Diversity of Bacteria and Bacterial Products as Antibiofilm and Antiquorum Sensing Drugs Against Pathogenic Bacteria

Author(s): Fazlurrahman Khan , Sandra Folarin Oloketuyi , Young-Mog Kim* .

Journal Name: Current Drug Targets

Volume 20 , Issue 11 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The increase in antibiotic resistance of pathogenic bacteria has led to the development of new therapeutic approaches to inhibit biofilm formation as well as interfere quorum sensing (QS) signaling systems. The QS system is a phenomenon in which pathogenic bacteria produce signaling molecules that are involved in cell to cell communication, production of virulence factors, biofilm maturation, and several other functions. In the natural environment, several non-pathogenic bacteria are present as mixed population along with pathogenic bacteria and they control the behavior of microbial community by producing secondary metabolites. Similarly, non-pathogenic bacteria also take advantages of the QS signaling molecule as a sole carbon source for their growth through catabolism with enzymes. Several enzymes are produced by bacteria which disrupt the biofilm architecture by degrading the composition of extracellular polymeric substances (EPS) such as exopolysaccharide, extracellular- DNA and protein. Thus, the interference of QS system by bacterial metabolic products and enzymatic catalysis, modification of the QS signaling molecules as well as enzymatic disruption of biofilm architecture have been considered as the alternative therapeutic approaches. This review article elaborates on the diversity of different bacterial species with respect to their metabolic products as well as enzymes and their molecular modes of action. The bacterial enzymes and metabolic products will open new and promising perspectives for the development of strategies against the pathogenic bacterial infections.

Keywords: Bacteria, biofilm, quorum sensing, inhibition, metabolites, pathogen, virulence.

[1]
Defraine V, Fauvart M, Michiels J. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resist Updat 2018; 38: 12-26.
[http://dx.doi.org/10.1016/j.drup.2018.03.002] [PMID: 29857815]
[2]
Martens E, Demain AL. The antibiotic resistance crisis, with a focus on the United States. J Antibiot (Tokyo) 2017; 70(5): 520-6.
[http://dx.doi.org/10.1038/ja.2017.30] [PMID: 28246379]
[3]
Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Blázquez J. Antibiotics and antibiotic resistance: A bitter fight against evolution. Int J Med Microbiol 2013; 303(6-7): 293-7.
[http://dx.doi.org/10.1016/j.ijmm.2013.02.004] [PMID: 23517688]
[4]
Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 2010; 35(4): 322-32.
[http://dx.doi.org/10.1016/j.ijantimicag.2009.12.011] [PMID: 20149602]
[5]
Schroeder M, Brooks BD, Brooks AE. The complex relationship between virulence and antibiotic resistance. Genes (Basel) 2017; 8(1)E39
[http://dx.doi.org/10.3390/genes8010039] [PMID: 28106797]
[6]
Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015; 7(4): 493-512.
[http://dx.doi.org/10.4155/fmc.15.6] [PMID: 25875875]
[7]
Limoli DH, Jones CJ, Wozniak DJ. Bacterial extracellular polysaccharides in biofilm formation and function. Microbiol Spectr 2015; 3(3)
[http://dx.doi.org/10.1128/microbiolspec.MB-0011-2014] [PMID: 26185074]
[8]
Rendueles O, Ghigo JM. Multi-species biofilms: how to avoid unfriendly neighbors. FEMS Microbiol Rev 2012; 36(5): 972-89.
[http://dx.doi.org/10.1111/j.1574-6976.2012.00328.x] [PMID: 22273363]
[9]
Santos ALSD, Galdino ACM, Mello TP, et al. What are the advantages of living in a community? A microbial biofilm perspective! Mem Inst Oswaldo Cruz 2018; 113(9)e180212
[http://dx.doi.org/10.1590/0074-02760180212] [PMID: 30066753]
[10]
Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial quorum sensing and microbial community interactions. MBio 2018; 9(3): e02331-17.
[http://dx.doi.org/10.1128/mBio.02331-17] [PMID: 29789364]
[11]
Khan F, Javaid A, Kim YM. Functional diversity of quorum sensing receptors in pathogenic bacteria: Interspecies, intraspecies and interkingdom level. Curr Drug Targets 2019; 20(6): 655-67.
[http://dx.doi.org/10.2174/1389450120666181123123333] [PMID: 30468123]
[12]
Skandamis PN, Nychas GJ. Quorum sensing in the context of food microbiology. Appl Environ Microbiol 2012; 78(16): 5473-82.
[http://dx.doi.org/10.1128/AEM.00468-12] [PMID: 22706047]
[13]
DeLisa MP, Bentley WE. Bacterial autoinduction: Looking outside the cell for new metabolic engineering targets. Microb Cell Fact 2002; 1(1): 5.
[http://dx.doi.org/10.1186/1475-2859-1-5] [PMID: 12537600]
[14]
Khan F, Khan MM, Kim YM. Recent progress and future perspectives of antibiofilm drugs immobilized on nanomaterials. Curr Pharm Biotechnol 2018; 19(8): 631-43.
[http://dx.doi.org/10.2174/1389201019666180828090052] [PMID: 30152281]
[15]
Khan F, Manivasagan P, Pham DTN, Oh J, Kim SK, Kim YM. Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microb Pathog 2019; 128: 363-73.
[http://dx.doi.org/10.1016/j.micpath.2019.01.033] [PMID: 30684638]
[16]
Javaid A, Oloketuyi SF, Khan MM, Khan F. Diversity of bacterial synthesis of silver nanoparticles. 2018; 8(1): 43-59.
[http://dx.doi.org/10.1007/s12668-017-0496-x]
[17]
Amiri M, Akbari A, Ahmadi M, Pardakhti A, Salavati-Niasari M. Synthesis and in vitro evaluation of a novel magnetic drug delivery system; proecological method for the preparation of CoFe2O4 nanostructures. J Mol Liq 2018; 249: 1151-60.
[http://dx.doi.org/10.1016/j.molliq.2017.11.133]
[18]
Amiri M, Salavati-Niasari M, Pardakhty A, Ahmadi M, Akbari A. Caffeine: A novel green precursor for synthesis of magnetic CoFe2O4 nanoparticles and pH-sensitive magnetic alginate beads for drug delivery. Mater Sci Eng C 2017; 76: 1085-93.
[http://dx.doi.org/10.1016/j.msec.2017.03.208] [PMID: 28482472]
[19]
Mohandes F, Salavati-Niasari M, Fathi M, Fereshteh Z. Hydroxyapatite nanocrystals: Simple preparation, characterization and formation mechanism. Mater Sci Eng C 2014; 45: 29-36.
[http://dx.doi.org/10.1016/j.msec.2014.08.058] [PMID: 25491798]
[20]
Mohandes F, Salavati-Niasari M. Particle size and shape modification of hydroxyapatite nanostructures synthesized via a complexing agent-assisted route. Mater Sci Eng C 2014; 40: 288-98.
[http://dx.doi.org/10.1016/j.msec.2014.04.008] [PMID: 24857496]
[21]
Mohandes F, Salavati-Niasari M. Simple morphology-controlled fabrication of hydroxyapatite nanostructures with the aid of new organic modifiers. Chem Eng J 2014; 252: 173-84.
[http://dx.doi.org/10.1016/j.cej.2014.05.026]
[22]
Goudarzi M, Mir N, Mousavi-Kamazani M, Bagheri S, Salavati-Niasari M. Biosynthesis and characterization of silver nanoparticles prepared from two novel natural precursors by facile thermal decomposition methods. Sci Rep 2016; 6: 32539.
[http://dx.doi.org/10.1038/srep32539] [PMID: 27581681]
[23]
Mohandes F, Salavati-Niasari M. Freeze-drying synthesis, characterization and in vitro bioactivity of chitosan/graphene oxide/hydroxyapatite nanocomposite. RSC Advances 2014; 4(49): 25993-6001.
[http://dx.doi.org/10.1039/c4ra03534h]
[24]
Amiri M, Salavati-Niasari M, Akbari A, Gholami T. Removal of malachite green (a toxic dye) from water by cobalt ferrite silica magnetic nanocomposite: Herbal and green sol-gel autocombustion synthesis. Int J Hydrogen Energy 2017; 42(39): 24846-60.
[http://dx.doi.org/10.1016/j.ijhydene.2017.08.077]
[25]
Ahmadian-Fard-Fini S, Ghanbari D, Salavati-Niasari M. Photoluminescence carbon dot as a sensor for detecting of Pseudomonas aeruginosa bacteria: Hydrothermal synthesis of magnetic hollow NiFe2O4-carbon dots nanocomposite material. Compos, Part B Eng 2019; 161: 564-77.
