/10.1586/14737140.2.2.143] [PMID: 12113236]
[40]
Gradishar WJ. Albumin-bound paclitaxel: a next-generation taxane. Expert Opin Pharmacother 2006; 7(8): 1041-53.
[http://dx.doi.org/10.1517/14656566.7.8.1041] [PMID: 16722814]
[41]
Möschwitzer J, Müller RH. New method for the effective production of ultrafine drug nanocrystals. J Nanosci Nanotechnol 2006; 6(9-10): 3145-53.
[http://dx.doi.org/10.1166/jnn.2006.480] [PMID: 17048530]
[42]
Carrstensen H, Müller RH, Müller BW. Particle size, surface hydrophobicity and interaction with serum of parenteral fat emulsions and model drug carriers as parameters related to RES uptake. Clin Nutr 1992; 11(5): 289-97.
[http://dx.doi.org/10.1016/0261-5614(92)90006-C] [PMID: 16840011]
[43]
Norman ME, Williams P, Illum L. Human serum albumin as a probe for surface conditioning (opsonization) of block copolymer-coated microspheres. Biomaterials 1992; 13(12): 841-9.
[http://dx.doi.org/10.1016/0142-9612(92)90177-P] [PMID: 1457677]
[44]
Moghimi SM, Hedeman H, Muir IS, Illum L, Davis SS. An investigation of the filtration capacity and the fate of large filtered sterically-stabilized microspheres in rat spleen. Biochim Biophys Acta 1993; 1157(3): 233-40.
[http://dx.doi.org/10.1016/0304-4165(93)90105-H] [PMID: 8323953]
[45]
Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano- and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm 1998; 46(3): 255-63.
[http://dx.doi.org/10.1016/S0939-6411(98)00038-1] [PMID: 9885296]
[46]
Gref R, Domb A, Quellec P, et al. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv Drug Deliv Rev 1995; 16(2-3): 215-33.
[http://dx.doi.org/10.1016/0169-409X(95)00026-4] [PMID: 25170183]
[47]
Duncan R, Spreafico F. Polymer conjugates. Pharmacokinetic considerations for design and development. Clin Pharmacokinet 1994; 27(4): 290-306.
[http://dx.doi.org/10.2165/00003088-199427040-00004] [PMID: 7834965]
[48]
LaVan DA, Lynn DM, Langer R. Moving smaller in drug discovery and delivery. Nat Rev Drug Discov 2002; 1(1): 77-84.
[http://dx.doi.org/10.1038/nrd707] [PMID: 12119612]
[49]
Duncan R. The dawning era of polymer therapeutics. Nat Rev Drug Discov 2003; 2(5): 347-60.
[http://dx.doi.org/10.1038/nrd1088] [PMID: 12750738]
[50]
Barrera DA, Eric Z, Peter TL, Robert L. Synthesis and RGD peptide modification of a new biodegradable copolymer: poly (lactic acid-co-lysine). J Am Chem Soc 1993; 115(23): 11010-1.
[http://dx.doi.org/10.1021/ja00076a077]
[51]
Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm 2002; 233(1-2): 51-9.
[http://dx.doi.org/10.1016/S0378-5173(01)00923-1] [PMID: 11897410]
[52]
Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3): 329-47.
[http://dx.doi.org/10.1016/S0169-409X(02)00228-4] [PMID: 12628320]
[53]
Woodward SC, Brewer PS, Moatamed F, Schindler A, Pitt CG. The intracellular degradation of poly(ε-caprolactone). J Biomed Mater Res 1985; 19(4): 437-44.
[http://dx.doi.org/10.1002/jbm.820190408] [PMID: 4055826]
[54]
Redhead HM, Davis SS, Illum L. Drug delivery in poly(lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterisation and in vivo evaluation. J Control Release 2001; 70(3): 353-63.
[http://dx.doi.org/10.1016/S0168-3659(00)00367-9] [PMID: 11182205]
[55]
Herrero-Vanrell R, Rincón AC, Alonso M, Reboto V, Molina-Martinez IT, Rodríguez-Cabello JC. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J Control Release 2005; 102(1): 113-22.
[http://dx.doi.org/10.1016/j.jconrel.2004.10.001] [PMID: 15653138]
[56]
Vauthier C, Dubernet C, Chauvierre C, Brigger I, Couvreur P. Drug delivery to resistant tumors: the potential of poly(alkyl cyanoacrylate) nanoparticles. J Control Release 2003; 93(2): 151-60.
[http://dx.doi.org/10.1016/j.jconrel.2003.08.005] [PMID: 14636721]
[57]
Salata O. Applications of nanoparticles in biology and medicine. J Nanobiotechnology 2004; 2(1): 3-3.
[http://dx.doi.org/10.1186/1477-3155-2-3] [PMID: 15119954]
[58]
Ella Fung J. The A to Z of nanotechnology And nanomaterials. Nanoprobes for Medical Diagnosis: Current Status of Nanotechnology in Molecular Imaging. Curr Nanosci 2008; 4(1): 17-29.
[http://dx.doi.org/10.2174/157341308783591843]
[59]
Nano A. The A to Z of nanotechnology And nanomaterials The Institute of nanotechnology. Azom Co Ltd 2003.
[60]
Xia Y. Monodispersed colloidal spheres: old materials with new applications. Adv Mater 2000; 12(10): 693-713.
[http://dx.doi.org/10.1002/(SICI)1521-4095(200005)12:10<693:AID-ADMA693>3.0.CO;2-J]
[61]
Debbage P, Jaschke W. Molecular imaging with nanoparticles: giant roles for dwarf actors. Histochem Cell Biol 2008; 130(5): 845-75.
[http://dx.doi.org/10.1007/s00418-008-0511-y] [PMID: 18825403]
[62]
Eric DK. Engines of creation: the coming era of nanotechnology. Anchor Book 1986.
[63]
Swarbrick J. Encyclopedia of pharmaceutical technology. Anchor Book 2013.
[64]
Kroll RA, Pagel MA, Muldoon LL, Roman-Goldstein S, Fiamengo SA, Neuwelt EA. Improving drug delivery to intracerebral tumor and surrounding brain in a rodent model: a comparison of osmotic versus bradykinin modification of the blood-brain and/or blood-tumor barriers. Neurosurgery 1998; 43(4): 879-86.
[http://dx.doi.org/10.1097/00006123-199810000-00090] [PMID: 9766316]
[65]
Kreuter J, Ramge P, Petrov V, et al. Direct evidence that polysorbate-80-coated poly(butylcyanoacrylate) nanoparticles deliver drugs to the CNS via specific mechanisms requiring prior binding of drug to the nanoparticles. Pharm Res 2003; 20(3): 409-16.
[http://dx.doi.org/10.1023/A:1022604120952] [PMID: 12669961]
[66]
Zauner W, Farrow NA, Haines AM. In vitro uptake of polystyrene microspheres: effect of particle size, cell line and cell density. J Control Release 2001; 71(1): 39-51.
[http://dx.doi.org/10.1016/S0168-3659(00)00358-8] [PMID: 11245907]
[67]
Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 1997; 14(11): 1568-73.
[http://dx.doi.org/10.1023/A:1012126301290] [PMID: 9434276]
[68]
Dunne M, Corrigan I, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials 2000; 21(16): 1659-68.
[http://dx.doi.org/10.1016/S0142-9612(00)00040-5] [PMID: 10905407]
[69]
Panyam J, Dali MM, Sahoo SK, et al. Polymer degradation and in vitro release of a model protein from poly(D,L-lactide-co-glycolide) nano- and microparticles. J Control Release 2003; 92(1-2): 173-87.
[http://dx.doi.org/10.1016/S0168-3659(03)00328-6] [PMID: 14499195]
[70]
Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 2012; 64: 24-36.
[http://dx.doi.org/10.1016/j.addr.2012.09.006] [PMID: 12204596]
[71]
Müller RH, Maassen S, Weyhers H, Mehnert W. Phagocytic uptake and cytotoxicity of solid lipid nanoparticles (SLN) sterically stabilized with poloxamine 908 and poloxamer 407. J Drug Target 1996; 4(3): 161-70.
[http://dx.doi.org/10.3109/10611869609015973] [PMID: 8959488]
[72]
Grislain L, et al. Pharmacokinetics and distribution of a biodegradable drug-carrier. Int J Pharm 1983; 15(3): 335-45.
[http://dx.doi.org/10.1016/0378-5173(83)90166-7]
[73]
Bhadra D, Bhadra S, Jain P, Jain NK. Pegnology: a review of PEG-ylated systems. Pharmazie 2002; 57(1): 5-29.
[PMID: 11836932]
[74]
Olivier J-C. Drug transport to brain with targeted nanoparticles. NeuroRx 2005; 2(1): 108-19.
[http://dx.doi.org/10.1602/neurorx.2.1.108] [PMID: 15717062]
[75]
Couvreur P, et al. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug ournal of Controlled Release 1999. 57(2): 171-85.
[76]
Govender T, Stolnik S, Garnett MC, Illum L, Davis SS. PLGA nanoparticles prepared by nanoprecipitation: drug loading and release studies of a water soluble drug. J Control Release 1999; 57(2): 171-85.
[http://dx.doi.org/10.1016/S0168-3659(98)00116-3] [PMID: 9971898]
[77]
Govender T, Riley T, Ehtezazi T, et al. Defining the drug incorporation properties of PLA-PEG nanoparticles. Int J Pharm 2000; 199(1): 95-110.
[http://dx.doi.org/10.1016/S0378-5173(00)00375-6] [PMID: 10794931]
[78]
Panyam J, Williams D, Dash A, Leslie-Pelecky D, Labhasetwar V. Solid-state solubility influences encapsulation and release of hydrophobic drugs from PLGA/PLA nanoparticles. J Pharm Sci 2004; 93(7): 1804-14.
[http://dx.doi.org/10.1002/jps.20094] [PMID: 15176068]
[79]
Peracchia MT, et al. PEG-coated nanospheres from amphiphilic diblock and multiblock copolymers: Investigation of their drug encapsulation and release characteristics1. J Control Release 1997; 46(3): 223-31.
[http://dx.doi.org/10.1016/S0168-3659(96)01597-0]
[80]
Calvo P, Remuñan-López C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 1997; 14(10): 1431-6.
[http://dx.doi.org/10.1023/A:1012128907225] [PMID: 9358557]
[81]
Chen Y, McCulloch R, Gray B. Synthesis of albumin-dextran sulfate microspheres possessing favourable loading and release characteristics for the anticancer drug doxorubicin. J Control Release 1994; 31(1): 49-54.
