Transition-metal Nanoparticles Catalyzed Carbon-Carbon Coupling Reactions in Water

Author(s): Atsushi Ohtaka* .

Journal Name: Current Organic Chemistry

Volume 23 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The use of transition-metal nanoparticles in catalysis has attracted much interest, and their use in carbon-carbon coupling reactions such as Suzuki, Heck, Sonogashira, Stille, Hiyama, and Ullmann coupling reactions constitutes one of their most important applications. The transition-metal nanoparticles are considered as one of the green catalysts because they show high catalytic activity for several reactions in water. This review is devoted to the catalytic system developed in the past 10 years in transition-metal nanoparticles-catalyzed carbon-carbon coupling reactions such as Suzuki, Heck, Sonogashira, Stille, Hiyama, and Ullmann coupling reactions in water.

Keywords: Metal nanoparticles, water, suzuki coupling, heck reaction, sonogashira coupling, stille coupling, hiyama coupling, ullmann coupling.

[1]
Biffis, A.; Centomo, P.; Del Zotto, A.; Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: A critical review. Chem. Rev., 2018, 118, 2249-2295.
[2]
Xia, Y.; Qiu, D.; Wang, J. Transition-metal-catalyzed cross-couplings through carbene migratory insertion. Chem. Rev., 2017, 117, 13810-13889.
[3]
Henry, M.C.; Mostafa, M.A.B.; Sutherland, A. Recent advances in transition-metal-catalyzed, directed aryl C-H/N-H cross-coupling reactions. Synthesis, 2017, 49, 4586-4598.
[4]
Yin, L.; Liebscher, J. Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts. Chem. Rev., 2007, 107, 133-173.
[5]
Breslow, R.; Rideout, D.C. Hydrophobic acceleration of Diels-Alder reactions. J. Am. Chem. Soc., 1980, 102, 7816-7817.
[6]
Fringuelli, F.; Germani, R.; Pizzo, F.; Savelli, G. Epoxidation reaction with m-chloroperoxybenzoic acid in water. Tetrahedron Lett., 1989, 30, 1427-1428.
[7]
Fringuelli, F.; Pani, G.; Piermatti, O.; Pizzo, F. Condensation reactions in water of active methylene compounds with arylaldehydes. One-pot synthesis of flavonols. Tetrahedron, 1994, 50, 11499-11508.
[8]
Ben Ayed, T.; Amri, H. A convenient synthesis of α-functional Alkyl Vinyl ketones. Synth. Commun., 1995, 25, 3813-3819.
[9]
Lubineau, A.; Bouchain, G.; Queneau, Y. Reactivity of the carbonyl group in water. Generation of azomethine ylides from aqueous formaldehyde: Michael addition versus dipolar trapping. J. Chem. Soc. Perkin. Trans. 1, 1995, 2433-2437.
[10]
Rayhan, U.; Kowser, Z.; Islam, Md. N.; Redshaw, C.; Yamato, T. A review on the recent advances in the reductions of carbon-carbon/oxygen multiple bonds including aromatic rings using raney Ni-Al alloy or Al powder in the presence of noble metal catalysts in water. Top. Catal., 2018, 61, 560-574.
[11]
Şen, F.; Gökağaç, G.; Şen, S. High performance Pt nanoparticles prepared by new surfactants for C1 to C3 alcohol oxidation reactions. J. Nanopart. Res., 2013, 15, 1979.
[12]
Şen, F.; Gökağaç, G. Pt nanoparticles synthesized with new surfactants: Improvement in C1-C3 alcohol oxidation catalytic activity. J. Appl. Electrochem., 2014, 44, 199-207.
[13]
Erken, E.; Yıldız, Y.; Kilbaş, B.; Şen, F. Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dedydrogenation of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol., 2016, 16, 5944-5950.
[14]
Yıldız, Y.; Erken, E.; Pamuk, H.; Sert, H. Şen, F. Monodisperse Pt nanoparticles assembled on reduced graphene oxide: Highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J. Nanosci. Nanotechnol., 2016, 16, 5951-5958.
[15]
Aday, B.; Pamuk, H.; Kaya, M.; Şen, F. Graphene oxide as highly effective and readily recyclable catalyst using for the one-pot synthesis of 1,8-dioxoacridine derivatives. J. Nanosci. Nanotechnol., 2016, 16, 6498-6504.
[16]
Karatepe, Ö.; Yıldız, Y.; Pamuk, H.; Eris, S.; Dasdelen, Z.; Şen, F. Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for the electrooxidation of methanol. RSC Advances, 2016, 6, 50851-50857.
[17]
Göksu, H.; Yıldız, Y.; Çelik, B.; Yazıcı, M.; Kılbaş, B.; Şen, F. Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. ChemistrySelect, 2016, 1, 953-958.
[18]
Yıldız, Y.; Okyay, T.O.; Sen, B.; Gezer, B.; Kuzu, S.; Savk, A.; Demir, E.; Dasdelen, Z.; Sert, H.; Şen, F. Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. ChemistrySelect, 2017, 2, 697-701.
[19]
Yıldız, Y.; Kuzu, S.; Sen, B.; Savk, A.; Akocak, S.; Şen, F. Different ligand based monodispersed Pt nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int. J. Hydrogen Energy, 2017, 42, 13061-13069.
[20]
Sen, B.; Kuzu, S.; Demir, E.; Akocak, S.; Şen, F. Monodisperse palladium-nickel alloy nanoparticles assembled on graphene oxide with the high catalytic activity and reusability in the dehydrogenation of dimethylamine-borane. Int. J. Hydrogen Energy, 2017, 42, 23276-23283.