[http://dx.doi.org/10.1016/j.compositesb.2018.12.131]
[26]
Safardoust-Hojaghan H, Salavati-Niasari M, Amiri O, Hassanpour M. Preparation of highly luminescent nitrogen doped graphene quantum dots and their application as a probe for detection of Staphylococcus aureus and E. coli. J Mol Liq 2017; 241: 1114-9.
[http://dx.doi.org/10.1016/j.molliq.2017.06.106]
[27]
Park JH, Lee JH, Kim CJ, Lee JC, Cho MH, Lee J. Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnol Lett 2012; 34(4): 655-61.
[http://dx.doi.org/10.1007/s10529-011-0825-z] [PMID: 22160331]
[28]
Park SR, Tripathi A, Wu J, et al. Discovery of cahuitamycins as biofilm inhibitors derived from a convergent biosynthetic pathway. Nat Commun 2016; 7: 10710.
[http://dx.doi.org/10.1038/ncomms10710] [PMID: 26880271]
[29]
Teasdale ME, Liu J, Wallace J, Akhlaghi F, Rowley DC. Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Appl Environ Microbiol 2009; 75(3): 567-72.
[http://dx.doi.org/10.1128/AEM.00632-08] [PMID: 19060172]
[30]
Vaikundamoorthy R, Rajendran R, Selvaraju A, Moorthy K, Perumal S. Development of thermostable amylase enzyme from Bacillus cereus for potential antibiofilm activity. Bioorg Chem 2018; 77: 494-506.
[http://dx.doi.org/10.1016/j.bioorg.2018.02.014] [PMID: 29454827]
[31]
Xiu P, Liu R, Zhang D, Sun C. Pumilacidin-like lipopeptides derived from marine bacterium Bacillus sp. strain 176 suppress the motility of Vibrio alginolyticus. Appl Environ Microbiol 2017; 83(12): e00450-17.
[http://dx.doi.org/10.1128/AEM.00450-17] [PMID: 28389538]
[32]
Valle J, Da Re S, Henry N, et al. Broad-spectrum biofilm inhibition by a secreted bacterial polysaccharide. Proc Natl Acad Sci USA 2006; 103(33): 12558-63.
[http://dx.doi.org/10.1073/pnas.0605399103] [PMID: 16894146]
[33]
Nielsen A, Månsson M, Bojer MS, et al. Solonamide B inhibits quorum sensing and reduces Staphylococcus aureus mediated killing of human neutrophils. PLoS One 2014; 9(1)e84992
[http://dx.doi.org/10.1371/journal.pone.0084992] [PMID: 24416329]
[34]
Oloketuyi SF, Khan F. Inhibition strategies of Listeria monocytogenes biofilms-current knowledge and future outlooks. J Basic Microbiol 2017; 57(9): 728-43.
[http://dx.doi.org/10.1002/jobm.201700071] [PMID: 28594071]
[35]
Oloketuyi SF, Khan F. Strategies for biofilm inhibition and virulence attenuation of foodborne pathogen-Escherichia coli O157:H7. Curr Microbiol 2017; 74(12): 1477-89.
[http://dx.doi.org/10.1007/s00284-017-1314-y] [PMID: 28744570]
[36]
Jakubovics NS, Shields RC, Rajarajan N, Burgess JG. Life after death: The critical role of extracellular DNA in microbial biofilms. Lett Appl Microbiol 2013; 57(6): 467-75.
[http://dx.doi.org/10.1111/lam.12134] [PMID: 23848166]
[37]
Baker P, Hill PJ, Snarr BD, et al. Exopolysaccharide biosynthetic glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv 2016; 2(5)e1501632
[http://dx.doi.org/10.1126/sciadv.1501632] [PMID: 27386527]
[38]
Ragunath C, DiFranco K, Shanmugam M, et al. Surface display of Aggregatibacter actinomycetemcomitans autotransporter Aae and dispersin B hybrid act as antibiofilm agents. Mol Oral Microbiol 2016; 31(4): 329-39.
[http://dx.doi.org/10.1111/omi.12126] [PMID: 26280561]
[39]
LaSarre B, Federle MJ. Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 2013; 77(1): 73-111.
[http://dx.doi.org/10.1128/MMBR.00046-12] [PMID: 23471618]
[40]
Mion S, Rémy B, Plener L, Chabrière E, Daudé D. [Prevent bacteria from communicating: Divide to cure]. Ann Pharm Fr 2018; 76(4): 249-64. http://10.1016/j.pharma.2018.02.004]
[PMID: 29598881]
[41]
Rémy B, Plener L, Elias M, Daudé D, Chabrière E. Enzymes for disrupting bacterial communication, an alternative to antibiotics? Ann Pharm Fr 2016; 74(6): 413-20.
[PMID: 27475310]
[42]
Tang K, Zhang XH. Quorum quenching agents: Resources for antivirulence therapy. Mar Drugs 2014; 12(6): 3245-82.
[http://dx.doi.org/10.3390/md12063245] [PMID: 24886865]
[43]
Giaouris E, Heir E, Desvaux M, et al. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 2015; 6: 841.
[http://dx.doi.org/10.3389/fmicb.2015.00841] [PMID: 26347727]
[44]
Chu W, Zere TR, Weber MM, et al. Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Appl Environ Microbiol 2012; 78(2): 411-9.
[http://dx.doi.org/10.1128/AEM.06396-11] [PMID: 22101045]
[45]
Fang K, Jin X, Hong SH. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci Rep 2018; 8(1): 4939.
[http://dx.doi.org/10.1038/s41598-018-23180-1] [PMID: 29563542]
[46]
Khare A, Tavazoie S. Multifactorial competition and resistance in a two-species bacterial system. PLoS Genet 2015; 11(12)e1005715
[http://dx.doi.org/10.1371/journal.pgen.1005715] [PMID: 26647077]
[47]
Fang K, Jin X, Hong SH. Probiotic Escherichia coli inhibits biofilm formation of pathogenic E. coli via extracellular activity of DegP. Sci Rep 2018; 8(1): 4939.
[http://dx.doi.org/10.1038/s41598-018-23180-1] [PMID: 29563542]
[48]
Abt MC, Pamer EG. Commensal bacteria mediated defenses against pathogens. Curr Opin Immunol 2014; 29: 16-22.
[http://dx.doi.org/10.1016/j.coi.2014.03.003] [PMID: 24727150]
[49]
Rangan KJ, Pedicord VA, Wang YC, et al. A secreted bacterial peptidoglycan hydrolase enhances tolerance to enteric pathogens. Science 2016; 353(6306): 1434-7.
[http://dx.doi.org/10.1126/science.aaf3552] [PMID: 27708039]
[50]
Ubeda C, Djukovic A, Isaac S. Roles of the intestinal microbiota in pathogen protection. Clin Transl Immunology 2017; 6(2)e128
[http://dx.doi.org/10.1038/cti.2017.2] [PMID: 28243438]
[51]
Lin YH, Xu JL, Hu J, et al. Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 2003; 47(3): 849-60.
[http://dx.doi.org/10.1046/j.1365-2958.2003.03351.x] [PMID: 12535081]
[52]
Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environ Microbiol 2013; 15(2): 334-46.
[http://dx.doi.org/10.1111/j.1462-2920.2012.02810.x] [PMID: 22730907]
[53]
Aleksic I, Petkovic M, Jovanovic M, et al. Anti-biofilm properties of bacterial di-rhamnolipids and their semi-synthetic amide derivatives. Front Microbiol 2017; 8: 2454.
[http://dx.doi.org/10.3389/fmicb.2017.02454] [PMID: 29276509]
[54]
Younis KM, Usup G, Ahmad A. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis. Environ Sci Pollut Res Int 2016; 23(5): 4756-67.
[http://dx.doi.org/10.1007/s11356-015-5687-9] [PMID: 26538254]
[55]
Nithya C, Aravindraja C, Pandian SK. Bacillus pumilus of Palk Bay origin inhibits quorum-sensing-mediated virulence factors in Gram-negative bacteria. Res Microbiol 2010; 161(4): 293-304.
[http://dx.doi.org/10.1016/j.resmic.2010.03.002] [PMID: 20381609]
[56]
Vuotto C, Barbanti F, Mastrantonio P, Donelli G. Lactobacillus brevis CD2 inhibits Prevotella melaninogenica biofilm. Oral Dis 2014; 20(7): 668-74.
[http://dx.doi.org/10.1111/odi.12186] [PMID: 24118283]
[57]
Holden MT, Ram Chhabra S, de Nys R, et al. Quorum-sensing cross talk: Isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol 1999; 33(6): 1254-66.