[http://dx.doi.org/10.1016/0168-3659(94)90250-X]
[82]
Chen Y, Mohanraj VJ, Parkin JE. Chitosan-dextran sulfate nanoparticles for delivery of an anti-angiogenesis peptide. Lett Pept Sci 2003; 10(5-6): 621-9.
[http://dx.doi.org/10.1007/BF02442596]
[83]
Magenheim B, Levy M, Benita S. A new in vitro technique for the evaluation of drug release profile from colloidal carriers-ultrafiltration technique at low pressure. Int J Pharm 1993; 94(1-3): 115-23.
[http://dx.doi.org/10.1016/0378-5173(93)90015-8]
[84]
Fresta M, Puglisi G, Giammona G, Cavallaro G, Micali N, Furneri PM. Pefloxacine mesilate- and ofloxacin-loaded polyethylcyanoacrylate nanoparticles: characterization of the colloidal drug carrier formulation. J Pharm Sci 1995; 84(7): 895-902.
[http://dx.doi.org/10.1002/jps.2600840721] [PMID: 7562444]
[85]
Lamprecht A, Ubrich N, Yamamoto H, et al. Biodegradable nanoparticles for targeted drug delivery in treatment of inflammatory bowel disease. J Pharmacol Exp Ther 2001; 299(2): 775-81.
[PMID: 11602694]
[86]
Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul 2001; 41: 189-207.
[http://dx.doi.org/10.1016/S0065-2571(00)00013-3] [PMID: 11384745]
[87]
Sahoo SK, Sawa T, Fang J, et al. Pegylated zinc protoporphyrin: a water-soluble heme oxygenase inhibitor with tumor-targeting capacity. Bioconjug Chem 2002; 13(5): 1031-8.
[http://dx.doi.org/10.1021/bc020010k] [PMID: 12236785]
[88]
Guzman LA, Labhasetwar V, Song C, et al. Local intraluminal infusion of biodegradable polymeric nanoparticles. A novel approach for prolonged drug delivery after balloon angioplasty. Circulation 1996; 94(6): 1441-8.
[http://dx.doi.org/10.1161/01.CIR.94.6.1441] [PMID: 8823004]
[89]
Fisher RS, Ho J. Potential new methods for antiepileptic drug delivery. CNS Drugs 2002; 16(9): 579-93.
[http://dx.doi.org/10.2165/00023210-200216090-00001] [PMID: 12153331]
[90]
Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28(1): 1-13.
[http://dx.doi.org/10.1081/DDC-120001481] [PMID: 11858519]
[91]
Avgoustakis K, Beletsi A, Panagi Z, Klepetsanis P, Karydas AG, Ithakissios DS. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release 2002; 79(1-3): 123-35.
[http://dx.doi.org/10.1016/S0168-3659(01)00530-2] [PMID: 11853924]
[92]
Beletsi A, Leontiadis L, Klepetsanis P, Ithakissios DS, Avgoustakis K. Effect of preparative variables on the properties of poly(dl-lactide-co-glycolide)-methoxypoly(ethyleneglycol) copolymers related to their application in controlled drug delivery. Int J Pharm 1999; 182(2): 187-97.
[http://dx.doi.org/10.1016/S0378-5173(99)00058-7] [PMID: 10341308]
[93]
Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. Biocompatibility of engineered nanoparticles for drug delivery. J Control Release 2013; 166(2): 182-94.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.013] [PMID: 23262199]
[94]
Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release 2010; 145(3): 182-95.
[http://dx.doi.org/10.1016/j.jconrel.2010.01.036] [PMID: 20226220]
[95]
Yoo J-W, Mitragotri S. Polymer particles that switch shape in response to a stimulus. Proc Natl Acad Sci USA 2010; 107(25): 11205-10.
[http://dx.doi.org/10.1073/pnas.1000346107] [PMID: 20547873]
[96]
Choi CHJ, et al. Targeting kidney mesangium by nanoparticles of defined size. Proceedings of the National Academy of Sciences. 201103573. [http://dx.doi.org/10.1073/pnas.1103573108]
[97]
Faraji AH, Wipf P. Nanoparticles in cellular drug delivery. Bioorg Med Chem 2009; 17(8): 2950-62.
[http://dx.doi.org/10.1016/j.bmc.2009.02.043] [PMID: 19299149]
[98]
Acosta E. Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 2009; 14(1): 3-15.
[http://dx.doi.org/10.1016/j.cocis.2008.01.002]
[99]
Powell JJ, Faria N, Thomas-McKay E, Pele LC. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J Autoimmun 2010; 34(3): J226-33.
[http://dx.doi.org/10.1016/j.jaut.2009.11.006] [PMID: 20096538]
[100]
Bertrand N, Leroux J-C. The journey of a drug-carrier in the body: an anatomo-physiological perspective. J Control Release 2012; 161(2): 152-63.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.098] [PMID: 22001607]
[101]
Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev 2009; 61(2): 158-71.
[http://dx.doi.org/10.1016/j.addr.2008.11.002] [PMID: 19133304]
[102]
Markovsky E, Baabur-Cohen H, Eldar-Boock A, et al. Administration, distribution, metabolism and elimination of polymer therapeutics. J Control Release 2012; 161(2): 446-60.
[http://dx.doi.org/10.1016/j.jconrel.2011.12.021] [PMID: 22286005]
[103]
Guzey D, McClements DJ. Formation, stability and properties of multilayer emulsions for application in the food industry. Adv Colloid Interface Sci 2006; 128-130: 227-48.
[http://dx.doi.org/10.1016/j.cis.2006.11.021] [PMID: 17223060]
[104]
Carrillo-Navas H, et al. Rheological properties of a double emulsion nutraceutical system incorporating chia essential oil and ascorbic acid stabilized by carbohydrate polymer–protein blends. Carbohydr Polym 2012; 87(2): 1231-5.
[http://dx.doi.org/10.1016/j.carbpol.2011.09.005]
[105]
McClements DJ, Li Y. Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci 2010; 159(2): 213-28.
[http://dx.doi.org/10.1016/j.cis.2010.06.010] [PMID: 20638649]
[106]
Sapei L, Naqvi MA, Rousseau D. Stability and release properties of double emulsions for food applications. Food Hydrocoll 2012; 27(2): 316-23.
[http://dx.doi.org/10.1016/j.foodhyd.2011.10.008]
[107]
Cofrades S, Antoniou I, Solas MT, Herrero AM, Jiménez-Colmenero F. Preparation and impact of multiple (water-in-oil-in-water) emulsions in meat systems. Food Chem 2013; 141(1): 338-46.
[http://dx.doi.org/10.1016/j.foodchem.2013.02.097] [PMID: 23768366]
[108]
Chung C, Degner B, McClements DJ. Designing reduced-fat food emulsions: Locust bean gum–fat droplet interactions. Food Hydrocoll 2013; 32(2): 263-70.
[http://dx.doi.org/10.1016/j.foodhyd.2013.01.008]
[109]
Rao J, McClements DJ. Impact of lemon oil composition on formation and stability of model food and beverage emulsions. Food Chem 2012; 134(2): 749-57.
[http://dx.doi.org/10.1016/j.foodchem.2012.02.174] [PMID: 23107687]
[110]
Tamjidi F, et al. Nanostructured lipid carriers (NLC): A potential delivery system for bioactive food molecules. Innov Food Sci Emerg Technol 2013; 19: 29-43.
[http://dx.doi.org/10.1016/j.ifset.2013.03.002]
[111]
Madrigal-Carballo S, et al. Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. J Funct Foods 2010; 2(2): 99-106.
[http://dx.doi.org/10.1016/j.jff.2010.01.002]
[112]
Wang H, Zhao P, Liang X, et al. Folate-PEG coated cationic modified chitosan--cholesterol liposomes for tumor-targeted drug delivery. Biomaterials 2010; 31(14): 4129-38.
[http://dx.doi.org/10.1016/j.biomaterials.2010.01.089] [PMID: 20163853]
[113]
Xia S, Xu S. Ferrous sulfate liposomes: preparation, stability and application in fluid milk. Food Res Int 2005; 38(3): 289-96.
[http://dx.doi.org/10.1016/j.foodres.2004.04.010]
[114]
Marsanasco M, et al. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res Int 2011; 44(9): 3039-46.
[http://dx.doi.org/10.1016/j.foodres.2011.07.025]
[115]
Bouwmeester H, Dekkers S, Noordam MY, et al. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 2009; 53(1): 52-62.
[http://dx.doi.org/10.1016/j.yrtph.2008.10.008] [PMID: 19027049]
[116]
Rastogi R, Anand S, Koul V. Flexible polymerosomes--an alternative vehicle for topical delivery. Colloids Surf B Biointerfaces 2009; 72(1): 161-6.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.022] [PMID: 19403279]
[117]
Florence AT. Nanoparticle uptake by the oral route: Fulfilling its potential? Drug Discov Today Technol 2005; 2(1): 75-81.
[http://dx.doi.org/10.1016/j.ddtec.2005.05.019] [PMID: 24981758]
[118]
Sun B, Yeo Y. Nanocrystals for the parenteral delivery of poorly water-soluble drugs. Curr Opin Solid State Mater Sci 2012; 16(6): 295-301.
[http://dx.doi.org/10.1016/j.cossms.2012.10.004] [PMID: 23645994]
[119]
Hunter AC, Elsom J, Wibroe PP, Moghimi SM. Polymeric particulate technologies for oral drug delivery and targeting: a pathophysiological perspective. Nanomedicine (Lond) 2012; 8(Suppl. 1): S5-S20.
[http://dx.doi.org/10.1016/j.nano.2012.07.005] [PMID: 22846372]
[120]
Kristo E, Biliaderis CG. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohydr Polym 2007; 68(1): 146-58.
[http://dx.doi.org/10.1016/j.carbpol.2006.07.021]
[121]
Xu Y, et al. Preparation and characterization of organic-soluble acetylated starch nanocrystals. Carbohydr Polym 2010; 80(4): 1078-84.
[http://dx.doi.org/10.1016/j.carbpol.2010.01.027]
[122]
de Mesquita JP, Donnici CL, Teixeira IF, Pereira FV. Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr Polym 2012; 90(1): 210-7.
[http://dx.doi.org/10.1016/j.carbpol.2012.05.025] [PMID: 24751032]
[123]
Flauzino Neto WP, et al. Extraction and characterization of cellulose nanocrystals from agro-industrial residue – Soy hulls. Ind Crops Prod 2013; 42: 480-8.
[http://dx.doi.org/10.1016/j.indcrop.2012.06.041]
[124]
Tzoumaki MV, Moschakis T, Biliaderis CG. Mixed aqueous chitin nanocrystal–whey protein dispersions: Microstructure and rheological behaviour. Food Hydrocoll 2011; 25(5): 935-42.
