MoS2/Tio2 Mixture: A Modification Strategies of Tio2 Nanoparticles to Improve Photocatalytic Activity Under Visible Light

Author(s): Sara Chahid*, Rodrigo Alcantara, Desiree M. de los Santos.

Journal Name: Current Environmental Management
Formerly: Current Environmental Engineering

Volume 6 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Dyes are used in various sectors, such as the industry, textile, leather, and plastic industries, and part of these dyes is released in the environment via wastewater.

Objective: The present study aimed to investigated the surface-modified TiO2 by MoS2 and Cu.

Method: The effects of surface enhancement on as-prepared adsorbents on adsorption of Methylene Blue (MB) was were studied in a batch system by considering various parameters such as contact time, initial dye concentration and temperature.

Result: The results show that the adsorption process was well fitted with the pseudo-firstorder kinetic model (R2 = 0.99). Further, the equilibrium data for the adsorption process have beenwere evaluated using Langmuir, Freundlich, and Temkin isotherms.

Conclusion: The adsorption isotherm of MB onto as-prepared adsorbents nanoparticles fitted into the Freundlich equation.

Keywords: Synthesis of pure doped and co-doped TiO2, surface analysis, adsorption, methylene blue dye remove from aqueous solutions, dyes, nauoparticles.

[1]
Lee C, Lin RH, Yang CY, Lin MH, Wang WY. Preparations and characterization of novel photocatalysts with mesoporous titanium dioxide (TiO2) via a sol-gel method. Mater Chem Phys 2008; 109: 275-80.
[http://dx.doi.org/10.1016/j.matchemphys.2007.11.016]
[2]
Weng ZY, Guo H, Liu XM, Wu SL, Yeung KWK, Chu PK. Nanostructured TiO2 for energy conversion and storage. rsc adv 2013; 3: 24758-75.
[http://dx.doi.org/10.1039/c3ra44031a]
[3]
Ghorai TK, Chakraborty M, Pramanik P. Photocatalytic performance of nano-photocatalyst from TiO2 and Fe2O3 by mechanochemical synthesis. J Alloys Compd 2011; 509: 8158-64.
[http://dx.doi.org/10.1016/j.jallcom.2011.05.069]
[4]
Cao H, Huang S, Yu Y, Yan Y, Lv Y, Cao Y. Synthesis of TiO2-N/SnO2 heterostructure photocatalyst and its photocatalytic mechanism. J Colloid Interface Sci 2017; 486: 176-83.
[http://dx.doi.org/10.1016/j.jcis.2016.09.072] [PMID: 27701015]
[5]
Guo Q, Zhang ZH, Ma XP, et al. Preparation of N,F-codoped TiO2 nanoparticles by three different methods and comparison of visible-light photocatalytic performances. Separ Purif Tech 2017; 175: 305-13.
[http://dx.doi.org/10.1016/j.seppur.2016.11.041]
[6]
Ryu SW, Kim EJ, Ko SK, Hahn SH. Effect of calcination on the structural and optical properties of M/TiO2 thin films by RF magnetron co-sputtering. Mater Lett 2004; 58: 582-7.
[http://dx.doi.org/10.1016/S0167-577X(03)00566-4]
[7]
Chahid S, De los Santos DM, Alcántara R. The effect of Cu-doped TiO2 photoanode on photovoltaic performance of dye-sensitized solar cells. In:Proceedings of the 3rd International Conference on Smart City Applications2018 Oct 10 (p 77) ACM. https://doi.org/101145/3286606.3286854
[8]
Zhou W, et al. Ordered mesoporous black TiO2 as highly efficient hydrogen evolution photocatalyst. J Am Chem Soc 2014; 136(26): 9280-3.