[21]
Goksu, H.; Zengin, N.; Karaosman, A.; Şen, F. Highly active and reusable Pd/AlO(OH) nanoparticles for the Suzuki cross-coupling reaction. Curr. Organocatal., 2018, 5, 34-41.
[22]
Liu, L.; Corma, A. Metal catalysts for heterogeneous catalysis: From single atoms to nanoclusters and nanoparticles. Chem. Rev., 2018, 118, 4981-5079.
[23]
Li, Z.; Xu, Q. Metal-nanoparticle-catalyzed hydrogen generation from formic acid. Acc. Chem. Res., 2017, 50, 1449-1458.
[24]
Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. Metal organic frameworks as versatile hosts of Au nanoparticles in heterogeneous catalysis. ACS Catal., 2017, 7, 2896-2919.
[25]
Tahir, M.; Pan, L.; Zhang, R.; Wang, Y-C.; Shen, G.; Aslam, I.; Qadeer, M.A.; Mahmood, N.; Xu, W.; Wang, L.; Zhang, X.; Zou, J-J. High-valence-state NiO/Co3O4 nanoparticles on nitrogen-doped carbon for oxygen evolution at low overpotential. ACS Energy Lett., 2017, 2, 2177-2182.
[26]
Zhang, J-W.; Gong, S.; Mahmood, N.; Pan, L.; Zhang, X.; Zou, J-J. Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution. Appl. Catal. B, 2018, 221, 9-16.
[27]
Jian, X.; Chen, G.; Liu, H.; Mahmood, N.; Zhu, S.; Yin, L.; Tang, H.; Lv, W.; He, W.; Zhang, K.H.L.; Zeng, Q.; Li, B.; Li, X.; Zhang, W.; Wang, X. Vapor-dissociation-solid growth of three-dimensional graphite-like capsules with delicate morpholoty and atomic-level thickness control. Cryst. Growth Des., 2016, 16, 5040-5048.
[28]
Jian, X.; Rao, G.; Jiang, Z.; Yin, L.; Liu, S.; Xiao, X.; Tian, W.; Mahmood, N.; Tan, Z.; Kuang, F. Mechanistic study of graphitic carbon layer and nanosphere formation of the surface of T-ZnO. Inorg. Chem. Front., 2017, 4, 978-985.
[29]
Bönnemann, H.; Brijoux, W.; Brinkmann, R.; Dinjus, E.; Joussen, T.; Korall, B. Formation of colloidal transition-metals in organic phases and their application in catalysis. Angew. Chem. Int. Ed., 1991, 30, 1312-1314.
[30]
Reetz, M.T.; Lohmer, G. Propylene carbonate stabilized nanostructured palladium clusters as catalysts in Heck reactions. Chem. Commun., 1996, 1921-1922.
[31]
Jeffery, T. Heck-type reactions in water. Tetrahedron Lett., 1994, 35, 3051-3054.
[32]
Reetz, M.T.; Westermann, E. Phospane-free palladium-catalyzed coupling reactions: The decisive role of Pd nanoparticles. Angew. Chem. Int. Ed., 2000, 39, 165-168.
[33]
Inés, B.; SanMartin, R.; Moure, M.J.; Domínguez, E. Insights into the role of new palladium complexes as robust and recyclable precatalysts for Suzuki-Miyaura couplings in neat water. Adv. Synth. Catal., 2009, 351, 2124-2132.
[34]
Saha, D.; Chattopadhyay, K.; Ranu, B.C. Aerobic ligand-free Suzuki coupling catalyzed in situ-generated palladium nanoparticles in water. Tetrahedron Lett., 2009, 50, 1003-1006.
[35]
Zhou, J.; Li, X.; Sun, H. An efficient and recyclable water-soluble cyclopalladated complex for aqueous Suzuki reactions under aerial conditions. J. Organomet. Chem., 2010, 695, 297-303.
[36]
Liu, C.; Zhang, Y.; Liu, N.; Qiu, J. A simple and efficient approach for the palladium-catalyzed ligand-free Suzuki reaction in water. Green Chem., 2012, 14, 2999-3003.
[37]
Decottignies, A.; Fihri, A.; Azemar, G.; Djedaini-Pilard, F.; Len, C. Ligandless Suzuki-Miyaura reaction in neat water with or without native β-cyclodextrin as additive. Catal. Commun., 2013, 32, 101-107.
[38]
Li, L.; Wu, T.; Wang, J.; Wang, R. Water-soluble ionic palladium complexes: Effect of pendant ionic groups on palladium nanoparticles and Suzuki-Miyaura reaction in neat water. ChemPlusChem, 2014, 79, 257-265.
[39]
Li, Q.; Zhang, L-M.; Bao, J-J.; Li, H-X.; Xie, J-B.; Lang, J-P. Suzuki-Miyaura reactions promoted by a PdCl2/sulfonate-tagged phenanthroline precatalyst in water. Appl. Organomet. Chem., 2014, 28, 861-867.
[40]
Boruah, P.R.; Ali, A.A.; Chetia, M.; Saikia, B.; Sarma, D. Pd(OAc)2 in WERSA; A novel green catalytic system for Suzuki-Miyaura cross-coupling reactions at room temperature. Chem. Commun., 2015, 51, 11489-11492.