[http://dx.doi.org/10.1016/j.foodhyd.2010.09.004]
[125]
Mitri K, Shegokar R, Gohla S, Anselmi C, Müller RH. Lutein nanocrystals as antioxidant formulation for oral and dermal delivery. Int J Pharm 2011; 420(1): 141-6.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.026] [PMID: 21884768]
[126]
Zambrano-Zaragoza ML, et al. Use of solid lipid nanoparticles (SLNs) in edible coatings to increase guava (Psidium guajava L.) shelf-life. Food Res Int 2013; 51(2): 946-53.
[http://dx.doi.org/10.1016/j.foodres.2013.02.012]
[127]
Li H, Zhao X, Ma Y, Zhai G, Li L, Lou H. Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles. J Control Release 2009; 133(3): 238-44.
[http://dx.doi.org/10.1016/j.jconrel.2008.10.002] [PMID: 18951932]
[128]
Trombino S, Cassano R, Muzzalupo R, Pingitore A, Cione E, Picci N. Stearyl ferulate-based solid lipid nanoparticles for the encapsulation and stabilization of β-carotene and α-tocopherol. Colloids Surf B Biointerfaces 2009; 72(2): 181-7.
[http://dx.doi.org/10.1016/j.colsurfb.2009.03.032] [PMID: 19410436]
[129]
des Rieux A, Fievez V, Garinot M, Schneider YJ, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release 2006; 116(1): 1-27.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.013] [PMID: 17050027]
[130]
Plapied L, et al. Fate of polymeric nanocarriers for oral drug delivery. Curr Opin Colloid Interface Sci 2011; 16(3): 228-37.
[http://dx.doi.org/10.1016/j.cocis.2010.12.005]
[131]
Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine (Lond) 2010; 6(1): 9-24.
[http://dx.doi.org/10.1016/j.nano.2009.04.008] [PMID: 19447208]
[132]
Chen M-C, Sonaje K, Chen KJ, Sung HW. A review of the prospects for polymeric nanoparticle platforms in oral insulin delivery. Biomaterials 2011; 32(36): 9826-38.
[http://dx.doi.org/10.1016/j.biomaterials.2011.08.087] [PMID: 21925726]
[133]
Sabliov C, Astete C. Encapsulation and controlled release of antioxidants and vitamins 2008. 297-330.
[134]
Peres I, et al. Preservation of catechin antioxidant properties loaded in carbohydrate nanoparticles. Carbohydr Polym 2011; 86(1): 147-53.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.029]
[135]
Wu Y, Luo Y, Wang Q. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. Lebensm Wiss Technol 2012; 48(2): 283-90.
[http://dx.doi.org/10.1016/j.lwt.2012.03.027]
[136]
Shutava TG, Balkundi SS, Lvov YM. (-)-Epigallocatechin gallate/gelatin layer-by-layer assembled films and microcapsules. J Colloid Interface Sci 2009; 330(2): 276-83.
[http://dx.doi.org/10.1016/j.jcis.2008.10.082] [PMID: 19027120]
[137]
Smith J, Meadows J, Williams P. Adsorption of polyvinylpyrrolidone onto polystyrene latices and the effect on colloid stability. Langmuir 1996; 12(16): 3773-8.
[http://dx.doi.org/10.1021/la950933m]
[138]
Katti DS, Robinson KW, Ko FK, Laurencin CT. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters. J Biomed Mater Res B Appl Biomater 2004; 70(2): 286-96.
[http://dx.doi.org/10.1002/jbm.b.30041] [PMID: 15264311]
[139]
Freitas RA Jr. Nanotechnology, nanomedicine and nanosurgery. Int J Surg 2005; 3(4): 243-6.
[http://dx.doi.org/10.1016/j.ijsu.2005.10.007] [PMID: 17462292]
[140]
Freitas R Jr. Exploratory design in medical nanotechnology: A mechanical artificial red cell. Artificial Cells, Blood, Substitutes, and Immobilization, Biotechnology 1998.
[http://dx.doi.org/10.1016/26.411À430]
[141]
Card JW, Jonaitis TS, Tafazoli S, Magnuson BA. An appraisal of the published literature on the safety and toxicity of food-related nanomaterials. Crit Rev Toxicol 2011; 41(1): 22-49.
[http://dx.doi.org/10.3109/10408444.2010.524636] [PMID: 21077788]
[142]
Bouwmeester H, Dekkers S, Noordam MY, et al. Review of health safety aspects of nanotechnologies in food production. Regul Toxicol Pharmacol 2009; 53(1): 52-62.
[http://dx.doi.org/10.1016/j.yrtph.2008.10.008] [PMID: 19027049]
[143]
Kompella UB, Lee VH. Delivery systems for penetration enhancement of peptide and protein drugs: design considerations. Adv Drug Deliv Rev 2001; 46(1-3): 211-45.
[http://dx.doi.org/10.1016/S0169-409X(00)00137-X] [PMID: 11259842]
[144]
Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev 2012; 64(6): 557-70.
[http://dx.doi.org/10.1016/j.addr.2011.12.009] [PMID: 22212900]
[145]
Lai SK, O’Hanlon DE, Harrold S, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA 2007; 104(5): 1482-7.
[http://dx.doi.org/10.1073/pnas.0608611104] [PMID: 17244708]
[146]
Norris DA, Puri N, Sinko PJ. The effect of physical barriers and properties on the oral absorption of particulates. Adv Drug Deliv Rev 1998; 34(2-3): 135-54.
[http://dx.doi.org/10.1016/S0169-409X(98)00037-4] [PMID: 10837675]
[147]
Lu Y, Feskens EJ, Boer JM, Müller M. The potential influence of genetic variants in genes along bile acid and bile metabolic pathway on blood cholesterol levels in the population. Atherosclerosis 2010; 210(1): 14-27.
[http://dx.doi.org/10.1016/j.atherosclerosis.2009.10.035] [PMID: 19932478]
[148]
Aillon KL, Xie Y, El-Gendy N, Berkland CJ, Forrest ML. Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv Drug Deliv Rev 2009; 61(6): 457-66.
[http://dx.doi.org/10.1016/j.addr.2009.03.010] [PMID: 19386275]
[149]
Quintanilla-Carvajal MX, et al. Nanoencapsulation: A new trend in food engineering processing. Food Eng Rev 2010; 2(1): 39-50.
[http://dx.doi.org/10.1007/s12393-009-9012-6]
[150]
Sheng Y, Liu C, Yuan Y, et al. Long-circulating polymeric nanoparticles bearing a combinatorial coating of PEG and water-soluble chitosan. Biomaterials 2009; 30(12): 2340-8.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.070] [PMID: 19150737]
[151]
Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res 2008; 25(1): 55-71.
[http://dx.doi.org/10.1007/s11095-007-9348-7] [PMID: 17551809]
[152]
Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2008; 25(7): 795-821.
[http://dx.doi.org/10.1080/02652030802007553] [PMID: 18569000]
[153]
Semete B, Booysen L, Lemmer Y, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine (Lond) 2010; 6(5): 662-71.
[http://dx.doi.org/10.1016/j.nano.2010.02.002] [PMID: 20230912]
[154]
Mittal G, Sahana DK, Bhardwaj V, Ravi Kumar MN. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. J Control Release 2007; 119(1): 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2007.01.016] [PMID: 17349712]
[155]
Lu W, Wan J, She Z, Jiang X. Brain delivery property and accelerated blood clearance of cationic albumin conjugated pegylated nanoparticle. J Control Release 2007; 118(1): 38-53.
[http://dx.doi.org/10.1016/j.jconrel.2006.11.015] [PMID: 17240471]
[156]
Elder A, Vidyasagar S, DeLouise L. Physicochemical factors that affect metal and metal oxide nanoparticle passage across epithelial barriers. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2009; 1(4): 434-50.
[http://dx.doi.org/10.1002/wnan.44] [PMID: 20049809]
[157]
Cockburn A, Bradford R, Buck N, et al. Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem Toxicol 2012; 50(6): 2224-42.
[http://dx.doi.org/10.1016/j.fct.2011.12.029] [PMID: 22245376]
[158]
Smidsrød O, Skjåk-Braek G. Alginate as immobilization matrix for cells. Trends Biotechnol 1990; 8(3): 71-8.
[http://dx.doi.org/10.1016/0167-7799(90)90139-O] [PMID: 1366500]
[159]
Clark DE, Green HC. Alginic acid and process of making same Google Patents 1936.
[160]
Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int 2008; 57(3): 397-430.
[http://dx.doi.org/10.1002/pi.2378]
[161]
Qin Y. Alginate fibres: An overview of the production processes and applications in wound management. Polym Int 2008; 57(2): 171-80.
[http://dx.doi.org/10.1002/pi.2296]
[162]
Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M. Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 2016; 137: 360-74.
[http://dx.doi.org/10.1016/j.carbpol.2015.10.074] [PMID: 26686140]
[163]
Hecht H, Srebnik S. Structural characterization of sodium alginate and calcium alginate. Biomacromolecules 2016; 17(6): 2160-7.
[http://dx.doi.org/10.1021/acs.biomac.6b00378] [PMID: 27177209]
[164]
Remminghorst U, Rehm BH. Bacterial alginates: from biosynthesis to applications. Biotechnol Lett 2006; 28(21): 1701-12.
[http://dx.doi.org/10.1007/s10529-006-9156-x] [PMID: 16912921]
[165]
Fischer FG, Dörfel H. Die Polyuronsäuren der Braunalgen. Hoppe Seylers Z Physiol Chem 1955; 302(4-6): 186-203.
[http://dx.doi.org/10.1515/bchm2.1955.302.1-2.186] [PMID: 13331440]
[166]
Haug A. Fractionation of alginic acid. Acta Chem Scand 1959; 13: 601-3.
[http://dx.doi.org/10.3891/acta.chem.scand.13-0601]
[167]
Mišurcová L, Orsavová J, Ambrožová JV. Algal polysaccharides and health, in Polysaccharides Springerp 2015; 109-44.
[168]
Sarker B, et al. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J Mater Chem B Mater Biol Med 2014; 2(11): 1470-82.
[http://dx.doi.org/10.1039/c3tb21509a]
[169]
Draget KI, et al. 9 Alginates Food polysaccharides and their applications 2016; 160-289.
[170]
Stender EG, et al. Effect of alginate size, mannuronic/guluronic acid content and pH on particle size, thermodynamics and composition of complexes with β-lactoglobulin. Food Hydrocoll 2018; 75: 157-63.
[http://dx.doi.org/10.1016/j.foodhyd.2017.09.001]
[171]
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan--a review. J Control Release 2006; 114(1): 1-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.017] [PMID: 16828914]
[172]
Hay ID, et al. Bacterial biosynthesis of alginates. J Chem Technol Biotechnol 2010; 85(6): 752-9.