[http://dx.doi.org/10.1046/j.1365-2958.1999.01577.x] [PMID: 10510239]
[58]
Abed RM, Dobretsov S, Al-Fori M, Gunasekera SP, Sudesh K, Paul VJ. Quorum-sensing inhibitory compounds from extremophilic microorganisms isolated from a hypersaline cyanobacterial mat. J Ind Microbiol Biotechnol 2013; 40(7): 759-72.
[http://dx.doi.org/10.1007/s10295-013-1276-4] [PMID: 23645384]
[59]
Maunders E, Welch M. Matrix exopolysaccharides; The sticky side of biofilm formation. FEMS Microbiol Lett 2017; 364(13)
[http://dx.doi.org/10.1093/femsle/fnx120] [PMID: 28605431]
[60]
Hufnagel DA, Depas WH, Chapman MR. The biology of the Escherichia coli extracellular matrix. Microbiol Spectr 2015; 3(3)
[http://dx.doi.org/10.1128/microbiolspec.MB-0014-2014] [PMID: 26185090]
[61]
Colagiorgi A, Di Ciccio P, Zanardi E, Ghidini S, Ianieri A. A look inside the Listeria monocytogenes biofilms extracellular matrix. Microorganisms 2016; 4(3)E22
[http://dx.doi.org/10.3390/microorganisms4030022] [PMID: 27681916]
[62]
Casillo A, Lanzetta R, Parrilli M, Corsaro MM. Exopolysaccharides from marine and marine extremophilic bacteria: Structures, properties, ecological roles and applications. Mar Drugs 2018; 16(2)E69
[http://dx.doi.org/10.3390/md16020069] [PMID: 29461505]
[63]
Wu S, Liu G, Jin W, Xiu P, Sun C. Antibiofilm and anti-infection of a marine bacterial exopolysaccharide against Pseudomonas aeruginosa. Front Microbiol 2016; 7: 102.
[http://dx.doi.org/10.3389/fmicb.2016.00102] [PMID: 26903981]
[64]
Jiang P, Li J, Han F, et al. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101. PLoS One 2011; 6(4)e18514
[http://dx.doi.org/10.1371/journal.pone.0018514] [PMID: 21490923]
[65]
Sayem SM, Manzo E, Ciavatta L, et al. Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact 2011; 10: 74.
[http://dx.doi.org/10.1186/1475-2859-10-74] [PMID: 21951859]
[66]
Rendueles O, Kaplan JB, Ghigo JM. Antibiofilm polysaccharides. Environ Microbiol 2013; 15(2): 334-46.
[http://dx.doi.org/10.1111/j.1462-2920.2012.02810.x] [PMID: 22730907]
[67]
Kanmani P. Satish kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V. Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresour Technol 2011; 102(7): 4827-33.
[http://dx.doi.org/10.1016/j.biortech.2010.12.118] [PMID: 21300540]
[68]
Rendueles O, Travier L, Latour-Lambert P, et al. Screening of Escherichia coli species biodiversity reveals new biofilm-associated antiadhesion polysaccharides. MBio 2011; 2(3): e00043-11.
[http://dx.doi.org/10.1128/mBio.00043-11] [PMID: 21558434]
[69]
Kim Y, Oh S, Kim SH. Released exopolysaccharide (r-EPS) produced from probiotic bacteria reduce biofilm formation of enterohemorrhagic Escherichia coli O157:H7. Biochem Biophys Res Commun 2009; 379(2): 324-9.
[http://dx.doi.org/10.1016/j.bbrc.2008.12.053] [PMID: 19103165]
[70]
Pihl M, Davies JR, Chávez de Paz LE, Svensäter G. Differential effects of Pseudomonas aeruginosa on biofilm formation by different strains of Staphylococcus epidermidis. FEMS Immunol Med Microbiol 2010; 59(3): 439-46.
[http://dx.doi.org/10.1111/j.1574-695X.2010.00697.x] [PMID: 20528934]
[71]
Brian-Jaisson F, Molmeret M, Fahs A, et al. Characterization and anti-biofilm activity of extracellular polymeric substances produced by the marine biofilm-forming bacterium Pseudoalteromonas ulvae strain TC14. Biofouling 2016; 32(5): 547-60.
[http://dx.doi.org/10.1080/08927014.2016.1164845] [PMID: 27020951]
[72]
Qin Z, Yang L, Qu D, Molin S, Tolker-Nielsen T. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis. Microbiology 2009; 155(Pt 7): 2148-56.
[http://dx.doi.org/10.1099/mic.0.028001-0] [PMID: 19389780]
[73]
Joseph LA, Wright AC. Expression of Vibrio vulnificus capsular polysaccharide inhibits biofilm formation. J Bacteriol 2004; 186(3): 889-93.
[http://dx.doi.org/10.1128/JB.186.3.889-893.2004] [PMID: 14729720]
[74]
Lau PC, Lindhout T, Beveridge TJ, Dutcher JR, Lam JS. Differential lipopolysaccharide core capping leads to quantitative and correlated modifications of mechanical and structural properties in Pseudomonas aeruginosa biofilms. J Bacteriol 2009; 191(21): 6618-31.
[http://dx.doi.org/10.1128/JB.00698-09] [PMID: 19717596]
[75]
Bandara HM, Lam OL, Watt RM, Jin LJ, Samaranayake LP. Bacterial lipopolysaccharides variably modulate in vitro biofilm formation of Candida species. J Med Microbiol 2010; 59(Pt 10): 1225-34.
[http://dx.doi.org/10.1099/jmm.0.021832-0] [PMID: 20576747]
[76]
Santos DKF, Rufino RD, Luna JM, Santos VA, Sarubbo LA. Biosurfactants: Multifunctional biomolecules of the 21st century. Int J Mol Sci 2016; 17(3): 401-1.
[http://dx.doi.org/10.3390/ijms17030401] [PMID: 26999123]
[77]
Díaz De Rienzo MA, Banat IM, Dolman B, Winterburn J, Martin PJ. Sophorolipid biosurfactants: Possible uses as antibacterial and antibiofilm agent. N Biotechnol 2015; 32(6): 720-6.
[http://dx.doi.org/10.1016/j.nbt.2015.02.009] [PMID: 25738966]
[78]
Pacheco GJ, Ciapina EM, Gomes Ede B, Junior NP. Biosurfactant production by rhodococcus erythropolis and its application to oil removal. Braz J Microbiol 2010; 41(3): 685-93.
[http://dx.doi.org/10.1590/S1517-83822010000300019] [PMID: 24031544]
[79]
Englerová K, Nemcová R, Styková E. Biosurfactants and their role in the inhibition of the biofilmforming pathogens. Ceska Slov Farm 2018; 67(3): 107-12.
[PMID: 30630327]
[80]
Satpute SK, Mone NS, Das P, Banat IM, Banpurkar AG. Inhibition of pathogenic bacterial biofilms on PDMS based implants by L. acidophilus derived biosurfactant. BMC Microbiol 2019; 19(1): 39.
[http://dx.doi.org/10.1186/s12866-019-1412-z] [PMID: 30760203]
[81]
Banat IM, De Rienzo MA, Quinn GA. Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 2014; 98(24): 9915-29.
[http://dx.doi.org/10.1007/s00253-014-6169-6] [PMID: 25359476]
[82]
Balan SS, Mani P, Kumar CG, Jayalakshmi S. Structural characterization and biological evaluation of Staphylosan (dimannooleate), a new glycolipid surfactant produced by a marine Staphylococcus saprophyticus SBPS-15. Enzyme Microb Technol 2019; 120: 1-7.
[http://dx.doi.org/10.1016/j.enzmictec.2018.09.008] [PMID: 30396390]
[83]
Ribeiro SM, Felício MR, Boas EV, et al. New frontiers for anti-biofilm drug development. Pharmacol Ther 2016; 160: 133-44.
[http://dx.doi.org/10.1016/j.pharmthera.2016.02.006] [PMID: 26896562]
[84]
Mireles JR II, Toguchi A, Harshey RM. Salmonella enterica serovar typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 2001; 183(20): 5848-54.
[http://dx.doi.org/10.1128/JB.183.20.5848-5854.2001] [PMID: 11566982]
[85]
Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S. Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B Biointerfaces 2011; 85(2): 174-81.
[http://dx.doi.org/10.1016/j.colsurfb.2011.02.026] [PMID: 21458961]
[86]
Fracchia L, Ceresa C, Franzetti A, et al. Industrial applications of biosurfactants 245-68.2014;
[http://dx.doi.org/10.1201/b17599-15]
[87]
Chebbi A, Elshikh M, Haque F, et al. Rhamnolipids from Pseudomonas aeruginosa strain W10; as antibiofilm/antibiofouling products for metal protection. J Basic Microbiol 2017; 57(5): 364-75.