[41]
Pinto, J.; Silva, V.L.M.; Silva, A.M.G.; Santos, L.M.N.B.F.; Silva, A.M.S. Ohmic heating-assisted synthesis of 3-arylquinolin-4(1H)-ones by a reusable and ligand-free Susuki-Miyaura reaction in water. J. Org. Chem., 2015, 80, 6649-6659.
[42]
Patil, J.D.; Korade, S.N.; Patil, S.A.; Gaikwad, D.S.; Pore, D.M. Dual functionalized task specific ionic liquid promoted in situ generation of palladium nanoparticles in water: synergic catalytic system for Suzuki-Miyaura cross coupling. RSC Advances, 2015, 5, 79061-79069.
[43]
IranPoor N.; Rahimi, S.; Panahi, F. In situ generated and stabilized Pd nanoparticles by N2,N4,N6-tridodecyl-1,3,5-triazine-2,4,6-triamine (TDTAT) as a reactive and efficient catalyst for the Suzuki-Miyaura reaction in water. RSC Advances, 2016, 6, 3084-3090.
[44]
Dewan, A.; Bharali, P.; Bora, U.; Thakur, A.J. Starch assisted palladium(0) nanoparticles as in situ generated catalysts for room temperature Suzuki-Miyaura reactions in water. RSC Advances, 2016, 6, 11758-11762.
[45]
Scattolin, T.; Canovese, L.; Visentin, F.; Paganelli, S.; Canton, P.; Demitri, N. Synthesis of novel allyl palladium complexes bearing purine based NHC and a water soluble phosphine and their catalytic activity in the Suzuki-Miyaura coupling in water. Appl. Organomet. Chem., 2018, 32e4034
[46]
Wójcik, P.; Mart, M.; Ulukanli, S.; Trzeciak, A.M. Palladium nanoparticles generated in situ used as catalysts in carbonylative cross-coupling in aqueous medium. RSC Advances, 2016, 6, 36491-36499.
[47]
Ahmed, A.; Nuree, Y.; Ray, J.K. Aerobic ligand-free domino Suzuki coupling-michael addition reaction catalyzed by in situ generated palladium nanoparticles in water: a general method for the synthesis of benzo[c]chromene derivatives. Tetrahedron Lett., 2013, 54, 665-668.
[48]
Ghosh, M.; Ahmed, A.; Dhara, S.; Ray, J.K. Synthesis of phenanthridine and its analogues via aerobic ligand-free domino Suzuki coupling-michael addition reaction catalyzed by in situ generated palladium-nanoparticles in water. Tetrahedron Lett., 2013, 54, 4837-4840.
[49]
Denicourt-Nowicki, A.; Romagné, M-L.; Roucoux, A. N-(2-hydroxyethyl)ammonium derivatives as protective agents for Pd(0) nanocolloids and catalytic investigation in Suzuki reactions in aqueous media. Catal. Commun., 2008, 10, 68-70.
[50]
Senra, J.D.; Malta, L.F.B.; da Costa, M.E.H.M.; Michel, R.C.; Aguiar, L.C.S.; Simas, A.B.C.; Antunes, O.A.C. Hydroxypropyl-α-cyclodextrin-capped palladium nanoparticles: Active scaffolds for efficient carbon-carbon bond forming cross-couplings in water. Adv. Synth. Catal., 2009, 351, 2411-2422.
[51]
Majías, N.; Serra-Muns, A.; Pleixats, R.; Shafir, A.; Tristany, M. Water-soluble metal nanoparticles with PEG-tagged 15-membered azamacrocycles as stabilizers. Dalton Trans., 2009, 7748-7755.
[52]
Prastaro, A.; Ceci, P.; Chiancone, E.; Boffi, A.; Cirilli, R.; Colone, M.; Fabrizi, G.; Stringaro, A.; Cacchi, S. Suzuki-Miyaura cross-coupling catalyzed by protein-stabilized palladium nanoparticles under aerobic conditions in water: application to a one-pot chemoenzymatic enantioselective synthesis of chiral biaryl alcohols. Green Chem., 2009, 11, 1929-1932.
[53]
Oda, Y.; Hirano, K.; Yoshii, K.; Kuwabata, S.; Torimoto, T.; Miura, M. Palladium nanoparticles in ionic liquid by sputter deposition as catalyst for Suzuki-Miyaura coupling in water. Chem. Lett., 2010, 39, 1069-1071.
[54]
Mejías, N.; Pleixats, R.; Shafir, A.; Medio-Simón, M.; Asensio, G. Water-soluble palladium nanoparticles: Click synthesis and applications as a recyclable catalyst in Suzuki cross-couplings in aqueous media. Eur. J. Org. Chem., 2010, 5090-5099.
[55]
Ohtaka, A.; Kuroki, R.; Teratani, T.; Shinagawa, T.; Hamasaka, G.; Uozumi, Y.; Shimomura, O.; Nomura, R. Recovery of in situ-generated Pd nanoparticles with linear polystyrene. Green Sus. Chem, 2011, 1, 19-25.
[56]
Patil, A.B.; Patil, D.S.; Bhanage, B.M. Selective and efficient synthesis of decahedral palladium nanoparticles and its catalytic performance for Suzuki coupling reaction. J. Mol. Catal. A: Chem., 2012, 365, 146-153.
[57]
Coccia, F.; Tonucci, L.; d’Alessandro, N.; D’Ambrosio, P.; Bressan, M. Palladium nanoparticles, stabilized by lignin, as catalyst for cross-coupling reactions in water. Inorg. Chim. Acta, 2013, 399, 12-18.