[9]
Krishnakumar V, Boobas S, Jayaprakash J, Rajaboopathi M, Han B, Louhi-Kultanen M. Effect of Cu doping on TiO2 nanoparticles and its photocatalytic activity under visible light. J Mater Sci Mater Electron 2016; 27: 7438-47.
[http://dx.doi.org/10.1007/s10854-016-4720-1]
[10]
Zhou L, Wei LG, Yang YL, et al. Improved performance of dye sensitized solar cells using Cu-doped TiO2 as photoanode materials: Band edge movement study by spectroelectrochemistry. Chem Phys 2016; 475: 1-8.
[http://dx.doi.org/10.1016/j.chemphys.2016.05.018]
[11]
Navas J, Sánchez-Coronilla A, Aguilar T, et al. Thermo-selective Tm(x)Ti(1-x)O(2-x/2) nanoparticles: From Tm-doped anatase TiO2 to a rutile/pyrochlore Tm2Ti2O7 mixture. An experimental and theoretical study with a photocatalytic application. Nanoscale 2014; 6(21): 12740-57.
[http://dx.doi.org/10.1039/C4NR03715D] [PMID: 25219888]
[12]
Nishiyama N, Kozasa K, Yamazaki S. Photocatalytic degradation of 4-chlorophenol on titanium dioxide modified with Cu(II) or Cr(III) ion under visible light irradiation. Appl Catal A Gen 2016; 527: 109-15.
[http://dx.doi.org/10.1016/j.apcata.2016.09.001]
[13]
Wojtaszek K, Tyrala K, Czapla-Masztafiak J, Sa J, Szlachetko J. Cr-doping effects on unoccupied d-band electronic structure of TiO2. Chem Phys Lett 2016; 664: 73-6.
[http://dx.doi.org/10.1016/j.cplett.2016.10.023]
[14]
Zhu JL, Xia XF, Zhu SS, Liu X, Li HX. Synthesis and photocatalytic activity of Cr Doped TiO2 nanowires/reduced graphene oxide composites. Chem J Chinese U 2016; 37(10): 1833-9.
[15]
Fu YH, Sun L, Yang H, Xu L, Zhang FM, Zhu WD. Visible-light-induced aerobic photocatalytic oxidation of aromatic alcohols to aldehydes over Ni-doped NH2-MIL-125(Ti). Appl Catal B 2016; 187: 212-7.
[http://dx.doi.org/10.1016/j.apcatb.2016.01.038]
[16]
Haider AJ, Najim AA, Muhi MAH. TiO2/Ni composite as antireflection coating for solar cell application. Opt Commun 2016; 370: 263-6.
[http://dx.doi.org/10.1016/j.optcom.2016.03.034]
[17]
Singla P, Pandey OP, Singh K. Study of photocatalytic degradation of environmentally harmful phthalate esters using Ni-doped TiO2 nanoparticles. Int J Environ Sci Technol 2016; 13: 849-56.
[http://dx.doi.org/10.1007/s13762-015-0909-8]
[18]
Zhang DR, Jin XZ, Li JH. Effects of Sc and V dopants on the anatase-to-rutile phase transition and crystallite size of TiO2 nanoparticles. Mater Chem Phys 2016; 176: 68-74.
[http://dx.doi.org/10.1016/j.matchemphys.2016.03.027]
[19]
Beauger L, Testut S, Berthon-Fabry S, Georgi F, Guetaz L. Doped TiO2 aerogels as alternative catalyst supports for proton exchange membrane fuel cells: A comparative study of Nb, V and Ta dopants. Microporous Mesoporous Mater 2016; 232: 109-18.
[20]
Birben NC, Uyguner-Demirel CS, Sen Kavurmaci S, et al. Application of Fe-doped TiO2 specimens for the solar photocatalytic degradation of humic acid. Catal Today 2017; 281: 78-84.
[http://dx.doi.org/10.1016/j.cattod.2016.06.020]
[21]
Wang QY, Jin RC, Zhang M, Gao SM. Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance. J Alloys Compd 2017; 690: 139-44.
[http://dx.doi.org/10.1016/j.jallcom.2016.07.281]
[22]
