Preparation of Carbon-14 Labeled 2-(2-mercaptoacetamido)-3-phenylpropanoic Acid as Metallo-beta-lactamases Inhibitor (MBLI), for Coadministration with Beta-lactam Antibiotics

Author(s): Ali Maleki*, Reza Taheri-Ledari, Reza Eivazzadeh-Keihan, Miguel de la Guardia, Ahad Mokhtarzadeh*.

Journal Name: Current Organic Synthesis

Volume 16 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Aim and Objective: Bacteria could become resistant to β-lactam antibiotics through production of β- lactamase enzymes like metallo-β-lactamase. 2-(2-mercaptoacetamido)-3-phenylpropanoic acid was reported as a model inhibitor for this enzyme. In order to elucidate the mechanism of action in the body’s internal environment, preparation of a labeled version of 2-(2-mercaptoacetamido)-3-phenylpropanoic acid finds importance. In this regard, we report a convenient synthetic pathway for preparation of carbon-14 labeled 2-(2- mercaptoacetamido)-3-phenylpropanoic acid.

Materials and Methods: This study was initiated by using non-radioactive materials. Then, necessary characterization was performed after each of the reactions. Finally, the synthesis steps were continued to produce the target labeled product. For labeled products, the process was started from benzoic acid-[carboxyl- 14C] which has been prepared from barium 14C-carbonate. Chromatography column and NMR spectroscopy were used for purifications and identification of desired products, respectively. Barium [14C]carbonate was purchased from Amersham Pharmacia Biotech and was converted to [14C]benzyl bromide. Radioactivity was determined using liquid scintillation spectrometer.

Results: We used [14C]PhCH2Br which was previously prepared from [14C]BaCO3, H2SO4, PhMgI, LAH and HBr, respectively. To neutralize the [14C]phenylalanine in acidic condition and to reach an isoelectric point of phenylalanine (pH = 5.48), Pb(OH)2 was used. Next, thioacetic acid and bromo acetic acid were used to prepare (acetylthio) acetic acid. A peptide coupling reagent was used in this stage to facilitating amide bond formation reaction between [14C]methyl-2-amino-3-phenyl propanoate hydrochloride and (acetylthio) acetic acid.

Conclusion: Carbon-14 labeled 2-(2-mercaptoacetamido)-3-phenylpropanoic acid via radioactive phenylalanine was obtained with overall chemical yield 73% and radioactivity 65.3 nCi. The labeled target product will be used for in vivo pharmacological studies.

Keywords: β-lactam antibiotics, β -lactamase inhibitors, thiol-carboxylic acid, carbon-14-labeled, labeled medicinal compounds, synthetic route.

