Benzoxazine Based High Performance Materials with Low Dielectric Constant: A Review

Author(s): Lei Zhang*, Jiale Mao, Shuang Wang, Yiting Zheng, Xiangdong Liu*, Yonghong Cheng*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Interlayer dielectrics with low dielectric constant are the key to unlock the high arithmetic speed of integrated circuit, one of the kernels of modern industry. Polybenzoxazine, derived from benzoxazine precursor, is a new generation of phenolic resin that is considered as an ideal potential candidate for electronic materials due to its unique properties. However, for developing higher speed supercomputers, the dielectric property of conventional polybenzoxazine becomes the Achilles’ heel. Fortunately, the versatile design flexibility of benzoxazine chemistry provides the possibility to reduce the dielectric constant of the material. This review focuses on the recent attempts to synthesize low dielectric benzoxazine and the properties of the corresponding polybenzoxazine materials. Methods including fluorination, hydrocarbon introduction, heterocycle generation, molecular weight tailoring, copolymerization and organic-inorganic hybridization are introduced.

Keywords: Benzoxazine resin, dielectric constant, molecular design, polybenzoxazine, copolymerization, hybridization.

[1]
Rimdusit, S.; Tiptipakorn, S.; Jubsilp, C.; Takeichi, T. Polybenzoxazine alloys and blends: Some unique properties and applications. React. Funct. Polym., 2013, 73, 369-380.
[2]
Ishida, H.; Allen, D.J. Physical and mechanical characterization of near-zero shrinkage polybenzoxazines. J. Poly. Sci. Phys. Ed, 1996, 34, 1019-1030.
[3]
Ishida, H.; Low, H.Y. A study on the volumetric expansion of benzoxazine-based phenolic resin. Macromolecules, 1997, 30, 1099-1106.
[4]
Zhang, L.; Wang, M.; Wu, J. Study on an amine-containing benzoxazine: Homo- and copolymerization with epoxy resin. Express Polym. Lett., 2016, 7, 617-626.
[5]
Goward, G.R.; Sebastiani, D.; Schnell, I.; Spiess, H.W.; Kim, H.D.; Ishida, H. Benzoxazine oligomers: Evidence for a helical structure from solid-state NMR spectroscopy and DFT-based dynamics and chemical shift calculations. J. Am. Chem. Soc., 2003, 125, 5792-5800.
[6]
Wang, Y.X.; Ishida, H. Cationic ring-opening polymerization of benzoxazines. Polymer, 1999, 40, 4563-4570.
[7]
Ghosh, N.N.; Kiskan, B.; Yagci, Y. Polybenzoxazines-new high performance thermosetting resins: Synthesis and properties. Prog. Polym. Sci., 2007, 32, 1344-1391.
[8]
Deb, M.L.; Pegu, C.D.; Borpatra, P.J.; Saikia, P.J.; Baruah, P.K. Catalyst-free multi-component cascade C–H-functionalization in water using molecular oxygen: An approach to 1,3-oxazines. Green Chem., 2017, 17, 4036-4042.
[9]
Aydogan, B.; Sureka, D.; Kiskan, B.; Yagci, Y. Polysiloxane-containing benzoxazine moieties in the main chain. J. Polym. Sci. A Polym. Chem., 2010, 22, 5156-5162.
[10]
Dai, J.; Yang, S.; Teng, N.; Liu, Y.; Liu, X.; Zhu, J.; Zhao, J. Synthesis of eugenol-based silicon-containing benzoxazines and their applications as bio-based organic coatings. Coatings, 2018, 8, 88.
[11]
Sawaryn, C.; Landfester, K.; Taden, A. Advanced chemically induced phase separation in thermosets: Polybenzoxazines toughened with multifunctional thermoplastic main-chain benzoxazine prepolymers. Polymer, 2011, 52, 3277-3287.
[12]
Tuzun, A.; Lligadas, G.; Ronda, J.C.; Galia, M.; Cadiz, V. Integrating plant oils into thermally curable main-chain benzoxazine polymers via ADMET polymerization. Eur. Polym. J., 2015, 67, 503-512.