[http://dx.doi.org/10.1002/jctb.2372]
[173]
Shilpa A, Agrawal S, Ray AR. Controlled delivery of drugs from alginate matrix. J Macromol Sci Part C Polym Rev 2003; 43(2): 187-221.
[http://dx.doi.org/10.1081/MC-120020160]
[174]
Smidsrød O, Haug A. Precipitation of acidic polysaccharides by salts in ethanol–water mixtures. in Journal of Polymer Science Part C: Polymer Symposia. Wiley Online Library 1967; 16(3): 1587-98.
[175]
Lee M, Li W, Siu RK, et al. Biomimetic apatite-coated alginate/chitosan microparticles as osteogenic protein carriers. Biomaterials 2009; 30(30): 6094-101.
[http://dx.doi.org/10.1016/j.biomaterials.2009.07.046] [PMID: 19674782]
[176]
Rinaudo M. On the abnormal exponents a ν and a D in Mark Houwink type equations for wormlike chain polysaccharides. Polym Bull 1992; 27(5): 585-9.
[http://dx.doi.org/10.1007/BF00300608]
[177]
LeRoux MA, Guilak F, Setton LA. Compressive and shear properties of alginate gel: effects of sodium ions and alginate concentration. J Biomed Mater Res 1999; 47(1): 46-53.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199910)47:1<46:AID-JBM6>3.0.CO;2-N] [PMID: 10400879]
[178]
Kong HJ, Smith MK, Mooney DJ. Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials 2003; 24(22): 4023-9.
[http://dx.doi.org/10.1016/S0142-9612(03)00295-3] [PMID: 12834597]
[179]
Kong H-J, Lee KY, Mooney DJ. Decoupling the dependence of rheological/mechanical properties of hydrogels from solids concentration. Polymer (Guildf) 2002; 43(23): 6239-46.
[http://dx.doi.org/10.1016/S0032-3861(02)00559-1]
[180]
De S, Robinson D. Polymer relationships during preparation of chitosan-alginate and poly-l-lysine-alginate nanospheres. J Control Release 2003; 89(1): 101-12.
[http://dx.doi.org/10.1016/S0168-3659(03)00098-1] [PMID: 12695066]
[181]
Reis CP, Neufeld RJ, Vilela S, Ribeiro AJ, Veiga F. Review and current status of emulsion/dispersion technology using an internal gelation process for the design of alginate particles. J Microencapsul 2006; 23(3): 245-57.
[http://dx.doi.org/10.1080/02652040500286086] [PMID: 16801237]
[182]
Sugiura S, Oda T, Izumida Y, et al. Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 2005; 26(16): 3327-31.
[http://dx.doi.org/10.1016/j.biomaterials.2004.08.029] [PMID: 15603828]
[183]
Silva CM, Ribeiro AJ, Figueiredo IV, Gonçalves AR, Veiga F. Alginate microspheres prepared by internal gelation: development and effect on insulin stability. Int J Pharm 2006; 311(1-2): 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.050] [PMID: 16442757]
[184]
Hans M, Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci 2002; 6(4): 319-27.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[185]
McClean S, Prosser E, Meehan E, et al. Binding and uptake of biodegradable poly-DL-lactide micro- and nanoparticles in intestinal epithelia. Eur J Pharm Sci 1998; 6(2): 153-63.
[http://dx.doi.org/10.1016/S0928-0987(97)10007-0] [PMID: 9795038]
[186]
Pan Y, Li YJ, Zhao HY, et al. Bioadhesive polysaccharide in protein delivery system: chitosan nanoparticles improve the intestinal absorption of insulin in vivo. Int J Pharm 2002; 249(1-2): 139-47.
[http://dx.doi.org/10.1016/S0378-5173(02)00486-6] [PMID: 12433442]
[187]
Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res 2008; 14(5): 1310-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[188]
Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm 2002; 28(1): 1-13.
[http://dx.doi.org/10.1081/DDC-120001481] [PMID: 11858519]
[189]
Hernández RM, Orive G, Murua A, Pedraz JL. Microcapsules and microcarriers for in situ cell delivery. Adv Drug Deliv Rev 2010; 62(7-8): 711-30.
[http://dx.doi.org/10.1016/j.addr.2010.02.004] [PMID: 20153388]
[190]
Brun-Graeppi AKAS, Richard C, Bessodes M, Scherman D, Merten OW. Cell microcarriers and microcapsules of stimuli-responsive polymers. J Control Release 2011; 149(3): 209-24.
[http://dx.doi.org/10.1016/j.jconrel.2010.09.023] [PMID: 21035510]
[191]
Seifert DB, Phillips JA. Production of small, monodispersed alginate beads for cell immobilization. Biotechnol Prog 1997; 13(5): 562-8.
[http://dx.doi.org/10.1021/bp9700723] [PMID: 9336976]
[192]
Fundueanu G, Nastruzzi C, Carpov A, Desbrieres J, Rinaudo M. Physico-chemical characterization of Ca-alginate microparticles produced with different methods. Biomaterials 1999; 20(15): 1427-35.
[http://dx.doi.org/10.1016/S0142-9612(99)00050-2] [PMID: 10454015]
[193]
Kikuchi A, Kawabuchi M, Watanabe A, Sugihara M, Sakurai Y, Okano T. Effect of Ca2+-alginate gel dissolution on release of dextran with different molecular weights. J Control Release 1999; 58(1): 21-8.
[http://dx.doi.org/10.1016/S0168-3659(98)00141-2] [PMID: 10021486]
[194]
Kim C-K, Lee E-J. The controlled release of blue dextran from alginate beads. Int J Pharm 1992; 79(1-3): 11-9.
[http://dx.doi.org/10.1016/0378-5173(92)90088-J]
[195]
Zimmermann H, Shirley SG, Zimmermann U. Alginate-based encapsulation of cells: past, present, and future. Curr Diab Rep 2007; 7(4): 314-20.
[http://dx.doi.org/10.1007/s11892-007-0051-1] [PMID: 17686410]
[196]
Poncelet D. Production of alginate beads by emulsification/internal gelation. Ann N Y Acad Sci 2001; 944(1): 74-82.
[http://dx.doi.org/10.1111/j.1749-6632.2001.tb03824.x] [PMID: 11797697]
[197]
Poncelet D, Lencki R, Beaulieu C, Halle JP, Neufeld RJ, Fournier A. Production of alginate beads by emulsification/internal gelation. I. Methodology. Appl Microbiol Biotechnol 1992; 38(1): 39-45.
[http://dx.doi.org/10.1007/BF00169416] [PMID: 1369009]
[198]
Poncelet D, et al. Production of alginate beads by emulsification/internal gelation. II. Physicochemistry. Appl Microbiol Biotechnol 1995; 43(4): 644-50.
[http://dx.doi.org/10.1007/BF00164768]
[199]
Fundueanu G, et al. Preparation and characterization of Ca-alginate microspheres by a new emulsification method. Int J Pharm 1998; 170(1): 11-21.
[http://dx.doi.org/10.1016/S0378-5173(98)00063-5]
[200]
Lemoine D, et al. Preparation and characterization of alginate microspheres containing a model antigen. Int J Pharm 1998; 176(1): 9-19.
[http://dx.doi.org/10.1016/S0378-5173(98)00303-2]
[201]
Liu X, et al. Preparation of uniform calcium alginate gel beads by membrane emulsification coupled with internal gelation. J Appl Polym Sci 2003; 87(5): 848-52.
[http://dx.doi.org/10.1002/app.11537]
[202]
Muramatsu N, Kondo T. An approach to prepare microparticles of uniform size. J Microencapsul 1995; 12(2): 129-36.
[http://dx.doi.org/10.3109/02652049509015283] [PMID: 7629655]
[203]
Park S-B, Kang HW, Haam S, Park HY, Kim WS. Ca-alginate microspheres encapsulated in chitosan beads. J Microencapsul 2004; 21(5): 485-97.
[http://dx.doi.org/10.1080/02652040410001729269] [PMID: 15513756]
[204]
Song SH, Cho YH, Park J. Microencapsulation of Lactobacillus casei YIT 9018 using a microporous glass membrane emulsification system. J Food Sci 2003; 68(1): 195-200.
[http://dx.doi.org/10.1111/j.1365-2621.2003.tb14139.x]
[205]
You J-O, Park SB, Park HY, Haam S, Chung CH, Kim WS. Preparation of regular sized Ca-alginate microspheres using membrane emulsification method. J Microencapsul 2001; 18(4): 521-32.
[http://dx.doi.org/10.1080/02652040010018128] [PMID: 11428680]
[206]
Paques JP, van der Linden E, van Rijn CJ, Sagis LM. Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci 2014; 209: 163-71.
[http://dx.doi.org/10.1016/j.cis.2014.03.009] [PMID: 24745976]
[207]
Sæther HV, et al. Polyelectrolyte complex formation using alginate and chitosan. Carbohydr Polym 2008; 74(4): 813-21.
[http://dx.doi.org/10.1016/j.carbpol.2008.04.048]
[208]
Rajaonarivony M, Vauthier C, Couarraze G, Puisieux F, Couvreur P. Development of a new drug carrier made from alginate. J Pharm Sci 1993; 82(9): 912-7.
[http://dx.doi.org/10.1002/jps.2600820909] [PMID: 8229689]
[209]
Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 2007; 7(8): 2833-41.
[http://dx.doi.org/10.1166/jnn.2007.609] [PMID: 17685304]
[210]
Santhi K, et al. Preparation And Optimization Of Sodium Alginate Nanospheres Of Methotrexate. Indian J Pharm Sci 2005; 67(6): 691.
[211]
Yu C-Y, Zhang XC, Zhou FZ, Zhang XZ, Cheng SX, Zhuo RX. Sustained release of antineoplastic drugs from chitosan-reinforced alginate microparticle drug delivery systems. Int J Pharm 2008; 357(1-2): 15-21.
[http://dx.doi.org/10.1016/j.ijpharm.2008.01.030] [PMID: 18313867]
[212]
Bhowmik BB, Sa B, Mukherjee A. Preparation and in vitro characterization of slow release testosterone nanocapsules in alginates. Acta Pharm 2006; 56(4): 417-29.
[PMID: 19839134]
[213]
Lertsutthiwong P, et al. Preparation of alginate nanocapsules containing turmeric oil. Carbohydr Polym 2008; 74(2): 209-14.
[http://dx.doi.org/10.1016/j.carbpol.2008.02.009]
[214]
Deepa V, et al. Nanoemulsified ethanolic extract of Pyllanthus amarus Schum & Thonn ameliorates CCl 4 induced hepatotoxicity in Wistar rats 2012.