[58]
Zhong, R.; Pöthig, A.; Feng, Y.; Riener, K.; Herrmann, W.A.; Kühn, F.E. Facile-prepared sulfonated water-soluble PEPSI-Pd-NHC catalysts for aerobic aqueous Suzuki-Miyaura cross-coupling reactions. Green Chem., 2014, 16, 4955-4962.
[59]
Yonezawa, T.; Kawai, K.; Kawakami, H.; Narushima, T. Preparation of watere-dispersible palladium nanoparticles stabilized by carbon-palladium bonds and application to Suzuki-Miyaura coupling in water. Bull. Chem. Soc. Jpn., 2016, 89, 1230-1232.
[60]
Sawoo, S.; Srimani, D.; Dutta, P.; Lahiri, R.; Sarkar, A. Size controlled synthesis of Pd nanoparticles in water and their catalytic application in C-C coupling reactions. Tetrahedron, 2009, 65, 4367-4374.
[61]
Wen, F.; Zhang, W.; Wei, G.; Wang, Y.; Zhang, J.; Zhang, M.; Shi, L. Synthesis of noble metal nanoparticles embedded in the shell layer of core-shell poly(styrene-co-4-vinylpyridine) microspheres and their application in catalysis. Chem. Mater., 2008, 20, 2144-2150.
[62]
Sivudu, K.S.; Reddy, N.M.; Prasad, M.N.; Raju, K.M.; Mohan, Y.M.; Yadav, J.S.; Sabitha, G.; Shailaja, D. Highly efficient and reusable hydrogel-supported nano-palladium catalyst: Evaluation for Suzuki-Miyaura reaction in water. J. Mol. Catal. A: Chem., 2008, 295, 10-17.
[63]
Zhang, M.; Zhang, W. Pd nanoparticles immobilized on pH-responsive and chelating nanospheres as an efficient and reusable catalyst for Suzuki reaction in water. J. Phys. Chem. C, 2008, 112, 6245-6252.
[64]
Wei, G.; Zhang, W.; Wen, F.; Wang, Y.; Zhang, M. Suzuki reaction within the core-corona nanoreactor of poly(N-isopropylacrylamide)-grafted Pd nanoparticle in water. J. Phys. Chem. C, 2008, 112, 10827-10832.
[65]
Jamwal, N.; Gupta, M.; Paul, S. Hydroxyapatite-supported palladium(0) as a highly efficient catalyst for the Suzuki coupling and aerobic oxidation of benzyl alcohols in water. Green Chem., 2008, 10, 999-1003.
[66]
Sullivan, J.A.; Flanagan, K.A.; Hain, H. Suzuki coupling activity of an aqueous phase Pd nanoparticle dispersion and a carbon nanotube/Pd nanoparticle composite. Catal. Today, 2009, 145, 108-113.
[67]
Wang, L.; Cai, C. Fluorous silica gel-supported perfluoro-tagged palladium nanoparticles catalyze Suzuki cross-coupling reaction in water. J. Mol. Catal. A: Chem., 2009, 306, 97-101.
[68]
Lyubimov, S.E.; Vasil’ev, A.A.; Korlyukov, A.A.; Ilyin, M.M.; Pisarev, S.A.; Matveev, V.V.; Chalykh, A.E.; Zlotin, S.G.; Davankov, V.A. Palladium-containing hypercrosslinked polystyrene as an easy to prepare catalyst for Suzuki reaction in water and organic solvents. React. Funct. Polym., 2009, 69, 755-758.
[69]
Taher, A.; Kim, J-B.; Jung, J-Y.; Ahn, W-S.; Jin, M-J. Highly active and magnetically recoverable Pd-NHC catalyst immobilized on Fe3O4 nanoparticle-ionic liquid matrix for Suzuki reaction in water. Synlett, 2009, 2477-2482.
[70]
Ohtaka, A.; Teratani, T.; Fujii, R.; Ikeshita, K.; Shimomura, O.; Nomura, R. Facile preparation of linear polystyrene-stabilized Pd nanoparticles in water. Chem. Commun., 2009, 7188-7190.
[71]
Karimi, B.; Elhamifar, D.; Clark, J.H.; Hunt, A.J. Ordered mesoporous organosilica with ionic-liquid framework: An efficient and reusable support for the palladium-catalyzed Suzuki-Miyaura coupling reaction in water. Chem. Eur. J., 2010, 16, 8047-8053.
[72]
Coulter, M.M.; Dinglasa, J.A.; Goh, J.B.; Nair, S.; Anderson, D.J.; Dong, V.M. Preparing water-dispersed palladium nanoparticles via polyelectrolyte nanoreactors. Chem. Sci., 2010, 1, 772-775.
[73]
Ogasawara, S.; Kato, S. Palladium nanoparticles captured in microporous polymers: A tailor-made catalyst for heterogeneous carbon cross-coupling reactions. J. Am. Chem. Soc., 2010, 132, 4608-4613.
[74]
Ohtaka, A.; Tamaki, Y.; Igawa, Y.; Egami, K.; Shimomura, O.; Nomura, R. Polyion complex stabilized palladium nanoparticles for Suzuki and Heck reaction in water. Tetrahedron, 2010, 66, 5642-5646.