[13]
Rao, B.S.; Surenda, P. Synthesis and characterization of difunctional benzoxazines from aromatic diester diamine containing varying length of aliphatic spacer group: Polymerization, thermal and viscoelastic characteristics. Eur. Polym. J., 2016, 77, 139-154.
[14]
Agag, T.; Takeichi, T. Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules, 2003, 36, 6010-6017.
[15]
Oie, H.; Sudo, A.; Endo, T. Synthesis of polymers bearing 1,3-benzoxazine moiety in the side chains from poly(allylamine) and their crosslinking behaviors. J. Polym. Sci. A Polym. Chem., 2011, 49, 3174-3183.
[16]
Xu, Y.; Ran, Q.; Li, C.; Zhu, R.; Gu, Y. Study on the catalytic prepolymerization of an acetylene-functional benzoxazine and the thermal degradation of its cured product. RSC Advances, 2015, 5, 82429-82437.
[17]
Liu, Y.L.; Chou, C.I. High performance benzoxazine monomers and polymers containing furan groups. J. Polym. Sci. A Polym. Chem., 2005, 43, 5267-5282.
[18]
Stirn, Z.; Rucigaj, A.; Krajnc, M. Innovative approach using aminomaleimide for unlocking phenolic diversity in high-performance maleimidobenzoxazine resins. Polymer, 2017, 120, 129-140.
[19]
Baqar, M.; Agag, T.; Huang, R.; Maia, J.; Qutubuddin, S.; Ishida, H. Mechanistic pathways for the polymerization of methylol-functional benzoxazine monomers. Macromolecules, 2012, 45, 8119-8125.
[20]
Andreu, R.; Reina, J.A.; Ronda, J.C. Carboxylic acid-containing benzoxazines as efficient catalysts in the thermal polymerization of benzoxazines. J. Polym. Sci. A Polym. Chem., 2008, 46, 6091-6101.
[21]
Kawaguchi, A.W.; Sudo, A.; Endo, T. Thiol-functionalized 1,3-benzoxazine: Preparation and its use as a precursor for highly polymerizable benzoxazine monomers bearing sulfide moiety. J. Polym. Sci. A Polym. Chem., 2014, 52, 1448-1457.
[22]
Agag, T.; Arza, C.R.; Maurer, F.H.J.; Ishida, H. Primary amine-functional benzoxazine monomers and their use for amide-containing monomeric benzoxazines. Macromolecules, 2010, 43, 2748-2758.
[23]
Yang, P.; Gu, Y. A novel benzimidazole moiety-containing benzoxazine: Synthesis, polymerization, and thermal properties. J. Polym. Sci. A Polym. Chem., 2012, 50, 1261-1271.
[24]
Wang, C.F.; Sun, J.Q.; Liu, X.D.; Sudo, A.; Endo, T. Synthesis and copolymerization of fully bio-based benzoxazines from guaiacol, furfurylamine and stearylamine. Green Chem., 2012, 14, 2799-2806.
[25]
Zhang, L.; Zhu, Y.; Li, D.; Wang, M.; Chen, H.; Wu, J. Preparation and characterization of fully renewablepolybenzoxazines from monomers containing multi-oxazine rings. RSC Advances, 2015, 5, 96879-96887.
[26]
Lligadas, G.; Tuzun, A.; Ronda, J.C.; Galia, M.; Cadiz, V. Polybenzoxazines: New players in the bio-based polymer arena. Polym. Chem., 2014, 5, 6636-6644.
[27]
Chiou, K.; Ishida, H. Incorporation of natural renewable components and waste byproducts to benzoxazine based high performance materials. Curr. Org. Chem., 2013, 17, 913-925.
[28]
Lin, C.H.; Chang, S.L.; Shen, T.Y.; Shih, Y.S.; Lin, H.T.; Wang, C.F. Flexible polybenzoxazine thermosets with high glass transition temperatures and low surface free energies. Polym. Chem., 2012, 3, 935-945.
[29]
Demir, K.D.; Kiskan, B.; Aydogan, B.; Yagci, Y. Thermally curable main-chain benzoxazine prepolymers via polycondensation route. React. Funct. Polym., 2013, 73, 346-359.