[215]
You JO, Peng CA. Calcium‐alginate nanoparticles formed by reverse microemulsion as gene carriers. in Macromolecular Symposia. Macromol Symp 2005.
[http://dx.doi.org/10.1002/masy.200550113]
[216]
Andreani T, Miziara L, Lorenzón EN, et al. Effect of mucoadhesive polymers on the in vitro performance of insulin-loaded silica nanoparticles: Interactions with mucin and biomembrane models. Eur J Pharm Biopharm 2015; 93: 118-26.
[http://dx.doi.org/10.1016/j.ejpb.2015.03.027] [PMID: 25843239]
[217]
Luo YY, Xiong XY, Tian Y, Li ZL, Gong YC, Li YP. A review of biodegradable polymeric systems for oral insulin delivery. Drug Deliv 2016; 23(6): 1882-91.
[PMID: 26066036]
[218]
Scheja S, Domanskyi S, Gamella M, et al. Glucose-Triggered Insulin Release from Fe3+ -Cross-linked Alginate Hydrogel: Experimental Study and Theoretical Modeling. ChemPhysChem 2017; 18(12): 1541-51.
[http://dx.doi.org/10.1002/cphc.201700195] [PMID: 28301717]
[219]
Donati I, Gamini A, Skjåk-Braek G, et al. Determination of the diadic composition of alginate by means of circular dichroism: a fast and accurate improved method. Carbohydr Res 2003; 338(10): 1139-42.
[http://dx.doi.org/10.1016/S0008-6215(03)00094-6] [PMID: 12706982]
[220]
Morris ER, Rees DA, Thom D. Characterisation of alginate composition and block-structure by circular dichroism. Carbohydr Res 1980; 81(2): 305-14.
[http://dx.doi.org/10.1016/S0008-6215(00)85661-X] [PMID: 7353210]
[221]
Thom D, et al. Characterisation of cation binding and gelation of polyuronates by circular dichroism. Carbohydr Res 1982; 100(1): 29-42.
[http://dx.doi.org/10.1016/S0008-6215(00)81023-X] [PMID: 6179619]
[222]
Grasdalen H. High-field, 1H-n.m.r. spectroscopy of alginate: sequential structure and linkage conformations. Carbohydr Res 1983; 118: 255-60.
[http://dx.doi.org/10.1016/0008-6215(83)88053-7]
[223]
Mammarella EJ, Rubiolo AC. Crosslinking kinetics of cation-hydrocolloid gels. Chem Eng J 2003; 94(1): 73-7.
[http://dx.doi.org/10.1016/S1385-8947(03)00080-9]
[224]
Potter K, et al. The gelation of sodium alginate with calcium ions studied by magnetic resonance imaging (MRI). Carbohydr Res 1994; 257(1): 117-26.
[http://dx.doi.org/10.1016/0008-6215(94)84112-8] [PMID: 7518742]
[225]
Rastello De Boisseson M, Leonard M, Hubert P, et al. Physical alginate hydrogels based on hydrophobic or dual hydrophobic/ionic interactions: bead formation, structure, and stability. J Colloid Interface Sci 2004; 273(1): 131-9.
[http://dx.doi.org/10.1016/j.jcis.2003.12.064] [PMID: 15051442]
[226]
Alginates GP. Carbohydr Polym 1988; 8(3): 161-82.
[http://dx.doi.org/10.1016/0144-8617(88)90001-X]
[227]
Larsen B, Vreeland V, Laetsch WM. Assay-dependent specificity of a monoclonal antibody with alginate. Carbohydr Res 1985; 143: 221-7.
[http://dx.doi.org/10.1016/S0008-6215(00)90710-9]
[228]
Zimmermann H, Hillgärtner M, Manz B, et al. Fabrication of homogeneously cross-linked, functional alginate microcapsules validated by NMR-, CLSM- and AFM-imaging. Biomaterials 2003; 24(12): 2083-96.
[http://dx.doi.org/10.1016/S0142-9612(02)00639-7] [PMID: 12628829]
[229]
Reisenhofer E, et al. Copper(II) binding by natural ionic polysaccharides: Part II. Polarographic data. Bioelectrochem Bioenerg 1984; 12(5): 455-65.
[http://dx.doi.org/10.1016/0302-4598(84)85087-4]
[230]
Yang G, et al. Effects of Ca2+ bridge cross-linking on structure and pervaporation of cellulose/alginate blend membranes 2000; 175: 53-60 2000; 175: 53-60.
[231]
Becker TA, Kipke DR, Brandon T. Calcium alginate gel: a biocompatible and mechanically stable polymer for endovascular embolization. J Biomed Mater Res 2001; 54(1): 76-86.
[http://dx.doi.org/10.1002/1097-4636(200101)54:1<76:AID-JBM9>3.0.CO;2-V] [PMID: 11077405]
[232]
Otterlei M, et al. Induction of cytokine production from human monocytes stimulated with alginate Journal of immunotherapy: official journal of the Society for Biological Therapy 1991 10(4): 286-91. [http://dx.doi.org/10.1097/00002371-199108000-00007]
[233]
Zimmermann U, Klöck G, Federlin K, et al. Production of mitogen-contamination free alginates with variable ratios of mannuronic acid to guluronic acid by free flow electrophoresis. Electrophoresis 1992; 13(5): 269-74.
[http://dx.doi.org/10.1002/elps.1150130156] [PMID: 1396520]
[234]
Orive G, Ponce S, Hernández RM, Gascón AR, Igartua M, Pedraz JL. Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials 2002; 23(18): 3825-31.
[http://dx.doi.org/10.1016/S0142-9612(02)00118-7] [PMID: 12164186]
[235]
Lee J, Lee KY. Local and sustained vascular endothelial growth factor delivery for angiogenesis using an injectable system. Pharm Res 2009; 26(7): 1739-44.
[http://dx.doi.org/10.1007/s11095-009-9884-4] [PMID: 19384466]
[236]
Stabler C, Wilks K, Sambanis A, Constantinidis I. The effects of alginate composition on encapsulated betaTC3 cells. Biomaterials 2001; 22(11): 1301-10.
[http://dx.doi.org/10.1016/S0142-9612(00)00282-9] [PMID: 11336302]
[237]
Serp D, Cantana E, Heinzen C, Von Stockar U, Marison IW. Characterization of an encapsulation device for the production of monodisperse alginate beads for cell immobilization. Biotechnol Bioeng 2000; 70(1): 41-53.
[http://dx.doi.org/10.1002/1097-0290(20001005)70:1<41:AID-BIT6>3.0.CO;2-U] [PMID: 10940862]
[238]
Gåserød O, et al. The enhancement of the bioadhesive properties of calcium alginate gel beads by coating with chitosan. Int J Pharm 1998; 175(2): 237-46.
[http://dx.doi.org/10.1016/S0378-5173(98)00277-4]
[239]
Bernkop-Schnürch A, Kast CE, Richter MF. Improvement in the mucoadhesive properties of alginate by the covalent attachment of cysteine. J Control Release 2001; 71(3): 277-85.
[http://dx.doi.org/10.1016/S0168-3659(01)00227-9] [PMID: 11295220]
[240]
Al-Shamkhani A, Duncan R. Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J Bioact Compat Polym 1995; 10(1): 4-13.
[http://dx.doi.org/10.1177/088391159501000102]
[241]
Bouhadir KH, Lee KY, Alsberg E, Damm KL, Anderson KW, Mooney DJ. Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol Prog 2001; 17(5): 945-50.
[http://dx.doi.org/10.1021/bp010070p] [PMID: 11587588]
[242]
Lee KY, Bouhadir KH, Mooney DJ. Degradation behavior of covalently cross-linked poly (aldehyde guluronate) hydrogels. Macromolecules 2000; 33(1): 97-101.
[http://dx.doi.org/10.1021/ma991286z]
[243]
Kong HJ, Kaigler D, Kim K, Mooney DJ. Controlling rigidity and degradation of alginate hydrogels via molecular weight distribution. Biomacromolecules 2004; 5(5): 1720-7.
[http://dx.doi.org/10.1021/bm049879r] [PMID: 15360280]
[244]
Kong HJ, Alsberg E, Kaigler D, Lee KY, Mooney DJ. Controlling degradation of hydrogels via the size of crosslinked junctions. Adv Mater 2004; 16(21): 1917-21.
[http://dx.doi.org/10.1002/adma.200400014] [PMID: 25067887]
[245]
Pelletier S, Hubert P, Payan E, Marchal P, Choplin L, Dellacherie E. Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties. J Biomed Mater Res 2001; 54(1): 102-8.
[http://dx.doi.org/10.1002/1097-4636(200101)54:1<102:AID-JBM12>3.0.CO;2-1] [PMID: 11077408]
[246]
Leonard M, De Boisseson MR, Hubert P, Dalençon F, Dellacherie E. Hydrophobically modified alginate hydrogels as protein carriers with specific controlled release properties. J Control Release 2004; 98(3): 395-405.
[http://dx.doi.org/10.1016/j.jconrel.2004.05.009] [PMID: 15312995]
[247]
Vallée F, Müller C, Durand A, et al. Synthesis and rheological properties of hydrogels based on amphiphilic alginate-amide derivatives. Carbohydr Res 2009; 344(2): 223-8.
[http://dx.doi.org/10.1016/j.carres.2008.10.029] [PMID: 19084823]
[248]
Yang L, et al. Amphiphilic cholesteryl grafted sodium alginate derivative: Synthesis and self-assembly in aqueous solution. Carbohydr Polym 2007; 68(2): 218-25.
[http://dx.doi.org/10.1016/j.carbpol.2006.12.020]
[249]
Colinet I, et al. New amphiphilic modified polysaccharides with original solution behaviour in salt media. Carbohydr Polym 2009; 75(3): 454-62.
[http://dx.doi.org/10.1016/j.carbpol.2008.08.002]
[250]
Yao B, Ni C, Xiong C, Zhu C, Huang B. Hydrophobic modification of sodium alginate and its application in drug controlled release. Bioprocess Biosyst Eng 2010; 33(4): 457-63.
[http://dx.doi.org/10.1007/s00449-009-0349-2] [PMID: 19578877]
[251]
Lehenkari PP, Horton MA. Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy. Biochem Biophys Res Commun 1999; 259(3): 645-50.
[http://dx.doi.org/10.1006/bbrc.1999.0827] [PMID: 10364472]
[252]
Koo LY, Irvine DJ, Mayes AM, Lauffenburger DA, Griffith LG. Co-regulation of cell adhesion by nanoscale RGD organization and mechanical stimulus. J Cell Sci 2002; 115(Pt 7): 1423-33.