[75]
Fujii, S.; Matsuzawa, S.; Nakamura, Y.; Ohtaka, A.; Teratani, T.; Akamatsu, K.; Tsuruoka, T.; Nawafune, H. Synthesis and characterization of polypyrrole-palladium nanocomposite-coated latex particles and their use as a catalyst for Suzuki coupling reaction in aqueous media. Langmuir, 2010, 26, 6230-6239.
[76]
Lee, D-H.; Jung, J-Y.; Jin, M-J. Highly active and recyclable silica gel-supported palladium catalyst for mild cross-coupling reactions of unactivated heteroaryl chlorides. Green Chem., 2010, 12, 2024-2029.
[77]
Monopoli, A.; Nacci, A.; Calò, V.; Ciminale, F.; Cotugno, P.; Mangone, A.; Giannossa, L.C.; Azzone, P.; Cioffi, N. Palladium/zirconium oxide nanocomposite as a highly recyclable catalyst for C-C coupling reactions in water. Molecules, 2010, 15, 4511-4525.
[78]
Soomro, S.S.; Röhlich, C.; Köhler, K. Suzuki coupling reactions in pure water catalyzed by supported palladium – Relevance of the surface polarity of the support. Adv. Synth. Catal., 2011, 353, 767-775.
[79]
Firouzabadi, H.; Iranpoor, N.; Ghaderi, A.; Ghavami, M.; Hoseini, S.J. Palladium nanoparticles supported on aminopropyl-functionalized clay as efficient catalysts for phosphine-free C-C bond formation via Mizoroki-Heck and Suzuki-Miyaura reactions. Bull. Chem. Soc. Jpn., 2011, 84, 100-109.
[80]
Yu, Y.; Hu, T.; Chen, X.; Xu, K.; Zhang, J.; Huang, J. Pd nanoparticles on a porous ionic copolymer: A highly active and recyclable catalyst for Suzuki-Miyaura reaction under air in water. Chem. Commun., 2011, 47, 3592-3594.
[81]
Zhi, J.; Song, D.; Li, Z.; Lei, X.; Hu, A. Palladium nanoparticles in carbon thin film-lined SBA-15 nanoreactors: Efficient heterogeneous catalysts for Suzuki-Miyaura cross coupling reaction in aqueous media. Chem. Commun., 2011, 47, 10707-10709.
[82]
Metin, Ö.; Durap, F.; Aydemir, M.; Özkar, S. Palladium(0) nanoclusters stabilized by poly(4-styrenesulfonic acid-co-maleic acid) as an effective catalyst for Suzuki-Miyaura cross-coupling reactions in water. J. Mol. Catal. A: Chem., 2011, 337, 39-44.
[83]
Kalbasi, R.J.; Mosaddegh, N. Synthesis and characterization of Pd-poly(N-vinyl-2-pyrrolidone)/KIT-5 nanocomposite as a polymer-inorganic hybrid catalyst for the Suzuki-Miyaura cross-coupling reaction. J. Solid State Chem., 2011, 184, 3095-3103.
[84]
Kalbasi, R.J.; Mosaddegh, N. Synthesis, characterization and catalytic activity studies of Pd-based supported nanoparticle catalyst anchoring on poly(N-vinyl-2-pyrrolidone) modified CMK-3. Mater. Chem. Phys., 2011, 130, 1287-1293.
[85]
Firouzabadi, H.; Iranpoor, N.; Gholinejad, M.; Kazemi, F. Agarose hydrogel as an effective bioorganic ligand and support for the stabilization of palladium nanoparticles. Application as a recyclable catalyst for Suzuki-Miyaura reaction in aqueous media. RSC Advances, 2011, 1, 1013-1019.
[86]
Ohtaka, A.; Kono, Y.; Teratani, T.; Fujii, S.; Matsuzawa, S.; Nakamura, Y.; Nomura, R. Polypyrrole-palladium nanocomposite-coated latex particles as a heterogeneous catalyst in water. Catal. Lett., 2011, 141, 1097-1103.
[87]
Hong, M.C.; Choi, M.C.; Chang, Y.W.; Lee, Y.; Kim, J.; Rhee, H. Palladium nanoparticles on thermoresponsive hydrogels and their application as recyclable Suzuki-Miyaura coupling reaction catalysts in water. Adv. Synth. Catal., 2012, 354, 1257-1263.
[88]
Zhang, D.; Zhou, C.; Wang, R. Palladium nanoparticles immobilized by click ionic copolymers: Efficient and recyclable catalysts for Suzuki-Miyaura cross-coupling reaction in water. Catal. Commun., 2012, 22, 83-88.
[89]
Cacchi, S.; Caponetti, E.; Casadei, M.A.; Di Giulio, A.; Fabrizi, G.; Forte, G.; Goggiamani, A.; Moreno, S.; Paolicelli, P.; Petrucci, F.; Prastaro, A.; Saladino, M.L. Suzuki-Miyaura cross-coupling of arenediazonium salts catalyzed by alginate/gellan-stabilized palladium nanoparticles under aerobic conditions in water. Green Chem., 2012, 14, 317-320.
[90]
Kalbasi, R.J.; Mosaddegh, N. Palladium nanoparticles supported on poly(2-hydroxyethylmethacrylate)/KIT-6 composite as an efficient and reusable catalyst for Suzuki-Miyaura reaction in water. J. Inorg. Organomet. Polym., 2012, 22, 404-414.
[91]
Khalafi-Nezhad, A.; Panahi, F. Immobilized palladium nanoparticles on silica-starch substrate (PNP-SSS): As a stable and efficient heterogeneous catalyst for synthesis of p-teraryls using Suzuki reaction. J. Organomet. Chem., 2012, 717, 141-146.