Di Paola A, Garcıa-López E, Marcì G, et al. Surface characterisation of metal ions loaded TiO2 photocatalysts: Structure-activity relationship. Appl Catal B 2004; 48: 223-33.
[http://dx.doi.org/10.1016/j.apcatb.2003.10.015]
[23]
Devi LG, Murthy BN. Characterization of Mo doped TiO2 and its enhanced photo-catalytic activity under visible light. Catal Lett 2008; 125: 320-30.
[http://dx.doi.org/10.1007/s10562-008-9568-4]
[24]
Li C, Zhang D, Jiang Z, Yao Z, Jia F. Mo-doped titania films: Preparation, characterization and application for splitting water. J Chem 2011; 35(2): 423-9.
[http://dx.doi.org/10.1039/C0NJ00409J]
[25]
Munir S, Shah SM, Hussain H. Effect of carrier concentration on the optical band gap of TiO2 nanoparticles. Mater Des 2016; 92: 64-72.
[http://dx.doi.org/10.1016/j.matdes.2015.12.022]
[26]
Alcántara R, Navas J, Fernández-Lorenzo C, Martín J, Guillén E, Anta JA. Synthesis and raman spectroscopy study of TiO2 nanoparticles. Phys Status Solidi C 2011; 8: 1970-3.
[http://dx.doi.org/10.1002/pssc.201000319]
[27]
Cheng L, Kang Y, Tong F. Effect of preparation conditions on characteristics of hollow TiO2 fibers fabricated by chemical deposition and template method. Appl Surf Sci 2012; 263: 223-9.
[http://dx.doi.org/10.1016/j.apsusc.2012.09.032]
[28]
Wan Q, Duan L, He K, Li J. Removal of gaseous elemental mercury over a CeO2- WO3/TiO2 nanocomposite in simulated coal-fired flue gas. Chem Eng J 2011; 170: 512-7.
[http://dx.doi.org/10.1016/j.cej.2010.11.060]
[29]
Wu Z, Tang N, Xiao L, Liu Y, Wang H. MnO(x)/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation. J Colloid Interface Sci 2010; 352(1): 143-8.
[http://dx.doi.org/10.1016/j.jcis.2010.08.031] [PMID: 20832076]
[30]
Shi J, Chen S, Wang S, Ye Z, Wu P, Xu B. Favorable recycling photocatalyst TiO2/CFA: Effects of calcination temperature on the structural property and photocatalytic activity. J Mol Catal Chem 2010; 330: 41-8.
[http://dx.doi.org/10.1016/j.molcata.2010.06.029]
[31]
Liu H, Dong X, Liu T, Su X, Zhu Z. Silver-modified colloidal-aggregated TiO2 microstructures with enhanced visible photocatalytic activities. Mater Lett 2014; 115: 219-21.
[32]
Zainal ND, Nur H, Lee SL. Synthesis and characterization of nitrogen-doped titania nanomaterials of homogeneous particle size. Malay J Fundamental Appl Sci 2015; 11(3): 13-5.
[33]
Rezaei E, Soltan J. Low temperature oxidation of toluene by ozone over MnOx/γ- alumina and MnOx/MCM-41 catalysts. Chem Eng J 2012; 198-199: 482-90.
[http://dx.doi.org/10.1016/j.cej.2012.06.016]
[34]
Landmann M, Rauls E, Schmidt WG. The electronic structure and optical response of rutile, anatase and brookite TiO2. Phys Condens Mat J 2012; 24195503
[35]
Maurya A, Chauhan P, Mishra SK, Srivastava RK. Structural, optical and charge transport study of rutile TiO2 nanocrystals at two calcination temperatures. J Alloys Compd 2011; 509: 8433-40.
[http://dx.doi.org/10.1016/j.jallcom.2011.05.108]
[36]
De los Santos DM, Navas J, Sánchez-Coronilla A, Alcántara R, Fernández-Lorenzo C, Martín-Calleja J. Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: Structural and electronic characterization. Mater Res Bull 2015; 70: 704-11.
[http://dx.doi.org/10.1016/j.materresbull.2015.06.008]