[http://dx.doi.org/10.1002/jobm.201600658] [PMID: 28156000]
[88]
Ceresa C, Tessarolo F, Caola I, et al. Inhibition of Candida albicans adhesion on medical-grade silicone by a Lactobacillus-derived biosurfactant. J Appl Microbiol 2015; 118(5): 1116-25.
[http://dx.doi.org/10.1111/jam.12760] [PMID: 25644534]
[89]
Banat IM, Franzetti A, Gandolfi I, et al. Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 2010; 87(2): 427-44.
[http://dx.doi.org/10.1007/s00253-010-2589-0] [PMID: 20424836]
[90]
Cochis A, Fracchia L, Martinotti MG, Rimondini L. Biosurfactants prevent in vitro Candida albicans biofilm formation on resins and silicon materials for prosthetic devices. Oral Surg Oral Med Oral Pathol Oral Radiol 2012; 113(6): 755-61.
[http://dx.doi.org/10.1016/j.oooo.2011.11.004] [PMID: 22668702]
[91]
Dusane DH, Matkar P, Venugopalan VP, Kumar AR, Zinjarde SS. Cross-species induction of antimicrobial compounds, biosurfactants and quorum-sensing inhibitors in tropical marine epibiotic bacteria by pathogens and biofouling microorganisms. Curr Microbiol 2011; 62(3): 974-80.
[http://dx.doi.org/10.1007/s00284-010-9812-1] [PMID: 21086131]
[92]
Egan S, James S, Kjelleberg S. Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata. Appl Environ Microbiol 2002; 68(1): 372-8.
[http://dx.doi.org/10.1128/AEM.68.1.372-378.2002] [PMID: 11772647]
[93]
Das P, Mukherjee S, Sen R. Antiadhesive action of a marine microbial surfactant. Colloids Surf B Biointerfaces 2009; 71(2): 183-6.
[http://dx.doi.org/10.1016/j.colsurfb.2009.02.004] [PMID: 19285837]
[94]
Walencka E, Rózalska S, Sadowska B, Rózalska B. The influence of Lactobacillus acidophilus-derived surfactants on staphylococcal adhesion and biofilm formation. Folia Microbiol (Praha) 2008; 53(1): 61-6.
[http://dx.doi.org/10.1007/s12223-008-0009-y] [PMID: 18481220]
[95]
Zhao Z, Selvam A, Wong JW. Synergistic effect of thermophilic temperature and biosurfactant produced by Acinetobacter calcoaceticus BU03 on the biodegradation of phenanthrene in bioslurry system. J Hazard Mater 2011; 190(1-3): 345-50.
[http://dx.doi.org/10.1016/j.jhazmat.2011.03.042] [PMID: 21530078]
[96]
Khalid HF, Tehseen B, Sarwar Y, et al. Biosurfactant coated silver and iron oxide nanoparticles with enhanced anti-biofilm and anti-adhesive properties. J Hazard Mater 2019; 364: 441-8.
[http://dx.doi.org/10.1016/j.jhazmat.2018.10.049] [PMID: 30384254]
[97]
Cai J, Huang H, Song W, et al. Preparation and evaluation of lipid polymer nanoparticles for eradicating H. pylori biofilm and impairing antibacterial resistance in vitro. Int J Pharm 2015; 495(2): 728-37.
[http://dx.doi.org/10.1016/j.ijpharm.2015.09.055] [PMID: 26417849]
[98]
Bijtenhoorn P, Schipper C, Hornung C, et al. BpiB05, a novel metagenome-derived hydrolase acting on N-acylhomoserine lactones. J Biotechnol 2011; 155(1): 86-94.
[http://dx.doi.org/10.1016/j.jbiotec.2010.12.016] [PMID: 21215778]
[99]
Riaz K, Elmerich C, Raffoux A, Moreira D, Dessaux Y, Faure D. Metagenomics revealed a quorum quenching lactonase QlcA from yet unculturable soil bacteria. Commun Agric Appl Biol Sci 2008; 73(2): 3-6.
[PMID: 19226736]
[100]
Schipper C, Hornung C, Bijtenhoorn P, Quitschau M, Grond S, Streit WR. Metagenome-derived clones encoding two novel lactonase family proteins involved in biofilm inhibition in Pseudomonas aeruginosa. Appl Environ Microbiol 2009; 75(1): 224-33.
[http://dx.doi.org/10.1128/AEM.01389-08] [PMID: 18997026]
[101]
Bijtenhoorn P, Mayerhofer H, Müller-Dieckmann J, et al. A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One 2011; 6(10)e26278
[http://dx.doi.org/10.1371/journal.pone.0026278] [PMID: 22046268]
[102]
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28(10): 2731-9.
[http://dx.doi.org/10.1093/molbev/msr121] [PMID: 21546353]
[103]
Batoni G, Maisetta G, Esin S. Antimicrobial peptides and their interaction with biofilms of medically relevant bacteria. Biochim Biophys Acta 2016; 1858(5): 1044-60.
[http://dx.doi.org/10.1016/j.bbamem.2015.10.013] [PMID: 26525663]
[104]
Dunne WM Jr. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 2002; 15(2): 155-66.
[http://dx.doi.org/10.1128/CMR.15.2.155-166.2002] [PMID: 11932228]
[105]
Otto M. Bacterial evasion of antimicrobial peptides by biofilm formationAntimicrobial Peptides and Human Disease. Berlin, Heidelberg: Springer Berlin Heidelberg 2006; pp. 251-8.
[http://dx.doi.org/10.1007/3-540-29916-5_10]
[106]
Irani N, Basardeh E, Samiee F, et al. The inhibitory effect of the combination of two new peptides on biofilm formation by Acinetobacter baumannii. Microb Pathog 2018; 121: 310-7.
[http://dx.doi.org/10.1016/j.micpath.2018.05.051] [PMID: 29859290]
[107]
Moravej H, Moravej Z, Yazdanparast M, et al. Antimicrobial peptides: Features, action, and their resistance mechanisms in bacteria. Microb Drug Resist 2018; 24(6): 747-67.
[http://dx.doi.org/10.1089/mdr.2017.0392] [PMID: 29957118]
[108]
Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 2008; 68(1): 223-40.
[http://dx.doi.org/10.1111/j.1365-2958.2008.06152.x] [PMID: 18312276]
[109]
Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003; 55(1): 27-55.
[http://dx.doi.org/10.1124/pr.55.1.2] [PMID: 12615953]
[110]
Patrzykat A, Friedrich CL, Zhang L, Mendoza V, Hancock RE. Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob Agents Chemother 2002; 46(3): 605-14.
[http://dx.doi.org/10.1128/AAC.46.3.605-614.2002] [PMID: 11850238]
[111]
Karageorgopoulos DE, Wang R, Yu XH, Falagas ME. Fosfomycin: evaluation of the published evidence on the emergence of antimicrobial resistance in Gram-negative pathogens. J Antimicrob Chemother 2012; 67(2): 255-68.
[http://dx.doi.org/10.1093/jac/dkr466] [PMID: 22096042]
[112]
Scherer KM, Spille JH, Sahl HG, Grein F, Kubitscheck U. The lantibiotic nisin induces lipid II aggregation, causing membrane instability and vesicle budding. Biophys J 2015; 108(5): 1114-24.
[http://dx.doi.org/10.1016/j.bpj.2015.01.020] [PMID: 25762323]
[113]
Kang JE, Han JW, Jeon BJ, Kim BS. Efficacies of quorum sensing inhibitors, piericidin A and glucopiericidin A, produced by Streptomyces xanthocidicus KPP01532 for the control of potato soft rot caused by Erwinia carotovora subsp. atroseptica. Microbiol Res 2016; 184: 32-41.
[http://dx.doi.org/10.1016/j.micres.2015.12.005] [PMID: 26856451]
[114]
Sun S, Dai X, Sun J, et al. A diketopiperazine factor from Rheinheimera aquimaris QSI02 exhibits anti-quorum sensing activity. Sci Rep 2016; 6: 39637.
[http://dx.doi.org/10.1038/srep39637] [PMID: 28000767]
[115]
Dong X, Yang L. Inhibitory effects of single-walled carbon nanotubes on biofilm formation from Bacillus anthracis spores. Biofouling 2014; 30(10): 1165-74.
[http://dx.doi.org/10.1080/08927014.2014.975797] [PMID: 25389559]
[116]
Héquet A, Humblot V, Berjeaud JM, Pradier CM. Optimized grafting of antimicrobial peptides on stainless steel surface and biofilm resistance tests. Colloids Surf B Biointerfaces 2011; 84(2): 301-9.