[30]
Zhang, L.; Yang, Y.; Chen, Y.; Lu, H. Cardanol-capped main-chain benzoxazine oligomers for resin transfer molding. Eur. Polym. J., 2017, 93, 284-293.
[31]
Kiskan, B.; Colak, D.; Muftuoglu, A.E.; Cianga, I.; Yagci, Y. Synthesis and characterization of thermally curable benzoxazine-functionalized polystyrene macromonomers. Macromol. Rapid Commun., 2005, 26, 819-824.
[32]
Nakamura, M.; Ishida, H. Synthesis and properties of new crosslinkable telechelics with benzoxazine moiety at the chain end. Polymer, 2009, 50, 2688-2695.
[33]
Wu, X.; Zhou, Y.; Liu, S.Z.; Guo, Y.N.; Qiu, J.J.; Liu, C.M. Highly branched benzoxazine monomer based on cyclotriphosphazene: Synthesis and properties of the monomer and polybenzoxazines. Polymer, 2011, 52, 1004-1012.
[34]
Lin, R.C.; Mohamed, M.G.; Kuo, S.W. Benzoxazine/triphenylamine-based dendrimers prepared through facile one-pot mannich condensations. Macromol. Rapid Commun., 2017, 381700251
[35]
Hougham, G.; Tesoro, G.; Viehbeck, A.; Chapple-Sokol, J.D. Polarization effects of fluorine on the relative permittivity in polyimides. Macromolecules, 1994, 27, 5964-5971.
[36]
Kanchanasopa, M.; Yanumet, N.; Hemvichian, K.; Ishida, H. The effect of polymerization conditions on the density and Tg of bisphenol-A and hexafluoroisopropylidene-containing polybenzoxazines. Polym. Polymer Compos., 2001, 9, 367-375.
[37]
Su, Y.; Chang, F. Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer, 2003, 44, 7989-7996.
[38]
Wu, J.; Lai, H.; Diao, S.; Jin, K.; Yuan, C.; Fang, Q. Synthesis and properties of the polymer based on benzoxazine with two perfluorohexyl side chains. Chin. J. Org. Chem., 2013, 33, 1042-1046.
[39]
Hamerton, I.; Howlin, B.J.; Mitchell, A.L.; McNamara, L.T.; Takeda, T. Systematic examination of thermal, mechanical and dielectrical properties of aromatic polybenzoxazines. React. Funct. Polym., 2012, 72, 736-744.
[40]
Parveen, A.S.; Thirukumaran, P.; Sarojadevi, M. Low dielectric materials from fluorinated polybenzoxazines. Polym. Adv. Technol., 2014, 25, 1538-1545.
[41]
Wu, J.; McCandless, G.T.; Xie, Y.; Menon, R.; Patel, Y.; Yang, D.J.; Iacono, S.T.; Novak, B.M. Synthesis and characterization of partially fluorinated polybenzoxazine resins utilizing octafluorocyclopentene as a versatile building block. Macromolecules, 2015, 48, 6087-6095.
[42]
Lin, C.S.; Chang, S.L.; Lee, H.H.; Chang, H.C.; Hwang, K.Y.; Tu, A.P.; Su, W.C. Fluorinated benzoxazines and the structure-property relationship of resulting polybenzoxazines. J. Polym. Sci. Part A: Polym. Chem., 2008, 46, 4970-4983.
[43]
Kobzar, Y.L.; Tkachenko, I.M.; Lobko, E.V.; Shekera, O.V.; Syrovets, A.P.; Shevchenko, V.V. Low dielectric material from novel core-fluorinated polybenzoxazine. Mendeleev Commun., 2017, 27, 41-43.
[44]
Kobzar, Y.L.; Tkachenko, I.M.; Bliznyuk, V.N.; Lobko, E.V.; Shekera, O.V.; Shevchenko, V.V. Synthesis and characterization of fluorinated isomeric polybenzoxazines from core-fluorinated diamine-based benzoxazines. Polymer, 2018, 145, 62-69.
[45]
Velez-Herrera, P.; Doyama, K.; Abe, H.; Ishida, H. Synthesis and characterization of highly fluorinated polymer with the benzoxazine moiety in the main chain. Macromolecules, 2008, 41, 9704-9714.
