Small-molecule Bifunctional Fluorescent Probes for the Differential Detection of Multiple Guests

Author(s): Pei-Pei Jia, Shu-Ting Jiang, Lin Xu*.

Journal Name: Current Organic Synthesis

Volume 16 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

During the last few years, the preparation of bifunctional fluorescent probes, which exhibit differential response towards multiple analytes, has attracted considerable attention since they are cost-effective and highly desirable for real-time applications. This review focuses on the recent advances in the design principles, recognition mechanisms, and applications of multifunctional fluorescent probes for the differential detection of multiple guests.

Keywords: Bifunctional fluorescence probe, mechanism, applications, fluorescence materials, chemosensor, multifunctional model.

[1]
Yang, Y.; Zhao, Q.; Feng, W.; Li, F. Luminescent chemodosimeters for bioimaging. Chem. Rev., 2013, 113(1), 192-270.
[2]
Yu, F.; Han, X.; Chen, L. Fluorescent probes for hydrogen sulfide detection and bioimaging. Chem. Commun., 2014, 50(82), 12234-12249.
[3]
Hu, R.; Feng, J.; Hu, D.; Wang, S.; Li, S.; Li, Y. A rapid aqueous fluoride ion sensor with dual output modes. Angew. Chem. Int. Ed., 2010, 49(29), 4915-4918.
[4]
Bao, Y.; Liu, B.; Wang, H.; Tian, J.; Bai, R. A. naked eye and ratiometric fluorescent chemosensor for rapid detection of F- based on combination of desilylation reaction and excited-state proton transfer. Chem. Commun., 2011, 47(13), 3957-3959.
[5]
Liu, C.; Pan, J.; Li, S.; Zhao, Y.; Wu, L.Y.; Berkman, C.E.; Whorton, A.R.; Xian, M. Capture and visualization of hydrogen sulfide by a fluorescent probe. Angew. Chem. Int. Ed., 2011, 50(44), 10327-10329.
[6]
Ashton, T.D.; Jolliffe, K.A.; Pfeffer, F.M. Luminescent probes for the bioimaging of small anionic species in vitro and in vivo. Chem. Soc. Rev., 2015, 44(14), 4547-4595.
[7]
Lippert, A.R.; New, E.J.; Chang, C.J. Reaction-based fluorescent probes for selective imaging of hydrogen sulfide in living cells. J. Am. Chem. Soc., 2011, 133(26), 10078-10080.
[8]
Daly, B.; Ling, J.; de Silva, A.P. Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches. Chem. Soc. Rev., 2015, 44(13), 4203-4211.
[9]
Xu, L.; Xu, Y.; Zhu, W.; Yang, C.; Han, L.; Qian, X. A highly selective and sensitive fluorescence “turn-on” probe for Ag+ in aqueous solution and live cells. Dalton Trans., 2012, 41(24), 7212-7217.
[10]
Jiang, W.; Cao, Y.; Liu, Y.; Wang, W. Rational design of a highly selective and sensitive fluorescent PET probe for discrimination of thiophenols and aliphatic thiols. Chem. Commun., 2010, 46(11), 1944-1946.
[11]
Li, X.; Zhang, S.; Cao, J.; Xie, N.; Liu, T.; Yang, B.; He, Q.; Hu, Y. An ICT-based fluorescent switch-on probe for hydrogen sulfide in living cells. Chem. Commun., 2013, 49(77), 8656-8658.
[12]
Xu, Z.; Xiao, Y.; Qian, X.; Cui, J.; Cui, D. Ratiometric and selective fluorescent sensor for CuII based on internal charge transfer (ICT). Org. Lett., 2005, 7(5), 889-892.
[13]
Huang, C-B.; Huang, J.; Xu, L. A highly selective fluorescent probe for fast detection of nitric oxide in aqueous solution. RSC Advances, 2015, 5(18), 13307-13310.
[14]
Yuan, L.; Lin, W.; Zheng, K.; Zhu, S. FRET-based small-molecule fluorescent probes: Rational design and bioimaging applications. Acc. Chem. Res., 2013, 46(7), 1462-1473.
[15]
Huang, C-B.; Xu, L.; Zhu, J-L.; Wang, Y-X.; Sun, B.; Li, X.; Yang, H-B. Real-time monitoring the dynamics of coordination-driven self-assembly by fluorescence-resonance energy transfer. J. Am. Chem. Soc., 2017, 139(28), 9459-9462.