[92]
Zhou, P.; Wang, H.; Yang, J.; Tang, J.; Sun, D.; Tang, W. Bio-supported palladium nanoparticles as a phosphine-free catalyst for the Suzuki reaction in water. RSC Advances, 2012, 2, 1759-1761.
[93]
Filice, M.; Marciello, M.; del Puerto Morales, M.; Palomo, J.M. Synthesis of heterogeneous enzyme-metal nanoparticle biohybrids in aqueous media and their applications in C-C bond formation and tandem catalysis. Chem. Commun., 2013, 49, 6876-6878.
[94]
Yang, Y.; Ogasawara, S.; Li, G.; Kato, S. Water compatible Pd nanoparticle catalysts supported on microporous polymers: Their controllable microstructure and extremely low Pd-leaching behavior. J. Mater. Chem. A, 2013, 1, 3700-3705.
[95]
Dell’Anna, M.M.; Mali, M.; Mastrorilli, P.; Rizzuti, A.; Ponzoni, C.; Leonelli, C. Suzuki-Miyaura coupling under air in water promoted by polymer supported palladium nanoparticles. J. Mol. Catal. A: Chem., 2013, 366, 186-194.
[96]
Park, G.; Lee, S.; Son, S.J.; Shin, S. Pd nanoparticle-silica nanotubes (Pd@SNTs) as an efficient catalyst for Suzuki-Miyaura coupling and sp2-C-H arylation in water. Green Chem., 2013, 15, 3468-3473.
[97]
Ohtaka, A.; Sakaguchi, E.; Yamaguchi, T.; Hamasaka, G.; Uozumi, Y.; Shimomura, O.; Nomura, R. A recyclable “boomerang” linear polystyrene-stabilized Pd nanoparticles for Suzuki coupling reaction of aryl chlorides in water. ChemCatChem, 2013, 5, 2167-2169.
[98]
Ohtaka, A. Recyclable polymer-supported nano-metal catalyst in water. Chem. Rec., 2013, 13, 274-285.
[99]
Yang, J.; Wang, D.; Liu, W.; Zhang, X.; Bian, F.; Yu, W. Palladium supported on a magnetic microgel: An efficient and recyclable catalyst for Suzuki and Heck reactions in water. Green Chem., 2013, 15, 3429-3437.
[100]
Yun, G.; Hassan, Z.; Lee, J.; Kim, J.; Lee, N-S.; Kim, N.H.; Baek, K.; Hwang, I.; Park, C.G.; Kim, K. Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications. Angew. Chem. Int. Ed., 2014, 53, 6414-6418.
[101]
Prasad, K.S.; Noh, H-B.; Reddy, S.S.; Reddy, A.E.; Shim, Y-B. Catalytic properties of Au and Pd nanoparticles decorated on Cu2O microcubes for aerobic benzyl alcohol oxidation and Suzuki-Miyaura coupling reactions in water. Appl. Catal. A Gen., 2014, 476, 72-77.
[102]
Burrueco, M.I.; Mora, M.; Jiménez-Sanchidrián, C.; Ruiz, J.R. Hydrotalcite-supported palladium nanoparticles as catalysts for the Suzuki reaction of aryl halides in water. Appl. Catal. A Gen., 2014, 485, 196-201.
[103]
Borah, B.J.; Borah, S.J.; Saikia, K.; Dutta, D.K. Efficient Suzuki-Miyaura coupling reaction in water: Stabilized Pd0-montmorillonite clay composites catalyzed reaction. Appl. Catal. A Gen., 2014, 469, 350-356.
[104]
Hong, M.C.; Ahn, H.; Choi, M.C.; Lee, Y.; Kim, J.; Rhee, H. Pd nanoparticles immobilized on PNIPAM-halloysite: Highly active and reusable catalyst for Suzuki-Miyaura coupling reactions in water. Appl. Organomet. Chem., 2014, 28, 156-161.
[105]
Hoseini, S.J.; Dehghani, M.; Nasrabadi, H. Thin film formation of Pd/reduced-graphene oxide and Pd nanoparticles at oil-water interface, suitable as effective catalyst for Suzuki-Miyaura reaction in water. Catal. Sci. Technol., 2014, 4, 1078-1083.
[106]
Karimi, B.; Mansouri, F.; Vali, H. A highly water-dispersible/magnetically separable palladium catalyst based on a Fe3O4@SiO2 anchored TEG-imidazolium ionic liquid for the Suzuki-Miyaura coupling reaction in water. Green Chem., 2014, 16, 2587-2596.
[107]
Hajipour, A.R.; Shirdashtzade, Z.; Azizi, G. Silica-acac-supported palladium nanoparticles as an efficient and reusable heterogeneous catalyst in the Suzuki-Miyaura cross-coupling reaction in water. J. Chem. Sci., 2014, 126, 85-93.
[108]
Faria, V.W.; Oliveira, D.G.M.; Kurz, M.H.S.; Gonçalves, F.F.; Scheeren, C.W.; Rosa, G.R. Palladium nanoparticles supported in a polymeric membrane: An efficient phosphine-free “green” catalyst for Suzuki-Miyaura reactions in water. RSC Advances, 2014, 4, 13446-13452.
[109]
Nandi, M.; Uyama, H. Porous acrylate monolith supported Pd nanoparticles: Highly active and reusable catalyst for Suzuki-Miyaura reaction in water. RSC Advances, 2014, 4, 20847-20855.