[46]
Velez-Herrera, P.; Ishida, H. Synthesis and characterization of highly fluorinated diamines and benzoxazines derived therefrom. J. Fluor. Chem., 2009, 130, 573-580.
[47]
Shieh, J.Y. Lin, Chi. Y.; Huang, C.L.; Wang, C.S. Synthesis and characterization of novel dihydrobenzoxazine resins. J. Appl. Polym. Sci., 2006, 101, 342-347.
[48]
Hwang, H.J.; Lin, C.Y.; Wang, C.S. Flame retardancy and dielectric properties of dicyclopentadiene-based benzoxazine cured with a phosphorus-containing phenolic resin. J. Appl. Polym. Sci., 2008, 110, 2413-2423.
[49]
Vengatesan, M.R.; Devaraju, S.; Ashock Kumar, A.; Alagar, M. Studies on thermal and dielectric properties of octa(maleimido phenyl) silsesquioxane (OMPS)-polybenzoxazine (PBZ) hybrid nanocomposites. High Perform. Polym., 2011, 23, 441-456.
[50]
Wang, Y.; Kou, K.; Li, Z.; Wu, G.; Zhang, Y.; Feng, A. Synthesis, characterization, and thermal properties of benzoxazine monomers containing allyl groups. High Perform. Polym., 2016, 28, 1235-1245.
[51]
Wang, M.; Jeng, R.J.; Lin, C.H. The robustness of a thermoset of a main-chain type polybenzoxazine precursor prepared through a strategy of A-A and B-B polycondensation. RSC Advances, 2016, 6, 18678-18684.
[52]
Zeng, M.; Chen, J.; Xu, Q.; Huang, Y.; Feng, Z.; Gu, Y. A facile method for the preparation of aliphatic main-chain benzoxazine copolymers with high-frequency low dielectric constants. Polym. Chem., 2018, 9, 2913-2925.
[53]
Zhang, L.; Mao, J.; Wang, S.; Yang, Y.; Chen, Y.; Lu, H. Meta-phenylenedaimen formaldehyde oligomer: A new accelerator for benzoxazine resin. React. Funct. Polym., 2017, 121, 51-57.
[54]
Xu, Q.; Zeng, M.; Chen, J.; Zeng, S.; Huang, Y.; Feng, Z.; Xu, Q.; Yan, C.; Gu, Y. Synthesis, polymerization kinetics, and high-frequency dielectric properties of novel main-chain benzoxazine copolymers. React. Funct. Polym., 2018, 122, 158-166.
[55]
Liu, Y.L.; Chou, C.I. High performance benzoxazine monomers and polymers containing furan groups. J. Polym. Sci. Part A Polym. Chem., 2005, 43, 5267-5282.
[56]
Lin, C.H.; Huang, C.M.; Wong, T.I.; Chang, H.C.; Juang, T.Y.; Su, W.C. High-Tg and low-dielectric epoxy thermosets based on a propargyl ether-containing phosphinated benzoxazine. J. Polym. Sci. Part A Polym. Chem., 2014, 52, 1359-1367.
[57]
Chang, H.C.; Lin, H.T.; Lin, C.H. Benzoxazine-based phosphinated bisphenols and their application in preparing flame-retardant, low dielectric cyanate ester thermosets. Polym. Chem., 2012, 3, 970-978.
[58]
Zhang, K.; Zhuang, Q.; Zhou, Y.; Liu, X.; Yang, G.; Han, Z. Preparation and properties of novel low dielectric constant benzoxazole-based polybenzoxazine. J. Polym. Sci. Part A Polym. Chem., 2012, 54, 5115-5123.
[59]
Zhang, K.; Han, L.; Froimowicz, P.; Ishida, H. A smart latent catalyst containing o-trifluoroacetamide functional benzoxazine: Precursor for low temperature formation of very high performance polybenzoxazole with low dielectric constant and high thermal stability. Macromolecules, 2017, 50, 6552-6560.
[60]
Zhang, K.; Yu, X. Catalyst-free and low-temperature terpolymerization in a single-component benzoxazine resin containing both norbornene and acetylene functionalities. Macromolecules, 2018, 51, 6524-6533.