[16]
Kawagoe, R.; Takashima, I.; Uchinomiya, S.; Ojida, A. Reversible ratiometric detection of highly reactive hydropersulfides using a FRET-based dual emission fluorescent probe. Chem. Sci. , 2017, 8(2), 1134-1140.
[17]
Kim, T. -Il; Kang, H. J.; Han, G.; Chung, S. J.; Kim, Y. A highly selective fluorescent ESIPT probe for the dual specificity phosphatase MKP-6. Chem. Commun., 2009, 5895-5897.
[18]
Xu, Z.; Xu, L.; Zhou, J.; Xu, Y.; Zhu, W.; Qian, X. A highly selective fluorescent probe for fast detection of hydrogen sulfide in aqueous solution and living cells. Chem. Commun., 2012, 48(88), 10871-10873.
[19]
Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission: Together we shine, united we soar. Chem. Rev., 2015, 115(21), 11718-11940.
[20]
Hong, Y.; Lam, J.W.Y.; Tang, B.Z. Aggregation-induced emission. Chem. Soc. Rev., 2011, 40(11), 5361-5388.
[21]
Fan, W-J.; Sun, B.; Ma, J.; Li, X.; Tan, H.; Xu, L. Coordination-driven self-assembly of carbazole-based metallodendrimers with generation-dependent aggregation-induced emission behaviors. Chemistry . Eur. J., 2015, 21(37), 12947-12959.
[22]
Reja, S.I.; Khan, I.A.; Bhalla, V.; Kumar, M. A TICT based NIR-fluorescent probe for human serum albumin: A pre-clinical diagnosis in blood serum. Chem. Commun., 2016, 52(6), 1182-1185.
[23]
Xu, L.; Xu, Y.; Zhu, W.; Zeng, B.; Yang, C.; Wu, B.; Qian, X. Versatile trifunctional chemosensor of rhodamine derivative for Zn2+, Cu2+ and His/Cys in aqueous solution and living cells. Org. Biomol. Chem., 2011, 9(24), 8284-8287.
[24]
Xu, Z.; Ren, Y-Y.; Fan, X.; Cheng, S.; Xu, Q.; Xu, L. A naphthalimide-based fluorescent probe for highly selective detection of pyrophosphate in aqueous solution and living cells. Tetrahedron, 2015, 71(31), 5055-5058.
[25]
Lin, L-Y.; Lin, X-Y.; Lin, F.; Wong, K-T. A new spirobifluorene-bridged bipolar system for a nitric oxide turn-on fluorescent probe. Org. Lett., 2011, 13(9), 2216-2219.
[26]
Peng, X.; Du, J.; Fan, J.; Wang, J.; Wu, Y.; Zhao, J.; Sun, S.; Xu, T. A selective fluorescent sensor for imaging Cd2+ in living cells. J. Am. Chem. Soc., 2007, 129(6), 1500-1501.
[27]
Zhang, X.; Xiao, Y.; Qian, X. A ratiometric fluorescent probe based on FRET for imaging Hg2+ ions in living cells. Angew. Chem. Int. Ed., 2008, 47(42), 8025-8029.
[28]
Satapathy, R.; Wu, Y-H.; Lin, H-C. Novel thieno-imidazole based probe for colorimetric detection of Hg2+ and fluorescence turn-on response of Zn2+. Org. Lett., 2012, 14(10), 2564-2567.
[29]
Yuan, L.; Lin, W.; Xie, Y.; Chen, B.; Zhu, S. Single fluorescent probe responds to H2O2, NO, and H2O2/NO with three different sets of fluorescence signals. J. Am. Chem. Soc., 2012, 134(2), 1305-1315.
[30]
Wang, J.; Lin, W.; Li, W. Single fluorescent probe displays a distinct response to Zn2+ and Cd2+. Chemistry Eur. J., , 2012, 18(43), 13629-13632.
[31]
Chowdhury, S.; Rooj, B.; Dutta, A.; Mandal, U. Review on recent advances in metal ions sensing using different fluorescent probes. J. Fluoresc., 2018, 28(4), 999-1021.
[32]
Zhang, J.F.; Zhou, Y.; Yoon, J.; Kim, Y.; Kim, S.J.; Kim, J.S. Naphthalimide modified rhodamine derivative: Ratiometric and selective fluorescent sensor for Cu2+ based on two different approaches. Org. Lett., 2010, 12(17), 3852-3855.
[33]
Komatsu, H.; Miki, T.; Citterio, D.; Kubota, T.; Shindo, Y.; Kitamura, Y. Single molecular multianalyte (Ca2+, Mg2+) fluorescent probe and applications to bioimaging. J. Am. Chem. Soc., 2005, 127(31), 10798-10799.
[34]
Yu, L.; Wang, S.; Huang, K.; Liu, Z.; Gao, F.; Zeng, W. Fluorescent probes for dual and multi analyte detection. Tetrahedron, 2015, 71(29), 4679-4706.