[http://dx.doi.org/10.1016/j.colsurfb.2011.01.012] [PMID: 21310597]
[117]
d’Angelo I, Casciaro B, Miro A, Quaglia F, Mangoni ML, Ungaro F. Overcoming barriers in Pseudomonas aeruginosa lung infections: Engineered nanoparticles for local delivery of a cationic antimicrobial peptide. Colloids Surf B Biointerfaces 2015; 135: 717-25.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.027] [PMID: 26340361]
[118]
Chen H, Wubbolts RW, Haagsman HP, Veldhuizen EJA. Inhibition and eradication of Pseudomonas aeruginosa biofilms by host defence peptides. Sci Rep 2018; 8(1): 10446.
[http://dx.doi.org/10.1038/s41598-018-28842-8] [PMID: 29993029]
[119]
Kozuma S, Hirota-Takahata Y, Fukuda D, et al. Kuraya N, Nakajima M, Ando Oe Identification and biological activity of ogipeptins, novel LPS inhibitors produced by marine bacterium. J Antibiot (Tokyo) 2017; 70(1): 79-83.
[http://dx.doi.org/10.1038/ja.2016.81] [PMID: 27381520]
[120]
Hirota-Takahata Y, Kozuma S, Kuraya N, et al. Ogipeptins, novel inhibitors of LPS: physicochemical properties and structural elucidation. J Antibiot (Tokyo) 2017; 70(1): 84-9.
[http://dx.doi.org/10.1038/ja.2016.61] [PMID: 27328866]
[121]
Kozuma S, Hirota-Takahata Y, Fukuda D, et al. Kuraya N, Nakajima M, Ando O a Screening and biological activities of pedopeptins, novel inhibitors of LPS produced by soil bacteria. J Antibiot (Tokyo) 2014; 67(3): 237-42.
[http://dx.doi.org/10.1038/ja.2013.121] [PMID: 24281661]
[122]
de la Fuente-Núñez C, Reffuveille F, Mansour SC, et al. D-enantiomeric peptides that eradicate wild-type and multidrug-resistant biofilms and protect against lethal Pseudomonas aeruginosa infections. Chem Biol 2015; 22(2): 196-205.
[http://dx.doi.org/10.1016/j.chembiol.2015.01.002] [PMID: 25699603]
[123]
Grassi L, Maisetta G, Esin S, Batoni G. Combination strategies to enhance the efficacy of antimicrobial peptides against bacterial biofilms. Front Microbiol 2017; 8: 2409.
[http://dx.doi.org/10.3389/fmicb.2017.02409] [PMID: 29375486]
[124]
Sangeetha J, Thomas S, Arutchelvi J, Doble M, Philip J. Functionalization of iron oxide nanoparticles with biosurfactants and biocompatibility studies. J Biomed Nanotechnol 2013; 9(5): 751-64.
[http://dx.doi.org/10.1166/jbn.2013.1590] [PMID: 23802405]
[125]
Klausen M, Gjermansen M, Kreft JU, Tolker-Nielsen T. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiol Lett 2006; 261(1): 1-11.
[http://dx.doi.org/10.1111/j.1574-6968.2006.00280.x] [PMID: 16842351]
[126]
Li YH, Tian X. Quorum sensing and bacterial social interactions in biofilms. Sensors (Basel) 2012; 12(3): 2519-38.
[http://dx.doi.org/10.3390/s120302519] [PMID: 22736963]
[127]
Dostert M, Belanger CR, Hancock REW. Design and assessment of anti-biofilm peptides: Steps toward clinical application. J Innate Immun 2018; 1-12.
[PMID: 30134244]
[128]
Zhou J, Bi S, Chen H, et al. Anti-biofilm and antivirulence activities of metabolites from Plectosphaerella cucumerina against Pseudomonas aeruginosa. Front Microbiol 2017; 8: 769.
[http://dx.doi.org/10.3389/fmicb.2017.00769] [PMID: 28515715]
[129]
Jang CH, Piao YL, Huang X, et al. Modeling and re-engineering of Azotobacter vinelandii alginate lyase to enhance its catalytic efficiency for accelerating biofilm degradation. PLoS One 2016; 11(6)e0156197
[http://dx.doi.org/10.1371/journal.pone.0156197] [PMID: 27253324]
[130]
Lin F, Li C, Chen Z. Bacteria-derived carbon dots inhibit biofilm formation of Escherichia coli without affecting cell growth. Front Microbiol 2018; 9: 259.
[http://dx.doi.org/10.3389/fmicb.2018.00259] [PMID: 29503644]
[131]
Kunze B, Reck M, Dötsch A, et al. Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum. BMC Microbiol 2010; 10: 199.
[http://dx.doi.org/10.1186/1471-2180-10-199] [PMID: 20659313]
[132]
Reck M, Rutz K, Kunze B, et al. The biofilm inhibitor carolacton disturbs membrane integrity and cell division of Streptococcus mutans through the serine/threonine protein kinase PknB. J Bacteriol 2011; 193(20): 5692-706.
[http://dx.doi.org/10.1128/JB.05424-11] [PMID: 21840978]
[133]
Ma ZP, Song Y, Cai ZH, et al. Anti-quorum sensing activities of selected coral symbiotic bacterial extracts from the south china sea. Front Cell Infect Microbiol 2018; 8: 144.
[http://dx.doi.org/10.3389/fcimb.2018.00144] [PMID: 29868500]
[134]
Ballow M, Conaway MR, Sriaroon P, et al. Construction and validation of a novel disease-specific quality-of-life instrument for patients with primary antibody deficiency disease (PADQOL-16). J Allergy Clin Immunol 139(6): 2007-10. 2017
[135]
De Rienzo MA, Martin PJ. Effect of mono and di-rhamnolipids on biofilms pre-formed by Bacillus subtilis BBK006. Curr Microbiol 2016; 73(2): 183-9.
[http://dx.doi.org/10.1007/s00284-016-1046-4] [PMID: 27113589]
[136]
Lee JH, Kim E, Choi H, Lee J. Collismycin C from the micronesian marine bacterium Streptomyces sp. MC025 inhibits Staphylococcus aureus biofilm formation. Mar Drugs 2017; 15(12)E387
[http://dx.doi.org/10.3390/md15120387] [PMID: 29231844]
[137]
Kim YG, Lee JH, Kim CJ, et al. Antibiofilm activity of Streptomyces sp. BFI 230 and Kribbella sp. BFI 1562 against Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2012; 96(6): 1607-17.
[http://dx.doi.org/10.1007/s00253-012-4225-7] [PMID: 22722911]
[138]
Singh VK, Mishra A, Jha B. Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Front Cell Infect Microbiol 2017; 7: 337.
[http://dx.doi.org/10.3389/fcimb.2017.00337] [PMID: 28798903]
[139]
Lee JH, Kim YG, Kim CJ, Lee JC, Cho MH, Lee J. Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation. Appl Microbiol Biotechnol 2012; 96(4): 1071-8.
[http://dx.doi.org/10.1007/s00253-012-3881-y] [PMID: 22274708]
[140]
Oja T, San Martin Galindo P, Taguchi T, et al. Effective antibiofilm polyketides against Staphylococcus aureus from the pyranonaphthoquinone biosynthetic pathways of Streptomyces Species. Antimicrob Agents Chemother 2015; 59(10): 6046-52.
[http://dx.doi.org/10.1128/AAC.00991-15] [PMID: 26195520]
[141]
Kim SK, Park HY, Lee JH. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect. Appl Environ Microbiol 2015; 81(7): 2328-38.
[http://dx.doi.org/10.1128/AEM.03551-14] [PMID: 25616795]
[142]
Gómez NC, Abriouel H, Grande MA, Pulido RP, Gálvez A. Effect of enterocin AS-48 in combination with biocides on planktonic and sessile Listeria monocytogenes. Food Microbiol 2012; 30(1): 51-8.
[http://dx.doi.org/10.1016/j.fm.2011.12.013] [PMID: 22265283]
[143]
Zezzi do Valle Gomes M, Nitschke M. Evaluation of rhamnolipid and surfactin to reduce the adhesion and remove biofilms of individual and mixed cultures of food pathogenic bacteria. Food Control 2012; 25(2): 441-7.