[61]
Su, Y.C.; Chen, W.C.; Ou, K.L.; Chang, F.C. Study of the morphologies and dielectric constants of nanoporous materials derived from benzoxazine-terminated poly(ε-caprolactone)/polybenzoxazine co-polymers. Polymer, 2005, 46, 3758-3766.
[62]
Jamshidi, S.; Yeganeh, H.; Mehdipour-Ataei, S. Preparation and properties of one-pack polybenzoxazine-modified polyurethanes with improved thermal stability and electrical insulating properties. Polym. Int., 2011, 60, 126-135.
[63]
Lin, C.H.; Huang, S.J.; Wang, P.J.; Lin, H.T.; Dai, S.A. Miscibility, microstructure, and thermal and dielectric properties of reactive blends of dicyanate ester and diamine-based benzoxazine. Macromolecules, 2012, 45, 7461-7466.
[64]
Lin, C.H.; Wang, M.W.; Chou, Y.W.; Chang, H.C.; Juang, T.Y.; Su, W.C. Synthesis of a phosphinated tetracyanate ester and its miscible blend with 4,4′-oxydianiline/phenol-based benzoxazine. RSC Advances, 2015, 5, 10165-10171.
[65]
Yan, H.; Li, T.; Zhang, M.; Feng, S. Mechanical and dielectric properties of blends of dicyanate ester and bisphenol A-based benzoxazine. High Perform. Polym., 2014, 26, 618-624.
[66]
Li, X.; Xia, Y.; Xu, W.; Ran, Q.; Gu, Y. The curing procedure for a benzoxazine–cyanate–epoxy system and the properties of the terpolymer. Polym. Chem., 2012, 3, 1629-1633.
[67]
Wang, Y.; Kou, K.; Zhuo, L.; Chen, H.; Zhang, Y.; Wu, G. Thermal, mechanical and dielectric properties of BMI modified by the Bis allyl benzoxazine. J. Polym. Res., 2015, 22, 51.
[68]
Wang, Y.; Kou, K.; Wu, G.; Feng, A.; Zhuo, L. The effect of bis allyl benzoxazine on the thermal, mechanical and dielectric properties of bismaleimide–cyanate blend polymers. RSC Advances, 2015, 5, 58821-58831.
[69]
Kumar, R.S.; Padmanathan, N.; Alagar, M. Design of hydrophobic polydimethylsiloxane and polybenzoxazine hybrids for interlayer low k dielectrics. New J. Chem., 2015, 39, 3995-4008.
[70]
Chen, Y.; Lin, L.K.; Chiang, S.L.; Liu, Y.L. A cocatalytic effect between Meldrum’s acid and benzoxazine compounds in preparation of high performance thermosetting resins. Macromol. Rapid Commun., 2017, 381600616
[71]
Zeng, M.; Pang, T.; Chen, J.; Huang, Y.; Xu, Q.; Gu, Y. Facile preparation of the novel castor oil-based benzoxazine–urethane copolymer with improved high-frequency dielectric properties. J. Mater. Sci. Mater. Electron., 2018, 29, 5391-5400.
[72]
Mohamed, M.G.; Kuo, S.W. Polybenzoxazine/Polyhedral Oligomeric Silsesquioxane (POSS) nanocomposites. Polymers, 2016, 8, 255.
[73]
Tseng, M.C.; Liu, Y.L. Preparation, morphology, and ultra-low dielectric constants of benzoxazine-based polymers/Polyhedral Oligomeric Silsesquioxane (POSS) nanocomposites. Polymer, 2010, 51, 5567-5575.
[74]
Vengatesan, M.R.; Devaraju, S.; Kumar, A.A.; Alagar, M. Studies on thermal and dielectric properties of Octa (maleimido phenyl) silsesquioxane (OMPS)-polybenzoxazine (PBZ) hybrid nanocomposites. High Perform. Polym., 2011, 23, 441-456.
[75]
Zhang, K.; Zhuang, Q.; Liu, X.; Yang, G.; Cai, R.; Han, Z. A new benzoxazine containing benzoxazole-functionalized polyhedral oligomeric silsesquioxane and the corresponding polybenzoxazine nanocomposites. Macromolecules, 2013, 46, 2696-2704.