[PMID: 11896190]
[253]
Lee KY, Kong HJ, Mooney DJ. Quantifying interactions between cell receptors and adhesion ligand-modified polymers in solution. Macromol Biosci 2008; 8(2): 140-5.
[http://dx.doi.org/10.1002/mabi.200700169] [PMID: 17941112]
[254]
Alsberg E, Anderson KW, Albeiruti A, Franceschi RT, Mooney DJ. Cell-interactive alginate hydrogels for bone tissue engineering. J Dent Res 2001; 80(11): 2025-9.
[http://dx.doi.org/10.1177/00220345010800111501] [PMID: 11759015]
[255]
Rowley JA, Madlambayan G, Mooney DJ. Alginate hydrogels as synthetic extracellular matrix materials. Biomaterials 1999; 20(1): 45-53.
[http://dx.doi.org/10.1016/S0142-9612(98)00107-0] [PMID: 9916770]
[256]
Lee KY, Alsberg E, Hsiong S, et al. Nanoscale adhesion ligand organization regulates osteoblast proliferation and differentiation. Nano Lett 2004; 4(8): 1501-6.
[http://dx.doi.org/10.1021/nl0493592] [PMID: 25067913]
[257]
Hsiong SX, Boontheekul T, Huebsch N, Mooney DJ. Cyclic arginine-glycine-aspartate peptides enhance three-dimensional stem cell osteogenic differentiation. Tissue Eng Part A 2009; 15(2): 263-72.
[http://dx.doi.org/10.1089/ten.tea.2007.0411] [PMID: 18783323]
[258]
Dhoot NO, Tobias CA, Fischer I, Wheatley MA. Peptide-modified alginate surfaces as a growth permissive substrate for neurite outgrowth. J Biomed Mater Res A 2004; 71(2): 191-200.
[http://dx.doi.org/10.1002/jbm.a.30103] [PMID: 15376189]
[259]
Antosiak-Iwańska M, Sitarek E, Sabat M, Godlewska E, Kinasiewicz J, Weryński A. Isolation, banking, encapsulation and transplantation of different types of Langerhans islets. Pol Arch Med Wewn 2009; 119(5): 311-7.
[http://dx.doi.org/10.20452/pamw.681] [PMID: 19579813]
[260]
de Vos P, Faas MM, Strand B, Calafiore R. Alginate-based microcapsules for immunoisolation of pancreatic islets. Biomaterials 2006; 27(32): 5603-17.
[http://dx.doi.org/10.1016/j.biomaterials.2006.07.010] [PMID: 16879864]
[261]
Kailasapathy K. Microencapsulation of probiotic bacteria: technology and potential applications. Curr Issues Intest Microbiol 2002; 3(2): 39-48.
[PMID: 12400637]
[262]
Blaine G. Experimental observations on absorbable alginate products in surgery: gel, film, gauze and foam. Ann Surg 1947; 125(1): 102-14.
[http://dx.doi.org/10.1097/00000658-194701000-00011] [PMID: 17858907]
[263]
Lim F, Sun AM. Microencapsulated islets as bioartificial endocrine pancreas. Science 1980; 210(4472): 908-10.
[http://dx.doi.org/10.1126/science.6776628] [PMID: 6776628]
[264]
Murtaza G, Waseem A, Hussain I. Alginate microparticles for biodelivery: A review. Afr J Pharm Pharmacol 2011; 5(25): 2726-37.
[265]
Murua A, Portero A, Orive G, Hernández RM, de Castro M, Pedraz JL. Cell microencapsulation technology: towards clinical application. J Control Release 2008; 132(2): 76-83.
[http://dx.doi.org/10.1016/j.jconrel.2008.08.010] [PMID: 18789985]
[266]
Uludag H, De Vos P, Tresco PA. Technology of mammalian cell encapsulation. Adv Drug Deliv Rev 2000; 42(1-2): 29-64.
[http://dx.doi.org/10.1016/S0169-409X(00)00053-3] [PMID: 10942814]
[267]
Lloyd L, et al. Carbohydrate polymers as wound management aids. Carbohydr Polym 1998; 37(3): 315-22.
[http://dx.doi.org/10.1016/S0144-8617(98)00077-0]
[268]
Bishop SM, Walker M, Rogers AA, Chen WY. Importance of moisture balance at the wound-dressing interface. J Wound Care 2003; 12(4): 125-8.
[http://dx.doi.org/10.12968/jowc.2003.12.4.26484] [PMID: 12715483]
[269]
Thomas A, Harding KG, Moore K. Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-α. Biomaterials 2000; 21(17): 1797-802.
[http://dx.doi.org/10.1016/S0142-9612(00)00072-7] [PMID: 10905462]
[270]
Walker M, Hobot JA, Newman GR, Bowler PG. Scanning electron microscopic examination of bacterial immobilisation in a carboxymethyl cellulose (AQUACEL) and alginate dressings. Biomaterials 2003; 24(5): 883-90.
[http://dx.doi.org/10.1016/S0142-9612(02)00414-3] [PMID: 12485806]
[271]
Miraftab M, et al. Fibres for wound dressings based on mixed carbohydrate polymer fibres. Carbohydr Polym 2003; 53(3): 225-31.
[http://dx.doi.org/10.1016/S0144-8617(03)00108-5]
[272]
Leaper DJ, Harding KG. Wounds: biology and management 1998.
[273]
Choi YS, Hong SR, Lee YM, Song KW, Park MH, Nam YS. Study on gelatin-containing artificial skin: I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials 1999; 20(5): 409-17.
[http://dx.doi.org/10.1016/S0142-9612(98)00180-X] [PMID: 10204983]
[274]
Waring MJ, Parsons D. Physico-chemical characterisation of carboxymethylated spun cellulose fibres. Biomaterials 2001; 22(9): 903-12.
[http://dx.doi.org/10.1016/S0142-9612(00)00254-4] [PMID: 11311009]
[275]
Groves RW, Allen MH, Ross EL, Barker JN, MacDonald DM. Tumour necrosis factor alpha is pro-inflammatory in normal human skin and modulates cutaneous adhesion molecule expression. Br J Dermatol 1995; 132(3): 345-52.
[http://dx.doi.org/10.1111/j.1365-2133.1995.tb08666.x] [PMID: 7536438]
[276]
Segal HC, Hunt BJ, Gilding K. The effects of alginate and non-alginate wound dressings on blood coagulation and platelet activation. J Biomater Appl 1998; 12(3): 249-57.
[http://dx.doi.org/10.1177/088532829801200305] [PMID: 9493071]
[277]
Kowalska MA, Juliano D, Trybulec M, Lu W, Niewiarowski S. Zinc ions potentiate adenosine diphosphate-induced platelet aggregation by activation of protein kinase C. J Lab Clin Med 1994; 123(1): 102-9.
[PMID: 8288949]
[278]
Espevik T, Otterlei M, Skjåk-Braek G, Ryan L, Wright SD, Sundan A. The involvement of CD14 in stimulation of cytokine production by uronic acid polymers. Eur J Immunol 1993; 23(1): 255-61.
[http://dx.doi.org/10.1002/eji.1830230140] [PMID: 7678226]
[279]
Soon-Shiong P, Otterlie M, Skjak-Braek G, et al. An immunologic basis for the fibrotic reaction to implanted microcapsules. Transplant Proc 1991; 23(1 Pt 1): 758-9.
[PMID: 1990681]
[280]
Otterlei M, Sundan A, Skjåk-Braek G, Ryan L, Smidsrød O, Espevik T. Similar mechanisms of action of defined polysaccharides and lipopolysaccharides: characterization of binding and tumor necrosis factor alpha induction. Infect Immun 1993; 61(5): 1917-25.
[PMID: 8478081]
[281]
Klöck G, Pfeffermann A, Ryser C, et al. Biocompatibility of mannuronic acid-rich alginates. Biomaterials 1997; 18(10): 707-13.
[http://dx.doi.org/10.1016/S0142-9612(96)00204-9] [PMID: 9158852]
[282]
Sayag J, Lieaume S, Bohbot S. Healing properties of calcium alginate dressings. J Wound Care 1996; 5(8): 357-62.
[http://dx.doi.org/10.12968/jowc.1996.5.8.357]
[283]
Attwood AI. Calcium alginate dressing accelerates split skin graft donor site healing. Br J Plast Surg 1989; 42(4): 373-9.
[http://dx.doi.org/10.1016/0007-1226(89)90001-5] [PMID: 2670027]
[284]
Bale S, Baker N, Crook H, Rayman A, Rayman G, Harding KG. Exploring the use of an alginate dressing for diabetic foot ulcers. J Wound Care 2001; 10(3): 81-4.
[http://dx.doi.org/10.12968/jowc.2001.10.3.26063] [PMID: 11924357]
[285]
Fraser R, Gilchrist T. Sorbsan calcium alginate fibre dressings in footcare. Biomaterials 1983; 4(3): 222-4.
[http://dx.doi.org/10.1016/0142-9612(83)90016-9] [PMID: 6225473]
[286]
Gilchrist T, Martin AM. Wound treatment with Sorbsan--an alginate fibre dressing. Biomaterials 1983; 4(4): 317-20.
[http://dx.doi.org/10.1016/0142-9612(83)90036-4] [PMID: 6640060]
[287]
Kneafsey B, O’Shaughnessy M, Condon KC. The use of calcium alginate dressings in deep hand burns. Burns 1996; 22(1): 40-3.
[http://dx.doi.org/10.1016/0305-4179(95)00066-6] [PMID: 8719315]
[288]
Lalau J, et al. The use of calcium alginate dressings in deep hand burns Efficacy and tolerance of calcium alginate versus vaseline gauze dressings in the treatment of diabetic foot lesions 2002.
[289]
Lim TC, Tan WT. Treatment of donor site defects. Br J Plast Surg 1992; 45(6): 488.
[http://dx.doi.org/10.1016/0007-1226(92)90221-I] [PMID: 1393258]
[290]
A˚gren MS. Four alginate dressings in the treatment of partial thickness wounds: a comparative experimental study. Br J Plast Surg 1996; 49(2): 129-34.
[http://dx.doi.org/10.1016/S0007-1226(96)90088-0] [PMID: 8733355]
[291]
Lambert G, Fattal E, Couvreur P. Nanoparticulate systems for the delivery of antisense oligonucleotides. Adv Drug Deliv Rev 2001; 47(1): 99-112.
[http://dx.doi.org/10.1016/S0169-409X(00)00116-2] [PMID: 11251248]
[292]
Lertsutthiwong P, Rojsitthisak P. Chitosan-alginate nanocapsules for encapsulation of turmeric oil. Pharmazie 2011; 66(12): 911-5.