[http://dx.doi.org/10.1016/j.foodcont.2011.11.025]
[144]
Pérez-Ibarreche M, Castellano P, Leclercq A, Vignolo G. Control of Listeria monocytogenes biofilms on industrial surfaces by the bacteriocin-producing Lactobacillus sakei CRL1862. FEMS Microbiol Lett 2016; 363(12)fnw118
[http://dx.doi.org/10.1093/femsle/fnw118] [PMID: 27190146]
[145]
Cirkovic I, Bozic DD, Draganic V, et al. Licheniocin 50.2 and bacteriocins from Lactococcus lactis subsp. lactis biovar. diacetylactis BGBU1-4 inhibit biofilms of coagulase negative Staphylococci and Listeria monocytogenes clinical isolates. PLoS One 2016; 11(12)e0167995
[http://dx.doi.org/10.1371/journal.pone.0167995] [PMID: 27930711]
[146]
Camargo AC, de Paula OA, Todorov SD, Nero LA. In vitro evaluation of bacteriocins activity against Listeria monocytogenes biofilm formation. Appl Biochem Biotechnol 2016; 178(6): 1239-51.
[http://dx.doi.org/10.1007/s12010-015-1941-3] [PMID: 26660467]
[147]
Chopra L, Singh G, Kumar Jena K, Sahoo DK. Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep 2015; 5: 13412.
[http://dx.doi.org/10.1038/srep13412] [PMID: 26292786]
[148]
Upadhyay A, Upadhyaya I, Mooyottu S, Venkitanarayanan K. Eugenol in combination with lactic acid bacteria attenuates Listeria monocytogenes virulence in vitro and in invertebrate model Galleria mellonella. J Med Microbiol 2016; 65(6): 443-55.
[http://dx.doi.org/10.1099/jmm.0.000251] [PMID: 27002648]
[149]
Kanmani P, Suganya K, Kumar RS, et al. Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish. Appl Biochem Biotechnol 2013; 169(3): 1001-15.
[http://dx.doi.org/10.1007/s12010-012-0074-1] [PMID: 23296803]
[150]
Spanò A, Laganà P, Visalli G, Maugeri TL, Gugliandolo C. In vitro antibiofilm activity of an exopolysaccharide from the marine thermophilic Bacillus licheniformis T14. Curr Microbiol 2016; 72(5): 518-28.
[http://dx.doi.org/10.1007/s00284-015-0981-9] [PMID: 26750122]
[151]
Kiymaci ME, Altanlar N, Gumustas M, Ozkan SA, Akin A. Quorum sensing signals and related virulence inhibition of Pseudomonas aeruginosa by a potential probiotic strain’s organic acid. Microb Pathog 2018; 121: 190-7.
[http://dx.doi.org/10.1016/j.micpath.2018.05.042] [PMID: 29807134]
[152]
Casillo A, Papa R, Ricciardelli A, et al. Anti-biofilm activity of a long-chain fatty aldehyde from antarctic Pseudoalteromonas haloplanktis TAC125 against Staphylococcus epidermidis biofilm. Front Cell Infect Microbiol 2017; 7: 46.
[http://dx.doi.org/10.3389/fcimb.2017.00046] [PMID: 28280714]
[153]
Chang H, Zhou J, Zhu X, et al. Strain identification and quorum sensing inhibition characterization of marine-derived Rhizobium sp. NAO1. R Soc Open Sci 2017; 4(3)170025
[http://dx.doi.org/10.1098/rsos.170025] [PMID: 28405399]
[154]
Dusane DH, Pawar VS, Nancharaiah YV, Venugopalan VP, Kumar AR, Zinjarde SS. Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling 2011; 27(6): 645-54.
[http://dx.doi.org/10.1080/08927014.2011.594883] [PMID: 21707248]
[155]
Hamza F, Satpute S, Banpurkar A, Kumar AR, Zinjarde S. Biosurfactant from a marine bacterium disrupts biofilms of pathogenic bacteria in a tropical aquaculture system. FEMS Microbiol Ecol 2017; 93(11)
[http://dx.doi.org/10.1093/femsec/fix140] [PMID: 29087455]
[156]
Kiran GS, Sabarathnam B, Selvin J. Biofilm disruption potential of a glycolipid biosurfactant from marine Brevibacterium casei. FEMS Immunol Med Microbiol 2010; 59(3): 432-8.
[http://dx.doi.org/10.1111/j.1574-695X.2010.00698.x] [PMID: 20528933]
[157]
Lalitha C, Raman T, Rathore SS, Ramar M, Munusamy A, Ramakrishnan J. ASK2 bioactive compound Inhibits MDR Klebsiella pneumoniae by antibiofilm activity, modulating macrophage cytokines and opsonophagocytosis. Front Cell Infect Microbiol 2017; 7: 346.
[http://dx.doi.org/10.3389/fcimb.2017.00346] [PMID: 28824881]
[158]
Mahdhi A, Leban N, Chakroun I, et al. Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation. Microb Pathog 2017; 109: 214-20.
[http://dx.doi.org/10.1016/j.micpath.2017.05.046] [PMID: 28583888]
[159]
Kimyon Ö, Das T, Ibugo AI, et al. Serratia secondary metabolite prodigiosin inhibits Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological Molecules. Front Microbiol 2016; 7: 972.
[http://dx.doi.org/10.3389/fmicb.2016.00972] [PMID: 27446013]
[160]
Suzuki N, Ohtaguro N, Yoshida Y, et al. A compound inhibits biofilm formation of Staphylococcus aureus from Streptomyces. Biol Pharm Bull 2015; 38(6): 889-92.
[http://dx.doi.org/10.1248/bpb.b15-00053] [PMID: 26027829]
[161]
Lee JH, Kim YG, Lee K, et al. Streptomyces-derived actinomycin D inhibits biofilm formation by Staphylococcus aureus and its hemolytic activity. Biofouling 2016; 32(1): 45-56.
[http://dx.doi.org/10.1080/08927014.2015.1125888] [PMID: 26785934]
[162]
Lee J, Attila C, Cirillo SL, Cirillo JD, Wood TK. Indole and 7-hydroxyindole diminish Pseudomonas aeruginosa virulence. Microb Biotechnol 2009; 2(1): 75-90.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00061.x] [PMID: 21261883]
[163]
Chen X, Chen J, Yan Y, et al. Quorum sensing inhibitors from marine bacteria Oceanobacillus sp. XC22919. Nat Prod Res 2018; •••: 1-5.
[PMID: 29430942]
[164]
Lu X, Yuan Y, Xue XL, Zhang GP, Zhou SN. Identification of the critical role of Tyr-194 in the catalytic activity of a novel N-acyl-homoserine lactonase from marine Bacillus cereus strain Y2. Curr Microbiol 2006; 53(4): 346-50.
[http://dx.doi.org/10.1007/s00284-006-0224-1] [PMID: 16972128]
[165]
Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH. Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 2002; 68(4): 1754-9.
[http://dx.doi.org/10.1128/AEM.68.4.1754-1759.2002] [PMID: 11916693]
[166]
Zhang HB, Wang LH, Zhang LH. Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci USA 2002; 99(7): 4638-43.
[http://dx.doi.org/10.1073/pnas.022056699] [PMID: 11930013]
[167]
Carlier A, Uroz S, Smadja B, et al. The Ti plasmid of Agrobacterium tumefaciens harbors an attM-paralogous gene, aiiB, also encoding N-Acyl homoserine lactonase activity. Appl Environ Microbiol 2003; 69(8): 4989-93.
[http://dx.doi.org/10.1128/AEM.69.8.4989-4993.2003] [PMID: 12902298]
[168]
Park SY, Lee SJ, Oh TK, et al. AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 2003; 149(Pt 6): 1541-50.
[http://dx.doi.org/10.1099/mic.0.26269-0] [PMID: 12777494]
[169]
Uroz S, Oger PM, Chapelle E, Adeline MT, Faure D, Dessaux Y. A Rhodococcus qsdA-encoded enzyme defines a novel class of large-spectrum quorum-quenching lactonases. Appl Environ Microbiol 2008; 74(5): 1357-66.
[http://dx.doi.org/10.1128/AEM.02014-07] [PMID: 18192419]
[170]
Mei GY, Yan XX, Turak A, Luo ZQ, Zhang LQ, Aid H. AidH, an alpha/beta-hydrolase fold family member from an Ochrobactrum sp. strain, is a novel N-acylhomoserine lactonase. Appl Environ Microbiol 2010; 76(15): 4933-42.
[http://dx.doi.org/10.1128/AEM.00477-10] [PMID: 20525860]
[171]
Dong W, Zhu J, Guo X, et al. Characterization of AiiK, an AHL lactonase, from Kurthia huakui LAM0618T and its application in quorum quenching on Pseudomonas aeruginosa PAO1. Sci Rep 2018; 8(1): 6013.