[1]
Dash, C. Penicillin allergy and the cephalosporins. J. Antimicrob. Chemother., 1975, 1, 107-118.
[2]
Azami, H.; Tsutsumi, H.; Matsuda, K.; Barrett, D.; Hattori, K.; Nakajima, T.; Kuroda, S.; Kamimura, T.; Murata, M. Synthesis and antibacterial activity of novel 4-pyrrolidinylthio carbapenems—I. 2-alkoxymethyl derivatives. Bioorg. Med. Chem., 1997, 5, 2069-2087.
[3]
Czwan, E.; Brors, B.; Kipling, D. Modelling p-value distributions to improve theme-driven survival analysis of cancer transcriptome datasets. BMC Bioinformatics, 2010, 11, 19.
[4]
Florkin, M. Stotz, E.H. Comprehensive Biochemistry; Elsevier: Amsterdam, 1963, Vol. 11, pp. 181-190.
[5]
Walsh, C. Where will new antibiotics come from? Nat. Rev. Microbiol., 2003, 1, 65-70.
[6]
Raja, A.; Lebbos, J.; Kirkpatrick, P. Telithromycin. Nat. Rev. Drug Discov., 2004, 3, 733-734.
[7]
Phelan, E.K.; Miraula, M.; Selleck, C.; Ollis, D.L.; Schenk, G.; Mitić, N. Metallo-β-lactamases: A major threat to human health. Am. J. Mol. Biol., 2014, 4, 89-104.
[8]
Turck, M. Clinical application of the newer ß-lactam antibiotics. J. Antimicrob. Chemother., 1988, 22, 45-62.
[9]
Jacoby, G.A.; Archer, G.L. New mechanisms of bacterial resistance to antimicrobial agents. N. Engl. J. Med., 1991, 324, 601-612.
[10]
Nordmann, P.; Mariotte, S.; Naas, T.; Labia, R.; Nicolas, M. Biochemical properties of a carbapenem-hydrolyzing beta-lactamase from Enterobacter cloacae and cloning of the gene into Escherichia coli. Antimicrob. Agents Chemother., 1993, 37, 939-946.
[11]
McGeary, R.P.; Tan, D.T.; Schenk, G. Progress toward inhibitors of metallo-β-lactamases. Future Med. Chem., 2017, 9, 673-691.
[12]
Gillies, M.; Ranakusuma, A.; Hoffmann, T.; Thorning, S.; McGuire, T.; Glasziou, P.; Del Mar, C. Common harms from amoxicillin: A systematic review and meta-analysis of randomized placebo-controlled trials for any indication. Can. Med. Assoc. J., 2015, 187, 21-31.
[13]
Arjomandi, O.K.; Hussein, W.M.; Vella, P.; Yusof, Y.; Sidjabat, H.E.; Schenk, G.; McGeary, R.P. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Eur. J. Med. Chem., 2016, 114, 318-327.
[14]
Toney, J.H.; Hammond, G.G.; Fitzgerald, P.M.; Sharma, N.; Balkovec, J.M.; Rouen, G.P.; Olson, S.H.; Hammond, M.L.; Greenlee, M.L.; Gao, Y-D. Succinic acids as potent inhibitors of plasmid-borne IMP-1 metallo-β-lactamase. J. Biol. Chem., 2001, 276, 31913-31918.
[15]
Drawz, S.M.; Bonomo, R.A. Three decades of β-lactamase inhibitors. Clin. Microbiol. Rev., 2010, 23, 160-201.
[16]
Elander, R. Industrial production of β-lactam antibiotics. Appl. Microbiol. Biotechnol., 2003, 61, 385-392.
[17]
Ambler, R. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B, 1980, 289, 321-331.
[18]
Vella, P.; Hussein, W.M.; Leung, E.W.; Clayton, D.; Ollis, D.L.; Mitić, N.; Schenk, G.; McGeary, R.P. The identification of new metallo-β-lactamase inhibitor leads from fragment-based screening. Bioorg. Med. Chem. Lett., 2011, 21, 3282-3285.
[19]
Liénard, B.M.; Garau, G.; Horsfall, L.; Karsisiotis, A.I.; Damblon, C.; Lassaux, P.; Papamicael, C.; Roberts, G.C.; Galleni, M.; Dideberg, O. Structural basis for the broad-spectrum inhibition of metallo-β-lactamases by thiols. Org. Biomol. Chem., 2008, 6, 2282-2294.
[20]
Dubois, V.; Arpin, C.; Quentin, C.; Texier-Maugein, J.; Poirel, L.; Nordmann, P. Decreased susceptibility to cefepime in a clinical strain of Escherichia coli related to plasmid-and integron-encoded OXA-30 β-lactamase. Antimicrob. Agents Chemother., 2003, 47, 2380-2381.
[21]
Tehrani, K.H.M.E.; Martin, N.I. Thiol-containing metallo-β-lactamase inhibitors resensitize resistant gram-negative bacteria to meropenem. ACS Infect. Dis., 2017, 3, 711-717.
[22]
Brandt, C.; Braun, S.D.; Stein, C.; Slickers, P.; Ehricht, R.; Pletz, M.W.; Makarewicz, O. In silico serine β-lactamases analysis reveals a huge potential resistome in environmental and pathogenic species. Sci. Rep., 2017, 7, 43232-43235.
[23]
Essack, S.Y. The development of β-lactam antibiotics in response to the evolution of β-lactamases. Pharm. Res., 2001, 18, 1391-1399.
[24]
Payne, D.J.; Bateson, J.H.; Gasson, B.C.; Khushi, T.; Proctor, D.; Pearson, S.C.; Reid, R. Inhibition of metallo-β-lactamases by a series of thiol ester derivatives of mercaptophenylacetic acid. FEMS Microbiol. Lett., 1997, 157, 171-175.
[25]
Rotondo, C.M.; Wright, G.D. Inhibitors of metallo-β-lactamases. Curr. Opin. Microbiol., 2017, 39, 96-105.
[26]