[PMID: 22312692]
[293]
Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001; 70(1-2): 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[294]
Yi Y-M, Yang T-Y, Pan W-M. Preparation and distribution of 5-fluorouracil (125)I sodium alginate-bovine serum albumin nanoparticles. World J Gastroenterol 1999; 5(1): 57-60.
[http://dx.doi.org/10.3748/wjg.v5.i1.57] [PMID: 11819388]
[295]
Aynié I, Vauthier C, Chacun H, Fattal E, Couvreur P. Spongelike alginate nanoparticles as a new potential system for the delivery of antisense oligonucleotides. Antisense Nucleic Acid Drug Dev 1999; 9(3): 301-12.
[http://dx.doi.org/10.1089/oli.1.1999.9.301] [PMID: 10435755]
[296]
Sarmento B, Ribeiro A, Veiga F, Ferreira D. Development and validation of a rapid reversed-phase HPLC method for the determination of insulin from nanoparticulate systems. Biomed Chromatogr 2006; 20(9): 898-903.
[http://dx.doi.org/10.1002/bmc.616] [PMID: 16389645]
[297]
Sarmento B, Ribeiro AJ, Veiga F, Ferreira DC, Neufeld RJ. Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation. J Nanosci Nanotechnol 2007; 7(8): 2833-41.
[http://dx.doi.org/10.1166/jnn.2007.609] [PMID: 17685304]
[298]
Reis CP, Ribeiro AJ, Houng S, Veiga F, Neufeld RJ. Nanoparticulate delivery system for insulin: design, characterization and in vitro/in vivo bioactivity. Eur J Pharm Sci 2007; 30(5): 392-7.
[http://dx.doi.org/10.1016/j.ejps.2006.12.007] [PMID: 17280820]
[299]
Ahmad Z, Pandey R, Sharma S, Khuller GK. Pharmacokinetic and pharmacodynamic behaviour of antitubercular drugs encapsulated in alginate nanoparticles at two doses. Int J Antimicrob Agents 2006; 27(5): 409-16.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.12.009] [PMID: 16624533]
[300]
Ahmad Z, Sharma S, Khuller GK. Chemotherapeutic evaluation of alginate nanoparticle-encapsulated azole antifungal and antitubercular drugs against murine tuberculosis. Nanomedicine (Lond) 2007; 3(3): 239-43.
[http://dx.doi.org/10.1016/j.nano.2007.05.001] [PMID: 17652032]
[301]
Ahmad Z, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 2005; 26(4): 298-303.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.07.012] [PMID: 16154726]
[302]
Douglas KL, Piccirillo CA, Tabrizian M. Effects of alginate inclusion on the vector properties of chitosan-based nanoparticles. J Control Release 2006; 115(3): 354-61.
[http://dx.doi.org/10.1016/j.jconrel.2006.08.021] [PMID: 17045691]
[303]
Pandey R, Khuller G. anotechnology based drug delivery system (s) for the management of tuberculosis 2006.
[304]
Ahmad Z, Sharma S, Khuller GK. Inhalable alginate nanoparticles as antitubercular drug carriers against experimental tuberculosis. Int J Antimicrob Agents 2005; 26(4): 298-303.
[http://dx.doi.org/10.1016/j.ijantimicag.2005.07.012] [PMID: 16154726]
[305]
Boissière M, Allouche J, Chanéac C, et al. Potentialities of silica/alginate nanoparticles as hybrid magnetic carriers. Int J Pharm 2007; 344(1-2): 128-34.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.055] [PMID: 17611055]
[306]
Pal A, Esumi K. Photochemical Synthesis of Biopolymer Coated Aucore–Agshell Type Bimetallic Nanoparticles 2007; 07(1-2): 2110-5.
[307]
Guo R, Zhang L, Jiang Z, Cao Y, Ding Y, Jiang X. Synthesis of alginic acid-poly[2-(diethylamino)ethyl methacrylate] monodispersed nanoparticles by a polymer-monomer pair reaction system. Biomacromolecules 2007; 8(3): 843-50.
[http://dx.doi.org/10.1021/bm060906i] [PMID: 17291037]
[308]
Chomoucka J, Drbohlavova J, Huska D, Adam V, Kizek R, Hubalek J. Magnetic nanoparticles and targeted drug delivering. Pharmacol Res 2010; 62(2): 144-9.
[http://dx.doi.org/10.1016/j.phrs.2010.01.014] [PMID: 20149874]
[309]
Ciofani G, Riggio C, Raffa V, Menciassi A, Cuschieri A. A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med Hypotheses 2009; 73(1): 80-2.
[http://dx.doi.org/10.1016/j.mehy.2009.01.031] [PMID: 19272717]
[310]
Roque AC, Bicho A, Batalha IL, Cardoso AS, Hussain A. Biocompatible and bioactive gum Arabic coated iron oxide magnetic nanoparticles. J Biotechnol 2009; 144(4): 313-20.
[http://dx.doi.org/10.1016/j.jbiotec.2009.08.020] [PMID: 19737584]
[311]
Banerjee SS, Chen D-H. Cyclodextrin conjugated magnetic colloidal nanoparticles as a nanocarrier for targeted anticancer drug delivery. Nanotechnology 2008; 19(26)265602
[http://dx.doi.org/10.1088/0957-4484/19/26/265602] [PMID: 21828683]
[312]
Gaihre B, Khil MS, Lee DR, Kim HY. Gelatin-coated magnetic iron oxide nanoparticles as carrier system: drug loading and in vitro drug release study. Int J Pharm 2009; 365(1-2): 180-9.
[http://dx.doi.org/10.1016/j.ijpharm.2008.08.020] [PMID: 18790029]
[313]
Arias JL, López-Viota M, López-Viota J, Delgado AV. Development of iron/ethylcellulose (core/shell) nanoparticles loaded with diclofenac sodium for arthritis treatment. Int J Pharm 2009; 382(1-2): 270-6.
[http://dx.doi.org/10.1016/j.ijpharm.2009.08.019] [PMID: 19712736]
[314]
Ravi Kumar MN. Drug Dev Ind Pharm 2001; 27(1): 1-30.
[http://dx.doi.org/10.1081/DDC-100000124] [PMID: 11247530]
[315]
Tamada J, Langer R. The development of polyanhydrides for drug delivery applications. J Biomater Sci Polym Ed 1992; 3(4): 315-53.
[http://dx.doi.org/10.1163/156856292X00402] [PMID: 1350734]
[316]
Hosny EA, Al-Helw AA-RM. Effect of coating of aluminum carboxymethylcellulose beads on the release and bioavailability of diclofenac sodium. Pharm Acta Helv 1998; 72(5): 255-61.
[http://dx.doi.org/10.1016/S0031-6865(97)00040-X] [PMID: 9540457]
[317]
el Fattah EA, Grant DJ, Gabr KE, Meshali MM. Physical characteristics and release behavior of salbutamol sulfate beads prepared with different ionic polysaccharides. Drug Dev Ind Pharm 1998; 24(6): 541-7.
[http://dx.doi.org/10.3109/03639049809085655] [PMID: 9876620]
[318]
Champagne CP, Blahuta N, Brion F, Gagnon C. A vortex-bowl disk atomizer system for the production of alginate beads in a 1500-liter fermentor. Biotechnol Bioeng 2000; 68(6): 681-8.
[http://dx.doi.org/10.1002/(SICI)1097-0290(20000620)68:6<681:AID-BIT12>3.0.CO;2-L] [PMID: 10799994]
[319]
Yotsuyanagi T, et al. Calcium-Induced Gelation of Alginic Acid and pH-Sensitive Reswelling of Dried Gels. Chem Pharm Bull (Tokyo) 1987; 35(4): 1555-63.
[http://dx.doi.org/10.1248/cpb.35.1555]
[320]
Ravi Kumar MN. Nano and microparticles as controlled drug delivery devices. J Pharm Pharm Sci 2000; 3(2): 234-58.
[PMID: 10994037]
[321]
Kirtane AR, et al. Polymer-surfactant nanoparticles for improving oral bioavailability of doxorubicin. J Pharm Investig 2017; 47(1): 65-73.
[http://dx.doi.org/10.1007/s40005-016-0293-5]
[322]
Dehghan S, Kheiri MT, Abnous K, Eskandari M, Tafaghodi M. Preparation, characterization and immunological evaluation of alginate nanoparticles loaded with whole inactivated influenza virus: Dry powder formulation for nasal immunization in rabbits. Microb Pathog 2018; 115: 74-85.
[http://dx.doi.org/10.1016/j.micpath.2017.12.011] [PMID: 29223454]
[323]
Hefnawy A, Khalil IA, El-Sherbiny IM. Facile development of nanocomplex-in-nanoparticles for enhanced loading and selective delivery of doxorubicin to brain. Nanomedicine (Lond) 2017; 12(24): 2737-61.
[http://dx.doi.org/10.2217/nnm-2017-0243] [PMID: 29135325]
[324]
Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids Surf B Biointerfaces 2008; 66(2): 274-80.
[http://dx.doi.org/10.1016/j.colsurfb.2008.07.004] [PMID: 18722754]
[325]
Wong TW, Dhanawat M, Rathbone MJ. Vaginal drug delivery: strategies and concerns in polymeric nanoparticle development. Expert Opin Drug Deliv 2014; 11(9): 1419-34.
[http://dx.doi.org/10.1517/17425247.2014.924499] [PMID: 24960192]
[326]
Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan-sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: formulation, optimisation and in vitro characterisation. Eur J Pharm Biopharm 2008; 68(3): 513-25.
[PMID: 17983737]
[327]
Kumar S, Bhanjana G, Verma RK, Dhingra D, Dilbaghi N, Kim KH. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J Pharm Pharmacol 2017; 69(2): 143-50.
[http://dx.doi.org/10.1111/jphp.12672] [PMID: 28033667]
[328]
Abdelghany S, Alkhawaldeh M, AlKhatib HS. Carrageenan-stabilized chitosan alginate nanoparticles loaded with ethionamide for the treatment of tuberculosis. J Drug Deliv Sci Technol 2017; 39: 442-9.
[http://dx.doi.org/10.1016/j.jddst.2017.04.034]
[329]
Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol 2015; 72: 640-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.040] [PMID: 25239194]
[330]
Nait Mohamed FA, Laraba-Djebari F. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: Safe immunoprotective approach against scorpion envenoming. Vaccine 2016; 34(24): 2692-9.
[http://dx.doi.org/10.1016/j.vaccine.2016.04.035] [PMID: 27109567]
[331]
Marasini N, Skwarczynski M, Toth I. Intranasal delivery of nanoparticle-based vaccines. Ther Deliv 2017; 8(3): 151-67.