[http://dx.doi.org/10.1038/s41598-018-24507-8] [PMID: 29662232]
[172]
Shastry RP, Dolan SK, Abdelhamid Y, Vittal RR, Welch M. Purification and characterisation of a quorum quenching AHL-lactonase from the endophytic bacterium Enterobacter sp. CS66. FEMS Microbiol Lett 2018; 365(9)
[http://dx.doi.org/10.1093/femsle/fny054] [PMID: 29518220]
[173]
Rajesh PS, Rai VR. Purification and antibiofilm activity of AHL-lactonase from endophytic Enterobacter aerogenes VT66. Int J Biol Macromol 2015; 81: 1046-52.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.09.048] [PMID: 26432367]
[174]
Mayer C, Romero M, Muras A, Otero A. Aii20J, a wide-spectrum thermostable N-acylhomoserine lactonase from the marine bacterium Tenacibaculum sp. 20J, can quench AHL-mediated acid resistance in Escherichia coli. Appl Microbiol Biotechnol 2015; 99(22): 9523-39.
[http://dx.doi.org/10.1007/s00253-015-6741-8] [PMID: 26092757]
[175]
Tang K, Su Y, Brackman G, et al. MomL, a novel marine-derived N-acyl homoserine lactonase from Muricauda olearia. Appl Environ Microbiol 2015; 81(2): 774-82.
[http://dx.doi.org/10.1128/AEM.02805-14] [PMID: 25398866]
[176]
Gui M, Wu R, Liu L, Wang S, Zhang L, Li P. Effects of quorum quenching by AHL lactonase on AHLs, protease, motility and proteome patterns in Aeromonas veronii LP-11. Int J Food Microbiol 2017; 252: 61-8.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2017.04.005] [PMID: 28482205]
[177]
See-Too WS, Ee R, Lim YL, et al. AidP, a novel N-Acyl homoserine lactonase gene from Antarctic Planococcus sp. Sci Rep 2017; 7: 42968.
[http://dx.doi.org/10.1038/srep42968] [PMID: 28225085]
[178]
Morohoshi T, Sato N, Iizumi T, Tanaka A, Ikeda T. Identification and characterization of a novel N-acyl-homoserine lactonase gene in Sphingomonas ursincola isolated from industrial cooling water systems. J Biosci Bioeng 2017; 123(5): 569-75.
[http://dx.doi.org/10.1016/j.jbiosc.2016.12.010] [PMID: 28129983]
[179]
Huang W, Lin Y, Yi S, et al. QsdH, a novel AHL lactonase in the RND-type inner membrane of marine Pseudoalteromonas byunsanensis strain 1A01261. PLoS One 2012; 7(10)e46587
[http://dx.doi.org/10.1371/journal.pone.0046587] [PMID: 23056356]
[180]
Easwaran N, Karthikeyan S, Sridharan B, Gothandam KM. Identification and analysis of the salt tolerant property of AHL lactonase (AiiATSAWB) of Bacillus species. J Basic Microbiol 2015; 55(5): 579-90.
[http://dx.doi.org/10.1002/jobm.201400013] [PMID: 25041996]
[181]
Elias M, Dupuy J, Merone L, et al. Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 2008; 379(5): 1017-28.
[http://dx.doi.org/10.1016/j.jmb.2008.04.022] [PMID: 18486146]
[182]
Kusada H, Tamaki H, Kamagata Y, Hanada S, Kimura N. A Novel quorum-quenching N-acylhomoserine lactone acylase from Acidovorax sp. strain MR-S7 mediates antibiotic resistance. Appl Environ Microbiol 2017; 83(13): e00080-17.
[http://dx.doi.org/10.1128/AEM.00080-17] [PMID: 28455333]
[183]
Liu N, Yu M, Zhao Y, et al. PfmA, a novel quorum-quenching N-acylhomoserine lactone acylase from Pseudoalteromonas flavipulchra. Microbiology 2017; 163(10): 1389-98.
[http://dx.doi.org/10.1099/mic.0.000535] [PMID: 28920855]
[184]
Riaz K, Elmerich C, Moreira D, Raffoux A, Dessaux Y, Faure D. A metagenomic analysis of soil bacteria extends the diversity of quorum-quenching lactonases. Environ Microbiol 2008; 10(3): 560-70.
[http://dx.doi.org/10.1111/j.1462-2920.2007.01475.x] [PMID: 18201196]
[185]
Wang WZ, Morohoshi T, Ikenoya M, Someya N, Ikeda T, Aii M. AiiM, a novel class of N-acylhomoserine lactonase from the leaf-associated bacterium Microbacterium testaceum. Appl Environ Microbiol 2010; 76(8): 2524-30.
[http://dx.doi.org/10.1128/AEM.02738-09] [PMID: 20173075]
[186]
Morohoshi T, Tominaga Y, Someya N, Ikeda T. Complete genome sequence and characterization of the N-acylhomoserine lactone-degrading gene of the potato leaf-associated Solibacillus silvestris. J Biosci Bioeng 2012; 113(1): 20-5.
[http://dx.doi.org/10.1016/j.jbiosc.2011.09.006] [PMID: 22019407]
[187]
Czajkowski R, Krzyżanowska D, Karczewska J, et al. Inactivation of AHLs by Ochrobactrum sp. A44 depends on the activity of a novel class of AHL acylase. Environ Microbiol Rep 2011; 3(1): 59-68.
[http://dx.doi.org/10.1111/j.1758-2229.2010.00188.x] [PMID: 23761232]
[188]
Chow JY, Wu L, Yew WS. Directed evolution of a quorum-quenching lactonase from Mycobacterium avium subsp. paratuberculosis K-10 in the amidohydrolase superfamily. Biochemistry 2009; 48(20): 4344-53.
[http://dx.doi.org/10.1021/bi9004045] [PMID: 19374350]
[189]
Bokhove M, Nadal Jimenez P, Quax WJ, Dijkstra BW. The quorum-quenching N-acyl homoserine lactone acylase PvdQ is an Ntn-hydrolase with an unusual substrate-binding pocket. Proc Natl Acad Sci USA 2010; 107(2): 686-91.
[http://dx.doi.org/10.1073/pnas.0911839107] [PMID: 20080736]
[190]
Huang JJ, Petersen A, Whiteley M, Leadbetter JR. Identification of QuiP, the product of gene PA1032, as the second acyl-homoserine lactone acylase of Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2006; 72(2): 1190-7.
[http://dx.doi.org/10.1128/AEM.72.2.1190-1197.2006] [PMID: 16461666]
[191]
Romero M, Diggle SP, Heeb S, Cámara M, Otero A. Quorum quenching activity in Anabaena sp. PCC 7120: identification of AiiC, a novel AHL-acylase. FEMS Microbiol Lett 2008; 280(1): 73-80.
[http://dx.doi.org/10.1111/j.1574-6968.2007.01046.x] [PMID: 18194337]
[192]
Park SY, Kang HO, Jang HS, Lee JK, Koo BT, Yum DY. Identification of extracellular N-acylhomoserine lactone acylase from a Streptomyces sp. and its application to quorum quenching. Appl Environ Microbiol 2005; 71(5): 2632-41.
[http://dx.doi.org/10.1128/AEM.71.5.2632-2641.2005] [PMID: 15870355]
[193]
Chen CN, Chen CJ, Liao CT, Lee CY. A probable aculeacin A acylase from the Ralstonia solanacearum GMI1000 is N-acyl-homoserine lactone acylase with quorum-quenching activity. BMC Microbiol 2009; 9: 89.
[http://dx.doi.org/10.1186/1471-2180-9-89] [PMID: 19426552]
[194]
Morohoshi T, Nakazawa S, Ebata A, Kato N, Ikeda T. Identification and characterization of N-acylhomoserine lactone-acylase from the fish intestinal Shewanella sp. strain MIB015. Biosci Biotechnol Biochem 2008; 72(7): 1887-93.
[http://dx.doi.org/10.1271/bbb.80139] [PMID: 18603799]
[195]
Shepherd RW, Lindow SE. Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Appl Environ Microbiol 2009; 75(1): 45-53.
[http://dx.doi.org/10.1128/AEM.01723-08] [PMID: 18997027]
[196]
Cho H, Huang X, Lan Piao Y, et al. Molecular modeling and redesign of alginate lyase from Pseudomonas aeruginosa for accelerating CRPA biofilm degradation. Proteins 2016; 84(12): 1875-87.
[http://dx.doi.org/10.1002/prot.25171] [PMID: 27676452]
[197]
Muslim SN, Al-Kadmy IMS, Hussein NH, et al. Chitosanase purified from bacterial isolate Bacillus licheniformis of ruined vegetables displays broad spectrum biofilm inhibition. Microb Pathog 2016; 100: 257-62.
[http://dx.doi.org/10.1016/j.micpath.2016.10.001] [PMID: 27725283]
[198]
Tan Y, Ma S, Liu C, Yu W, Han F. Enhancing the stability and antibiofilm activity of DspB by immobilization on carboxymethyl chitosan nanoparticles. Microbiol Res 2015; 178: 35-41.