Mohamed, M.S.; Hussein, W.M.; McGeary, R.P.; Vella, P.; Schenk, G.; El-hameed, R.H.A. Synthesis and kinetic testing of new inhibitors for a metallo-β-lactamase from Klebsiella pneumonia and Pseudomonas aeruginosa. Eur. J. Med. Chem., 2011, 46, 6075-6082.
[27]
Islam, N.U. An update on the status of potent inhibitors of metallo-β-lactamases. Sci. Pharm., 2013, 81, 309-328.
[28]
Weide, T.; Saldanha, S.A.; Minond, D.; Spicer, T.P.; Fotsing, J.R.; Spaargaren, M.; Frère, J-M.; Bebrone, C.; Sharpless, K.B.; Hodder, P.S. NH-1, 2, 3-triazole inhibitors of the VIM-2 metallo-β-lactamase. ACS Med. Chem. Lett., 2010, 1, 150-154.
[29]
Abrams, D.N.; Koslowsky, I.; Matte, G. Pharmaceutical interference with the [14C] carbon urea breath test for the detection of Helicobacter pylori infection. J. Pharm. Pharm. Sci., 2000, 3, 228-233.
[30]
Latli, B.; Kiesling, R.; Aßfalg, S.; Chevliakov, M.; Hrapchak, M.; Campbell, S.; Gonnella, N.; Busacca, C.A.; Senanayake, C.H. Carbon‐13 and carbon‐14 labeled dabigatran etexilate and tritium labeled dabigatran. J. Labelled Compd. Rad, 2016, 59, 648-656.
[31]
Schou, S.C. Fast and efficient synthesis of 14C labelled benzonitriles and their corresponding acids. J. Labelled Compd. Rad, 2009, 52, 173-176.
[32]
Rengan, K. Cerenkov counting technique for beta particles: Advantages and limitations. J. Chem. Educ., 1983, 60, 682-684.
[33]
Martins, P.D.A.; Moura, R.G.; Shiki, A.M.; Fukumori, N.T.; Matsuda, M.M. Determination of radiochemical yield of 99m Tc radiopharmaceutical preparations using gamma counter and linear radiochromatography scanner: International Nuclear Atlantic Conference, Recife, PE, Brazil, November 24- 29 2013, Associação Brasileira de Energia Nuclear - Aben ISBN: 978-85- 99141-05-2. 2013.
[34]
Xiong, H.; Chen, B.; Durand-Réville, T.F.; Joubran, C.; Alelyunas, Y.W.; Wu, D.; Huynh, H. Enantioselective synthesis and profiling of two novel diazabicyclooctanone β-lactamase inhibitors. ACS Med. Chem. Lett., 2014, 5, 1143-1147.
[35]
Vértes, A.; Kiss, I. Nuclear Chemistry; Elsevier: Amsterdam, 1987, Vol. 22, pp. 619-622.
[36]
Comar, C.L. Radioisotopes in Biology and Agriculture. Principles and Practice; McGrew Hills Book Company INC: London, 1955.
[37]
Seebach, D. Structure and reactivity of lithium enolates. from pinacolone to selective C‐alkylations of peptides. difficulties and opportunities afforded by complex structures. Angew. Chem. Int. Ed., 1988, 27, 1624-1654.
[38]
Zambito, J.; Howe, E.E. Diethyl acetamidomalonate. Org. Synth., 1960, 40, 21.
[39]
Singh, A.; Prasad, A.K.; Errington, W.; Belokon, Y.N.; Kochetkov, K.A.; Saxena, R.K.; Jain, S.C.; Parmar, V.S. Synthetic and biotransformation studies on prochiral non-proteinogenic amino acids: Diethyl α-acetamido, α-alkylmalonates. Indian J. Chem. Sect. B, 2000, 39, 10-15.
[40]
Isidro-Llobet, A.; Alvarez, M.; Albericio, F. Amino acid-protecting groups. Chem. Rev., 2009, 109, 2455-2504.
[41]
Maleki, A.; Taheri-Ledari, R.; Rahimi, J.; Soroushnejad, M.; Hajizadeh, Z. Facile peptide bond formation: Effective interplay between isothiazolone rings and silanol groups at silver/iron oxide nanocomposite surfaces. ACS Omega, 2019, 4, 10629-10639.
[42]
Maleki, A.; Taheri-Ledari, R.; Soroushnejad, M. Surface functionalization of magnetic nanoparticles via palladium-catalyzed Diels-Alder approach. Chem. Select, 2018, 3, 13057-13062.
[43]
Zambrowicz, A.; Timmer, M.; Polanowski, A.; Lubec, G.; Trziszka, T. Manufacturing of peptides exhibiting biological activity. Amino Acids, 2013, 44, 315-320.
[44]
Knorr, R.; Trzeciak, A.; Bannwarth, W.; Gillessen, D. New coupling reagents in peptide chemistry. Tetrahedron Lett., 1989, 30, 1927-1930.
[45]
Saemian, N.; Arjomandi, O.K.; Shirvani, G. Synthesis of a series of carbon‐14 labelled 4‐aminoquinazolines and quinazolin‐4 (3H)‐ones. J. Labelled. Compd. Rad., 2009, 52, 453-456.
[46]
Saemian, N.; Shirvani, G.; Matloubi, H. Synthesis of carbon‐‐14 analogue of N‐‐(1‐‐methyl‐‐2‐‐oxo‐‐5‐‐phenyl‐‐2,3‐‐dihydro‐‐1H‐‐benzo[e][1,4] diazepin‐‐3‐‐yl)‐‐benzamide‐‐[carboxyl‐‐14C] as CCK‐‐A antagonist. J. Labelled. Compd. Rad., 2006, 49, 71-76.
[47]
Krauser, J.A. A perspective on tritium versus carbon‐14: Ensuring optimal label selection in pharmaceutical research and development. J. Labelled. Compd. Rad., 2013, 56, 441-446.
[48]
Goldstein, J.I.; Newbury, D.E. Michael, J.R.; Ritchie, N.W.M.; Scott, J.H.J.; Joy, D.C. Scanning Electron Microscopy and X-Ray Microanalysis; Springer: New York, 2017.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2019
Page: [765 - 771]
Pages: 7
DOI: 10.2174/1570179416666190423114704
Price: $58

Article Metrics

PDF: 24
HTML: 2

Special-new-year-discount