[37]
L. Xu, M. P. Garrett, and B. Hu. J Phys Chem C. Nature and light dependence of bulk recombination in co-pi-catolyzed Bivoy photoanodes. 2012; 116: 13020-5.
[38]
Aguilar T, Navas J, Alcantara R, et al. A route for the synthesis of Cu-doped TiO2 nanoparticles with a very low band gap. Chem Phys Lett 2013; 571: 49-53.
[http://dx.doi.org/10.1016/j.cplett.2013.04.007]
[39]
Weast RC. Handbook of Chemistry & Physics. 59th Edition 1978. CRC Press, Inc. 1979.
[40]
Wang SLNB, Sun HM, Jiang Q. J.S. Structure and photocatalytic property of Mo-doped TiO2 nanoparticles. Powder Technol 2013; 244: 9-15.
[http://dx.doi.org/10.1016/j.powtec.2013.03.054]
[41]
Richardson PL, Perdigoto MLN, Wang W, Lopes RJG. Heterogeneous photo-enhanced conversion of carbon dioxide to formic acid with copper- and gallium-doped titania nanocomposites. Appl Catal B 2013; 132: 408-15.
[http://dx.doi.org/10.1016/j.apcatb.2012.11.045]
[42]
Paul KK, Ghosh R, Giri PK. Mechanism of strong visible light photocatalysis by Ag2O-nanoparticle-decorated monoclinic TiO2(B) porous nanorods. Nanotechnology 2016; 27(31)315703
[http://dx.doi.org/10.1088/0957-4484/27/31/315703] [PMID: 27333816]
[43]
Patel SKS, Gajbhiye NS, Date SK. Ferromagnetism of Mn-doped TiO2 nanorods synthesized by hydrothermal method. J Alloys Compd 2011; 509: S427-30.
[http://dx.doi.org/10.1016/j.jallcom.2011.01.086]
[44]
Mathews NR, Morales ER, Cortes-Jacome MA, Antonio JAT. TiO2 thin films - Influence of annealing temperature on structural, optical and photocatalytic properties. Sol Energy 2009; 83: 1499-508.
[http://dx.doi.org/10.1016/j.solener.2009.04.008]
[45]
Zaki MI, Katrib A, Muftah AI, Jagadale TC, Ikram M, Ogale SB. Exploring anatase-TiO2 doped dilutely with transition metal ions as nano-catalyst for H2O2 decomposition: Spectroscopic and kinetic studies. Appl Catal A Gen 2013; 452: 214-21.
[http://dx.doi.org/10.1016/j.apcata.2012.12.003]
[46]
Kang MS. The superhydrophilicity of Al-TiO2 nanometer sized material synthesized using a solvothermal method. Mater Lett 2005; 59: 3122-7.
[http://dx.doi.org/10.1016/j.matlet.2005.05.032]
[47]
Zhan C, Chen F, Yang J, Dai D, Cao X, Zhong M. Visible light responsive sulfated rare earth doped TiO2 @fumed SiO(2) composites with mesoporosity: Enhanced photocatalytic activity for methyl orange degradation. J Hazard Mater 2014; 267: 88-97.
[http://dx.doi.org/10.1016/j.jhazmat.2013.12.038] [PMID: 24418494]
[48]
De los Santos DM, Aguilar T, Sánchez-Coronilla A, et al. Electronic and structural properties of highly aluminum ion doped TiO2 nanoparticles: A combined experimental and theoretical study. ChemPhysChem 2014; 15(11): 2267-80.
[http://dx.doi.org/10.1002/cphc.201402071] [PMID: 24840394]
[49]
Diamandescu L, Vasiliu F, Tarabasanu-Mihaila D, et al. Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater Chem Phys 2008; 112: 146.
[http://dx.doi.org/10.1016/j.matchemphys.2008.05.023]
[50]
Murphy AB. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol Energy Mater Sol Cells 2007; 91: 1326.
[http://dx.doi.org/10.1016/j.solmat.2007.05.005]
[51]