[http://dx.doi.org/10.1016/j.micres.2015.06.001] [PMID: 26302845]
[199]
Mansson M, Nielsen A, Kjærulff L, et al. Inhibition of virulence gene expression in Staphylococcus aureus by novel depsipeptides from a marine photobacterium. Mar Drugs 2011; 9(12): 2537-52.
[http://dx.doi.org/10.3390/md9122537] [PMID: 22363239]
[200]
Algburi A, Zehm S, Netrebov V, Bren AB, Chistyakov V, Chikindas ML. Subtilosin prevents biofilm formation by inhibiting bacterial quorum sensing. Probiotics Antimicrob Proteins 2017; 9(1): 81-90.
[http://dx.doi.org/10.1007/s12602-016-9242-x] [PMID: 27914001]
[201]
Gowrishankar S, Sivaranjani M, Kamaladevi A, Ravi AV, Balamurugan K, Karutha Pandian S. Cyclic dipeptide cyclo(l-leucyl-l-prolyl) from marine Bacillus amyloliquefaciens mitigates biofilm formation and virulence in Listeria monocytogenes. Pathog Dis 2016; 74(4)ftw017
[http://dx.doi.org/10.1093/femspd/ftw017] [PMID: 26945590]
[202]
Teasdale ME, Donovan KA, Forschner-Dancause SR, Rowley DC. Gram-positive marine bacteria as a potential resource for the discovery of quorum sensing inhibitors. Mar Biotechnol (NY) 2011; 13(4): 722-32.
[http://dx.doi.org/10.1007/s10126-010-9334-7] [PMID: 21152942]
[203]
Regmi S, Choi YH, Choi YS, Kim MR, Yoo JC. Antimicrobial peptide isolated from Bacillus amyloliquefaciens K14 revitalizes its use in combinatorial drug therapy. Folia Microbiol (Praha) 2017; 62(2): 127-38.
[http://dx.doi.org/10.1007/s12223-016-0479-2] [PMID: 27787755]
[204]
Costa GA, Rossatto FCP, Medeiros AW, et al. Evaluation antibacterial and antibiofilm activity of the antimicrobial peptide P34 against Staphylococcus aureus and Enterococcus faecalis. An Acad Bras Cienc 2018; 90(1): 73-84.
[http://dx.doi.org/10.1590/0001-3765201820160131] [PMID: 29424388]
[205]
Dusane DH, Damare SR, Nancharaiah YV, et al. Disruption of microbial biofilms by an extracellular protein isolated from epibiotic tropical marine strain of Bacillus licheniformis. PLoS One 2013; 8(5)e64501
[http://dx.doi.org/10.1371/journal.pone.0064501] [PMID: 23691235]
[206]
Chalasani AG, Roy U, Nema S. Purification and characterisation of a novel antistaphylococcal peptide (ASP-1) from Bacillus sp. URID 12.1. Int J Antimicrob Agents 2018; 51(1): 89-97.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.08.030] [PMID: 28887200]
[207]
Moryl M, Spętana M, Dziubek K, et al. Antimicrobial, antiadhesive and antibiofilm potential of lipopeptides synthesised by Bacillus subtilis, on uropathogenic bacteria. Acta Biochim Pol 2015; 62(4): 725-32.
[http://dx.doi.org/10.18388/abp.2015_1120] [PMID: 26505130]
[208]
Kiran GS, Priyadharsini S, Sajayan A, Priyadharsini GB, Poulose N, Selvin J. Production of lipopeptide biosurfactant by a marine Nesterenkonia sp. and its application in food industry. Front Microbiol 2017; 8: 1138.
[http://dx.doi.org/10.3389/fmicb.2017.01138] [PMID: 28702002]
[209]
Pradhan AK, Pradhan N, Mall G, et al. Application of lipopeptide biosurfactant isolated from a halophile: Bacillus tequilensis CH for inhibition of biofilm. Appl Biochem Biotechnol 2013; 171(6): 1362-75.
[http://dx.doi.org/10.1007/s12010-013-0428-3] [PMID: 23955294]
[210]
Janek T, Łukaszewicz M, Krasowska A. Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 2012; 12: 24.
[http://dx.doi.org/10.1186/1471-2180-12-24] [PMID: 22360895]
[211]
Salehi R, Savabi O, Kazemi M, et al. Effects of Lactobacillus reuteri-derived biosurfactant on the gene expression profile of essential adhesion genes (gtfB, gtfC and ftf) of Streptococcus mutans. Adv Biomed Res 2014; 3: 169.
[http://dx.doi.org/10.4103/2277-9175.139134] [PMID: 25221772]
[212]
Bakkiyaraj D, Pandian SK. In vitro and in vivo antibiofilm activity of a coral associated actinomycete against drug resistant Staphylococcus aureus biofilms. Biofouling 2010; 26(6): 711-7.
[http://dx.doi.org/10.1080/08927014.2010.511200] [PMID: 20706890]
[213]
Yu S, Zhu X, Zhou J, Cai Z. Biofilm inhibition and pathogenicity attenuation in bacteria by Proteus mirabilis. R Soc Open Sci 2018; 5(4)170702
[http://dx.doi.org/10.1098/rsos.170702] [PMID: 29765621]
[214]
You J, Xue X, Cao L, et al. Inhibition of Vibrio biofilm formation by a marine actinomycete strain A66. Appl Microbiol Biotechnol 2007; 76(5): 1137-44.
[http://dx.doi.org/10.1007/s00253-007-1074-x] [PMID: 17624525]
[215]
Bakkiyaraj D, Sivasankar C, Pandian SK. Anti-pathogenic potential of coral associated bacteria isolated from gulf of mannar against Pseudomonas aeruginosa. Indian J Microbiol 2013; 53(1): 111-3.
[http://dx.doi.org/10.1007/s12088-012-0342-3] [PMID: 24426087]
[216]
Busetti A, Shaw G, Megaw J, Gorman SP, Maggs CA, Gilmore BF. Marine-derived quorum-sensing inhibitory activities enhance the antibacterial efficacy of tobramycin against Pseudomonas aeruginosa. Mar Drugs 2014; 13(1): 1-28.
[http://dx.doi.org/10.3390/md13010001] [PMID: 25546516]
[217]
Musthafa KS, Saroja V, Pandian SK, Ravi AV. Antipathogenic potential of marine Bacillus sp. SS4 on N-acyl-homoserine-lactone-mediated virulence factors production in Pseudomonas aeruginosa (PAO1). J Biosci 2011; 36(1): 55-67.
[http://dx.doi.org/10.1007/s12038-011-9011-7] [PMID: 21451248]
[218]
Alasil SM, Omar R, Ismail S, Yusof MY. Inhibition of quorum sensing-controlled virulence factors and biofilm formation in Pseudomonas aeruginosa by culture extract from novel bacterial species of Paenibacillus using a rat model of chronic lung infection. Int J Bacteriol 2015; 2015671562
[http://dx.doi.org/10.1155/2015/671562] [PMID: 26904749]
[219]
Papa R, Selan L, Parrilli E, et al. Anti-biofilm activities from marine cold adapted bacteria against Staphylococci and Pseudomonas aeruginosa. Front Microbiol 2015; 6: 1333.
[http://dx.doi.org/10.3389/fmicb.2015.01333] [PMID: 26696962]
[220]
Balasubramanian S, Othman EM, Kampik D, et al. Marine sponge-derived Streptomyces sp. SBT343 extract inhibits Staphylococcal biofilm formation. Front Microbiol 2017; 8: 236.
[http://dx.doi.org/10.3389/fmicb.2017.00236] [PMID: 28261188]
[221]
Hamza F, Kumar AR, Zinjarde S. Efficacy of cell free supernatant from Bacillus licheniformis in protecting Artemia salina against Vibrio alginolyticus and Pseudomonas gessardii. Microb Pathog 2018; 116: 335-44.
[http://dx.doi.org/10.1016/j.micpath.2018.02.003] [PMID: 29408316]
[222]
Kim Y, Lee JW, Kang SG, Oh S, Griffiths MW. Bifidobacterium spp. influences the production of autoinducer-2 and biofilm formation by Escherichia coli O157:H7. Anaerobe 2012; 18(5): 539-45.
[http://dx.doi.org/10.1016/j.anaerobe.2012.08.006] [PMID: 23010308]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 11
Year: 2019
Page: [1156 - 1179]
Pages: 24
DOI: 10.2174/1389450120666190423161249
Price: $58

Article Metrics

PDF: 21
HTML: 2
EPUB: 1
PRC: 1