[110]
Varadwaj, G.B.B.; Rana, S.; Parida, K. Pd(0) nanoparticles supported organofunctionalized clay driving C-C coupling reactions under benign conditions through a Pd(0)/Pd(II) redox interplay. J. Phys. Chem. C, 2014, 118, 1640-1651.
[111]
Sharavath, V.; Ghosh, S. Palladium nanoparticles on noncovalently functionalized graphene-based heterogeneous catalyst for the Suzuki-Miyaura and Heck-Mizoroki reactions in water. RSC Advances, 2014, 4, 48322-48330.
[112]
Veisi, H.; Ghorbani-Vaghei, R.; Hemmati, S.; Aliani, M.H.; Ozturk, T. Green and effective route for the synthesis of monodispersed palladium nanoparticles using herbal tea extract (Stachys lavandulifolia) as reductant, stabilizer and capping agent, and their application as homogeneous and reusable catalyst in Suzuki coupling reactions in water. Appl. Organomet. Chem., 2015, 29, 26-32.
[113]
Hajipour, A.R.; Azizi, G. Palladium-quaternary phosphonium phase transfer catalyst brush assembly as reusable and environmentally benign catalyst for coupling of aryl halides and sodium tetraphenylborate in neat water. Appl. Organomet. Chem., 2015, 29, 712-717.
[114]
Duan, L.; Fu, R.; Xiao, Z.; Zhao, Q.; Wang, J-Q.; Chen, S.; Wan, Y. Activation of aryl chlorides in water under phase-transfer agent-free and ligand-free Suzuki coupling by heterogeneous palladium supported on hybrid mesoporous carbon. ACS Catal., 2015, 5, 575-586.
[115]
Baruah, D.; Das, R.N.; Hazarika, S.; Konwar, D. Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb – A green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal. Commun., 2015, 72, 73-80.
[116]
Sun, X.; Zheng, Y.; Sun, L.; Su, H.; Qi, C. Pd nanoparticles immobilized on orange-like magnetic polymer-supported Fe3O4/PPy nanocomposites: A novel and highly active catalyst for Suzuki reaction in water. Catal. Lett., 2015, 145, 1047-1053.
[117]
Yang, F.; Chi, C.; Dong, S.; Wang, C.; Jia, X.; Ren, L.; Zhang, Y.; Zhang, L.; Li, Y. Pd/PdO nanoparticles supported on carbon nanotubes: A highly effective catalyst for promoting Suzuki reaction in water. Catal. Today, 2015, 256, 186-192.
[118]
Lemke, W.M.; Kaner, R.B.; Diaconescu, P.L. A mechanistic study of cross-coupling reactions catalyzed by palladium nanoparticles supported on polyaniline nanofibers. Inorg. Chem. Front., 2015, 2, 35-41.
[119]
Mastrorilli, P.; Dell’Anna, M.M.; Rizzuti, A.; Mali, M.; Zapparoli, M.; Leonelli, C. Resin-immobilized palladium nanoparticle catalysts for organic reactions in aqueous media: Morphological aspects. Molecules, 2015, 20, 18661-18684.
[120]
De Castro, K.A.; Rhee, H. Resin-immobilized palladium nanoparticle catalysts for Suzuki-Miyaura cross-coupling reaction in aqueous media. J. Incl. Phenom. Macrocycl. Chem., 2015, 82, 13-24.
[121]
Hoseini, S.J.; Heidari, V.; Nasrabadi, H. Magnetic Pd/Fe3O4/reduced-graphene oxide nanohybrid as an efficient and recoverable catalyst for Suzuki-Miyaura coupling reaction in water. J. Mol. Catal. A:Chem., 2015, 396, 90-95.
[122]
Nasrollahzadeh, M.; Sajadi, S.M.; Maham, M. Green synthesis of palladium nanoparticles using Hippophae rhamnoides Linn leaf extract and their catalytic activity for the Suzuki-Miyaura coupling in water. J. Mol. Catal. A: Chem., 2015, 396, 297-303.
[123]
Bhardwaj, M.; Sahi, S.; Mahajan, H.; Paul, S.; Clark, J.H. Novel heterogeneous catalyst systems based on Pd(0) nanoparticles onto amine functionalized silica-cellulose substrates [Pd(0)-EDA/SCs]: Synthesis, characterization and catalytic activity toward C-C and C-S coupling reactions in water under limiting basic conditions. J. Mol. Catal. A: Chem., 2015, 408, 48-59.
[124]
Affrose, A.; Suresh, P.; Azath, I.A.; Pitchumani, K. Palladium nanoparticles embedded on thiourea-modified chitosan: A green and sustainable heterogeneous catalyst for the Suzuki reaction in water. RSC Advances, 2015, 5, 27533-27539.
[125]
Ohtaka, A.; Okagaki, T.; Hamasaka, G.; Uozumi, Y.; Shinagawa, T.; Shimomura, O.; Nomura, R. Application of “boomerang” linear polystyrene-stabilized Pd nanoparticles to a series of C-C coupling reactions in water. Catalysts, 2015, 5, 106-118.
[126]
Ohtaka, A.; Sansano, J.M.; Nájera, C.; Miguel-García, I.; Berenguer-Murcia, Á.; Cazorla-Amorós, D. Palladium and bimetallic palladium-nickel nanoparticles supported on multiwalled carbon nanotubes: Application to carbon-carbon bond-forming reactions in water. ChemCatChem, 2015, 7, 1841-1847.