Serpone N, Lawless D, Khairutdinov R. Size effects on the photophysical properties of colloidal anatase TiO2 particles: Size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 1995; 99(45): 16646-54.
[http://dx.doi.org/10.1021/j100045a026]
[52]
Sasca V, Popa A. Band-gap energy of heteropoly compounds containing Keggin polyanion-[PVxMo12-xO40]−(3+ x) relates to counter-cations and temperature studied by UV-VIS diffuse reflectance spectroscopy. J Appl Phys 2013; 114(13)133503
[53]
N. Serpone, D. Lawless, R. Khairutdinov. J Phys Chem 1995; 99: 16646.
[54]
Zaki MI, Mekhemer GA, Fouad NE, Jagadale TC, Ogale SB. Surface texture and specific adsorption sites of sol-gel synthesized anatase TiO2 nanoparticles. Mater Res Bull 2010; 45(10): 1470-5.
[http://dx.doi.org/10.1016/j.materresbull.2010.06.026]
[55]
Ho W, Yu JC, Lin J, Yu J, Li P. Preparation and photocatalytic behavior of MoS2 and WS2 nanocluster sensitized TiO2. Langmuir 2004; 20(14): 5865-9.
[http://dx.doi.org/10.1021/la049838g] [PMID: 16459602]
[56]
Kam KK, Parkinson BA. Detailed photocurrent spectroscopy of the semiconducting group VIB transition metal dichalcogenides. J Phys Chem 1982; 86: 463.
[http://dx.doi.org/10.1021/j100393a010]
[57]
Thurston TR, Wilcoxon JP. Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J Phys Chem B 1999; 103: 11.
[http://dx.doi.org/10.1021/jp982337h]
[58]
Wilcoxon JP. Catalytic photooxidation of pentachlorophenol using semiconductor nanoclusters. J Phys Chem B 2000; 104: 7334.
[http://dx.doi.org/10.1021/jp0012653]
[59]
Huang JM, Laitinen RA, Kelley DF. Spectroscopy and trapping dynamics in WS2 Nanoclusters. Phys Rev B Condens Matter Mater Phys 2000; 62: 10995.
[http://dx.doi.org/10.1103/PhysRevB.62.10995]
[60]
Thurston TR, Wilcoxon JP. Photooxidation of organic chemicals catalyzed by nanoscale MoS2. J Phys Chem B 1999; 103: 11.
[http://dx.doi.org/10.1021/jp982337h]
[61]
De los Santos DM, Navas J, Aguilar T, et al. Tm-doped TiO2 and Tm2Ti2O7 pyrochlore nanoparticles: Enhancing the photocatalytic activity of rutile with a pyrochlore phase. Beilstein J Nanotechnol 2015.6605616
[http://dx.doi.org/10.3762/bjnano.6.62]
[62]
Huang LH, Chan QZ, Zhang B, et al. Preparation of sodium tantalate with different tructures and its photocatalytic activity for H2 evolution from water splitting. Chin J Catal 2011; 32: 1822-30.
[http://dx.doi.org/10.1016/S1872-2067(10)60286-0]
[63]
Chimupala Y, Junploy P, Hardcastle T, et al. Universal synthesis method for mixed phase TiO2 (B)/anatase TiO2 thin films on substrates via a modified Low Pressure Chemical Vapour Deposition (LPCVD) route. J Mater Chem A Mater Energy Sustain 2016; 4: 5685-99.
[http://dx.doi.org/10.1039/C6TA01383J]
[64]
Scanlon DO, Dunnill CW, Buckeridge J, et al. Band alignment of rutile and anatase TiO2. Nat Mater 2013; 12(9): 798-801.
[http://dx.doi.org/10.1038/nmat3697] [PMID: 23832124]
[65]
Ohtani B, Prieto-Mahaney OO, Li D, Abe R. What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photoch Photobio A 2010; 216: 179-82.
[http://dx.doi.org/10.1016/j.jphotochem.2010.07.024]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 3
Year: 2019
Page: [245 - 255]
Pages: 11
DOI: 10.2174/2212717806666190424151559

Article Metrics

PDF: 12
HTML: 1

Special-new-year-discount