[http://dx.doi.org/10.4155/tde-2016-0068] [PMID: 28145824]
[332]
Pathak L, Amrutanand T, Agrawal Y. Alginate-chitosan Coated Lecithin Core Shell Nanoparticles for Curcumin: Effect of Surface Charge on Release Properties and Biological Activities. INDIAN JOURNAL OF PHARMACEUTICAL EDUCATION AND RESEARCH 2017; 51(2): 270-9.
[http://dx.doi.org/10.5530/ijper.51.2.32]
[333]
Severino P, Chaud MV, Shimojo A, et al. Sodium alginate-cross-linked polymyxin B sulphate-loaded solid lipid nanoparticles: Antibiotic resistance tests and HaCat and NIH/3T3 cell viability studies. Colloids Surf B Biointerfaces 2015; 129(Suppl. C): 191-7.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.049] [PMID: 25863712]
[334]
Zhang C, Shi G, Zhang J, et al. Targeted antigen delivery to dendritic cell via functionalized alginate nanoparticles for cancer immunotherapy. J Control Release 2017; 256(Suppl. C): 170-81.
[http://dx.doi.org/10.1016/j.jconrel.2017.04.020] [PMID: 28414151]
[335]
Venkatesan J, Lee JY, Kang DS, et al. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Int J Biol Macromol 2017; 98(Suppl. C): 515-25.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.120] [PMID: 28147234]
[336]
Rahaiee S, Hashemi M, Shojaosadati SA, Moini S, Razavi SH. Nanoparticles based on crocin loaded chitosan-alginate biopolymers: Antioxidant activities, bioavailability and anticancer properties. Int J Biol Macromol 2017; 99: 401-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.095] [PMID: 28254570]
[337]
Maity S, Mukhopadhyay P, Kundu PP, Chakraborti AS. Alginate coated chitosan core-shell nanoparticles for efficient oral delivery of naringenin in diabetic animals-An in vitro and in vivo approach. Carbohydr Polym 2017; 170(Suppl. C): 124-32.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.066] [PMID: 28521977]
[338]
Aluani D, Tzankova V, Kondeva-Burdina M, et al. Evaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. Int J Biol Macromol 2017; 103(Suppl. C): 771-82.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.05.062] [PMID: 28536020]
[339]
Dukovski BJ, Plantić I, Čunčić I, et al. Lipid/alginate nanoparticle-loaded in situ gelling system tailored for dexamethasone nasal delivery. Int J Pharm 2017; 533(2): 480-7.
[http://dx.doi.org/10.1016/j.ijpharm.2017.05.065] [PMID: 28577969]
[340]
Nait Mohamed FA, Laraba-Djebari F. Development and characterization of a new carrier for vaccine delivery based on calcium-alginate nanoparticles: Safe immunoprotective approach against scorpion envenoming. Vaccine 2016; 34(24): 2692-9.
[http://dx.doi.org/10.1016/j.vaccine.2016.04.035] [PMID: 27109567]
[341]
Mukhopadhyay P, Chakraborty S, Bhattacharya S, Mishra R, Kundu PP. pH-sensitive chitosan/alginate core-shell nanoparticles for efficient and safe oral insulin delivery. Int J Biol Macromol 2015; 72(Suppl. C): 640-8.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.08.040] [PMID: 25239194]
[342]
Katuwavila NP, et al. Chitosan-Alginate Nanoparticle System Efficiently Delivers Doxorubicin to MCF-7 Cells. J of Nanomater 2016.
[343]
Bhattacharyya A, et al. Development of pH sensitive polyurethane–alginate nanoparticles for safe and efficient oral insulin delivery in animal models. RSC Advances 2016; 6(48): 41835-46.
[http://dx.doi.org/10.1039/C6RA06749B]
[344]
George L, Bavya MC, Rohan KV, Srivastava R. A therapeutic polyelectrolyte-vitamin C nanoparticulate system in polyvinyl alcohol-alginate hydrogel: An approach to treat skin and soft tissue infections caused by Staphylococcus aureus. Colloids Surf B Biointerfaces 2017; 160: 315-24.
[http://dx.doi.org/10.1016/j.colsurfb.2017.09.030] [PMID: 28950196]
[345]
Costa JR, Silva NC, Sarmento B, Pintado M. Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. Eur J Clin Microbiol Infect Dis 2015; 34(6): 1255-62.
[http://dx.doi.org/10.1007/s10096-015-2344-7] [PMID: 25754770]
[346]
Deacon J, Abdelghany SM, Quinn DJ, et al. Antimicrobial efficacy of tobramycin polymeric nanoparticles for Pseudomonas aeruginosa infections in cystic fibrosis: formulation, characterisation and functionalisation with dornase alfa (DNase). J Control Release 2015; 198: 55-61.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.022] [PMID: 25481442]
[347]
Lopes M, Shrestha N, Correia A, et al. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Release 2016; 232: 29-41.
[http://dx.doi.org/10.1016/j.jconrel.2016.04.012] [PMID: 27074369]
[348]
Bakhshi M, Ebrahimi F, Nazarian S, Zargan J, Behzadi F, Gariz DS. Nano-encapsulation of chicken immunoglobulin (IgY) in sodium alginate nanoparticles: In vitro characterization. Biologicals 2017; 49: 69-75.
[http://dx.doi.org/10.1016/j.biologicals.2017.06.002] [PMID: 28693954]
[349]
Owens DE III, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 2006; 307(1): 93-102.
[http://dx.doi.org/10.1016/j.ijpharm.2005.10.010] [PMID: 16303268]
[350]
Ritz S, Schöttler S, Kotman N, et al. Protein corona of nanoparticles: distinct proteins regulate the cellular uptake. Biomacromolecules 2015; 16(4): 1311-21.
[http://dx.doi.org/10.1021/acs.biomac.5b00108] [PMID: 25794196]
[351]
Hefnawy A, Khalil IA, El-Sherbiny IM. Facile development of nanocomplex-in-nanoparticles for enhanced loading and selective delivery of doxorubicin to brain. Nanomedicine (Lond) 2017; 12(24): 2737-61.
[http://dx.doi.org/10.2217/nnm-2017-0243] [PMID: 29135325]
[352]
Wang F, Yang S, Yuan J, Gao Q, Huang C. Effective method of chitosan-coated alginate nanoparticles for target drug delivery applications. J Biomater Appl 2016; 31(1): 3-12.
[http://dx.doi.org/10.1177/0885328216648478] [PMID: 27164869]
[353]
Anirudhan TS, Anila MM, Franklin S. Synthesis characterization and biological evaluation of alginate nanoparticle for the targeted delivery of curcumin. Mater Sci Eng C 2017; 78: 1125-34.
[http://dx.doi.org/10.1016/j.msec.2017.04.116] [PMID: 28575948]
[354]
Wang J, Wang M, Zheng M, et al. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery. Colloids Surf B Biointerfaces 2015; 129: 63-70.
[http://dx.doi.org/10.1016/j.colsurfb.2015.03.028] [PMID: 25829128]
[355]
Xu B, Jin Q, Zeng J, et al. Combined Tumor- and Neovascular-“Dual Targeting” Gene/Chemo-Therapy Suppresses Tumor Growth and Angiogenesis. ACS Appl Mater Interfaces 2016; 8(39): 25753-69.
[http://dx.doi.org/10.1021/acsami.6b08603] [PMID: 27615739]
[356]
Dey S, Sherly MC, Rekha MR, Sreenivasan K. Alginate stabilized gold nanoparticle as multidrug carrier: Evaluation of cellular interactions and hemolytic potential. Carbohydr Polym 2016; 136: 71-80.
[http://dx.doi.org/10.1016/j.carbpol.2015.09.016] [PMID: 26572330]
[357]
Moradi Bidhendi S, et al. Design and evaluate alginate nanoparticles as a protein delivery system. Arch Razi Inst 2013; 68(2): 139-46.
[358]
Bilal M, Rasheed T, Iqbal HMN, Li C, Hu H, Zhang X. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Int J Biol Macromol 2017; 105(Pt 1): 393-400.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.047] [PMID: 28705499]
[359]
Singh S, Chopra M, Dilbaghi N, et al. Synthesis and evaluation of isometamidium-alginate nanoparticles on equine mononuclear and red blood cells. Int J Biol Macromol 2016; 92: 788-94.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.07.084] [PMID: 27471088]
[360]
Tzankova V, Aluani D, Kondeva-Burdina M, et al. Hepatoprotective and antioxidant activity of quercetin loaded chitosan/alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed Pharmacother 2017; 92: 569-79.
[http://dx.doi.org/10.1016/j.biopha.2017.05.008] [PMID: 28577496]
[361]
Nagarwal RC, Kumar R, Pandit JK. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci 2012; 47(4): 678-85.
[http://dx.doi.org/10.1016/j.ejps.2012.08.008] [PMID: 22922098]
[362]
Zhu L, Ge F, Yang L, et al. Alginate Particles with Ovalbumin (OVA) peptide can serve as a carrier and adjuvant for immune therapy in B16-OVA Cancer Model. Med Sci Monit Basic Res 2017; 23: 166-72.
[http://dx.doi.org/10.12659/MSMBR.901576] [PMID: 28450696]
[363]
Manuja A, Kumar B, Chopra M, et al. Cytotoxicity and genotoxicity of a trypanocidal drug quinapyramine sulfate loaded-sodium alginate nanoparticles in mammalian cells. Int J Biol Macromol 2016; 88: 146-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.03.034] [PMID: 27000439]
[364]
Manuja A, Kumar S, Dilbaghi N, et al. Quinapyramine sulfate-loaded sodium alginate nanoparticles show enhanced trypanocidal activity. Nanomedicine (Lond) 2014; 9(11): 1625-34.
[http://dx.doi.org/10.2217/nnm.13.148] [PMID: 24405513]
[365]
Cheng Y, Yu S, Wang J, Qian H, Wu W, Jiang X. In vitro and in vivo antitumor activity of doxorubicin-loaded alginic-acid-based nanoparticles. Macromol Biosci 2012; 12(10): 1326-35.
[http://dx.doi.org/10.1002/mabi.201200165] [PMID: 22887841]
[366]
Martínez A, Muñiz E, Teijón C, Iglesias I, Teijón JM, Blanco MD. Targeting tamoxifen to breast cancer xenograft tumours: preclinical efficacy of folate-attached nanoparticles based on alginate-cysteine/disulphide-bond-reduced albumin. Pharm Res 2014; 31(5): 1264-74.
[http://dx.doi.org/10.1007/s11095-013-1247-5] [PMID: 24218224]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 11
Year: 2019
Page: [1312 - 1334]
Pages: 23
DOI: 10.2174/1381612825666190425163424
Price: $65

Article Metrics

PDF: 31
HTML: 9