[35]
Huang, C-B.; Li, H-B.; Luo, Y.; Xu, L. A naphthalimide-based bifunctional fluorescent probe for the differential detection of Hg2+ and Cu2+ in aqueous solution. Dalton Trans., 2014, 43(21), 8102-8108.
[36]
Karakuş, E.; Üçüncüa, M.; Emrullahoğlu, M. A rhodamine/BODIPY-based fluorescent probe for the differential detection of Hg(II) and Au(III). Chem. Commun., 2014, 50(9), 1119-1121.
[37]
Kaur, M.; Ahn, Y-H.; Choi, K.; Cho, M.J.; Choi, D.H. A bifunctional colorimetric fluorescent probe for Hg2+ and Cu2+ based on a carbazole–pyrimidine conjugate: chromogenic and fluorogenic recognition on TLC, silica-gel and filter paper. Org. Biomol. Chem., 2015, 13(26), 7149-7153.
[38]
Fan, L.; Qin, J-C.; Li, T-R.; Wang, B-D.; Yang, Z-Y. A novel rhodamine chromone-based “Off–On” chemosensor for the differential detection of Al(III) and Zn(II) in aqueous solutions. Sens. Actuators B Chem., 2014, 203, 550-556.
[39]
Dong, J.; Hu, J.; Baigudea, H.; Zhang, H. A novel ferrocenyl–naphthalimide as a multichannel probe for the detection of Cu(II) and Hg(II) in aqueous media and living cells. Dalton Trans., 2018, 47(2), 314-322.
[40]
Mukhopadhyay, S.; Gupta, R.K.; Biswas, A.; Kumar, A.; Dubey, M.; Hundal, M.S.; Pandey, D.S. A dual-responsive “turn-on” bifunctional receptor: A chemosensor for Fe3+ and chemodosimeter for Hg2+. Dalton Trans., 2015, 44(16), 7118-7122.
[41]
Wang, Y.; Zhang, L.; Zhang, G.; Wu, Y.; Wu, S.; Yu, J.; Wang, L. A new colorimetric and fluorescent bifunctional probe for Cu2+ and F- ions based on perylene bisimide derivatives. Tetrahedron Lett., 2014, 55(21), 3218-3222.
[42]
Bhalla, V.; Tejpal, R.; Kumar, M. Terphenyl based fluorescent chemosensor for Cu2+ and F- ions employing excited state intramolecular proton transfer. Tetrahedron, 2011, 67(6), 1266-1271.
[43]
Fu, L.; Tian, F-F.; Lai, L.; Liu, Y.; Harvey, P.D.; Jiang, F-L. A ratiometric “two-in-one” fluorescent chemodosimeter for fluoride and hydrogen sulfide. Sens. Actuators B Chem., 2014, 193, 701-707.
[44]
Li, H.; Zhao, P.; Zou, N.; Wang, H.; Sun, K. The colorimetric and ratiometric fluorescent detection of cyanide and sulfide in live cells, application for logic gate and bioimging. Tetrahedron Lett., 2017, 58(1), 30-34.
[45]
Xu, Z.; Xu, L. Fluorescent probes for the selective detection of chemical species inside mitochondria. Chem. Commun., 2016, 52(6), 1094-1119.
[46]
Ren, Y-Y.; Wu, N-W.; Huang, J.; Xu, Z.; Sun, D-D.; Wang, C-H.; Xu, L. A neutral branched platinum–acetylide complex possessing a tetraphenylethylene core: preparation of a luminescent organometallic gelator and its unexpected spectroscopic behaviour during sol-to-gel transition. Chem. Commun. , 2015, 51(82), 15153-15156.
[47]
Chen, L-J.; Chen, S.; Qin, Y.; Xu, L.; Yin, G-Q.; Zhu, J-L.; Zhu, F-F.; Zheng, W.; Li, X.; Yang, H-B. Construction of porphyrin-containing metallacycle with improved stability and activity within mesoporous carbon. J. Am. Chem. Soc., 2018, 140(15), 5049-5052.
[48]
Zhu, J.; Jia, P.; Li, N.; Tan, S.; Huang, J.; Xu, L. Small-molecule fluorescent probes for the detection of carbon dioxide. Chin. Chem. Lett., 2018, 29(10), 1445-1450.
[49]
Un, H-I.; Wu, S.; Huang, C-B.; Xu, Z.; Xu, L. A naphthalimide-based fluorescent probe for highly selective detection of histidine in aqueous solution and its application in in-vivo imaging. Chem. Commun., 2015, 51(15), 3143-3146.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 4
Year: 2019
Page: [485 - 497]
Pages: 13
DOI: 10.2174/1570179416666190419213812

Article Metrics

PDF: 35
HTML: 7
PRC: 3

Special-new-year-discount