[76]
Selvi, M.; Prabunathan, P.; Kumar, M.; Alagar, M. Studies on polybenzoxazine/capron PK4/ octakis(dimethylsiloxypropylglycidylether) silsesquioxane nanocomposites for radiation resistant applications. Int. J. Polym. Mate. Polym. Biomater., 2014, 63, 651-656.
[77]
Kumar, R.S.; Alagar, M. Dielectric and thermal behaviors of POSS reinforced polyurethane based polybenzoxazine nanocomposites. RSC Advances, 2015, 5, 33008-33015.
[78]
Sethuraman, K.; Vengatesan, M.R.; Lakshmikandhan, T.; Alagar, M. Thermal and dielectric properties of “thiol-ene” photocured hybrid composite materials from allyl-terminated benzoxazine and SH-POSS. High Perform. Polym., 2016, 28, 340-351.
[79]
Zhang, S.; Yan, Y.; Li, X.; Fan, H.; Ran, Q.; Fu, Q.; Gu, Y. A novel ultra-low-k nanocomposite of benzoxazinyl modified polyhedral oligomeric silsesquioxane and cyanate ester. Eur. Polym. J., 2018, 103, 124-132.
[80]
Kumar, R.S.; Ariraman, M.; Alagar, M. Studies on MCM-41/PDMS based hybrid polybenzoxazine nanocomposites for interlayer low k dielectrics. RSC Advances, 2015, 5, 40798-40806.
[81]
Selvaraj, V.; Jayanthi, K.P.; Lakshmikandhan, T.; Alagar, M. Development of a polybenzoxazine/TSBA-15 composite from the renewable resource cardanol for low-k applications. RSC Advances, 2015, 5, 48898-48907.
[82]
Priya, R.P.; Gunasekaran, S.G.; Dharmendirakumar, M. Design and development of allyl terminal triaryl pyridine core skeletal modified benzoxazines based polybenzoxazine-silica (PBZ-SiO2) hybrid nanocomposites. J. Nanosci. Nanotechnol., 2015, 15, 9509-9519.
[83]
Fu, Z.; Xu, K.; Liu, X.; Wu, J.; Tan, C.; Chen, M. Preparation and properties of hybrid materials originating from polybenzoxazines and silsesquioxanes. Macromol. Chem. Phys., 2013, 214, 1122-1130.
[84]
Hariharan, A.; Srinivasan, K.; Murthy, C.; Alagar, M. Cardanol based benzoxazine blends and bio-silica reinforced composites: Thermal and dielectric properties. New J. Chem., 2018, 42, 4067-4080.
[85]
Selvaraj, V.; Jayanthi, K.P.; Alagar, M. Development of biocomposites from agro wastes for low dielectric applications. J. Polym. Environ., 2018, 26, 3655-3669.
[86]
Krishnadevi, K.; Selvaraj, V. Development of halogen-free flame retardant phosphazene and rice husk ash incorporated benzoxazine blended epoxy composites for microelectronic applications. New J. Chem., 2015, 39, 6555-6567.
[87]
Chozhan, C.K.; Chandramohan, A.; Alagar, M. Studies on thermal, mechanical, electrical, and morphological behavior of organoclay-reinforced polybenzoxazine-epoxy nanocomposites. High Perform. Polym., 2013, 25, 1007-1021.
[88]
Wang, Y.; Wu, G.; Kou, K.; Pan, C.; Feng, A. Mechanical, thermal conductive and dielectrical properties of organic montmorillonite reinforced benzoxazine/cyanate ester copolymer for electronic packaging. J. Mater. Sci. Mater. Electron., 2016, 27, 8279-8287.
[89]
Wang, J.Y.; Yang, S.Y.; Huang, Y.L.; Tien, H.W.; Chin, W.K.; Ma, C.C.M. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J. Mater. Chem., 2011, 21, 13569-13575.
[90]
Kumar, R.S.; Ariraman, M.; Alargar, M. Studies on dielectric properties of GO reinforced bisphenol-Z polybenzoxazine hybrids. RSC Advances, 2015, 5, 23787-23797.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 7
Year: 2019
Page: [809 - 822]
Pages: 14
DOI: 10.2174/1385272823666190422130917
Price: $58

Article Metrics

PDF: 15
HTML: 2