[127]
Gholinejad, M.; Hamed, F.; Biji, P. A novel polymer containing phosphorus-nitrogen ligands for stabilization of palladium nanoparticles: An efficient and recyclable catalyst for Suzuki and Sonogashira reactions in neat water. Dalton Trans., 2015, 44, 14293-14303.
[128]
Veisi, H.; Rashtiani, A.; Barjasteh, V. Biosynthesis of palladium nanoparticles using Rosa canina fruit extract and their use as a heterogeneous and recyclable catalyst for Suzuki-Miyaura coupling reactions in water. Appl. Organomet. Chem., 2016, 30, 231-235.
[129]
Veisi, H.; Nasrabadi, N.H.; Mohammadi, P. Biosynthesis of palladium nanoparticles as a heterogeneous and reusable nanocatalyst for reduction of nitroarenes and Suzuki coupling reactions. Appl. Organomet. Chem., 2016, 30, 890-896.
[130]
Mahdavi, H.; Rahmani, O. Polyacrylamide-g-reduced graphene oxide supported Pd nanoparticles as a highly efficient catalyst for Suzuki-Miyaura reactions in water. Catal. Lett., 2016, 146, 2292-2305.
[131]
Modak, A.; Sun, J.; Qiu, W.; Liu, X. Palladium nanoparticles tethered in amine-functionalized hypercrosslinked organic tubes as an efficient catalyst for Suzuki coupling in water. Catalysts, 2016, 6, 161.
[132]
Dumas, A.; Peramo, A.; Desmaële, D.; Couvreur, P. PLGA-PEG-supported Pd nanoparticles as efficient catalysts for Suzuki-Miyaura coupling reactions in water. Chimia, 2016, 70, 252-257.
[133]
Li, B.; Yu, Y.; Zhao, P.; Zhang, S. Triazole-containing dendrimer-like core cross-linked micelles that stabilize Pd nanoparticles as heterogenized homogeneous catalysts for room-temperature Suzuki-Miyaura reactions in water. Chem. Asian J., 2016, 11, 3550-3556.
[134]
Ghazali-Esfahani, S.; Pãunescu, E.; Bagherzadeh, M.; Fei, Z.; Laurenczy, G.; Dyson, P.J. A simple catalyst for aqueous phase Suzuki reactions based on palladium nanoparticles immobilized on an ionic polymer. Sci. China Chem., 2016, 59, 482-486.
[135]
Sharma, V.; Kumar, S.; Bahuguna, A.; Gambhir, D.; Sagara, P.S.; Krishnan, V. Plant leaves as natural green scaffolds for palladium catalyzed Suzuki-Miyaura coupling reactions. Bioinspir. Biomim., 2017, 12016010
[136]
Sarvi, I.; Gholizadeh, M.; Izadyar, M. Highly dispersed palladium nanoparticle-loaded magnetic catalyst (FeS@EP-AG-Pd) for Suzuki reaction in water. Catal. Lett., 2017, 147, 1162-1171.
[137]
Mondal, P.; Bhanja, P.; Khatun, R. Bhaumik, A. Das, D.; Islam, Sk. M. Palladium nanoparticles embedded on mesoporous TiO2 material (Pd@MTiO2) as an efficient heterogeneous catalyst for Suzuki-coupling reactions in water medium. J. Colloid Interface Sci., 2017, 508, 378-386.
[138]
Shabbir, S.; Lee, S.; Lim, M.; Lee, H.; Ko, H.; Lee, Y.; Rhee, H. Pd nanoparticles on reverse phase silica gel as recyclable catalyst for Suzuki-Miyaura cross coupling reaction and hydrogenation in water. J. Organomet. Chem., 2017, 846, 296-304.
[139]
Gholinejad, M.; Bahrami, M.; Nájera, C. A fluorescence active catalyst support comprising carbon quantum dots and magnesium oxide doping for stabilization of palladium nanoparticles: Application as a recoverable catalyst for Suzuki reaction in water. Mol. Catal., 2017, 433, 12-19.
[140]
Chen, Y.; Wang, M.; Zhang, L.; Liu, Y.; Han, J. Poly(o-aminothiophenol)-stabilized Pd nanoparticles as efficient heterogenous catalysts for Suzuki cross-coupling reactions. RSC Advances, 2017, 7, 47104-47110.
[141]
Kim, Y-O.; You, J.M.; Jang, H-S.; Choi, S.K.; Jung, B.Y.; Kang, O.; Kim, J.W.; Lee, Y-S. Eumelanin as a support for efficient palladium nanoparticle catalyst for Suzuki coupling reaction of aryl chlorides in water. Tetrahedron Lett., 2017, 58, 2149-2152.
[142]
Hajipour, A.R.; Tavangar-Rizi, Z. Palladium nanoparticles immobilized on magnetic methionine-functionalized chitosan: A versatile catalyst for Suzuki and copper-free Sonogashira reactions of aryl halides at room temperature in water as only solvent. Appl. Organomet. Chem., 2017, 31e3701
[143]
Veisi, H.; Adib, M.; Karimi-Nami, R.; Yasaei, Z.; Tajik, M.; Mosavat, T.S.; Hemmati, S. Suzuki-Miyaura coupling catalyzed by palladium nanoparticles biosynthesized using Glycyrrhiza glabra as reducing and stabilizing agent. Appl. Organomet. Chem., 2018, 32e4138
[144]
Hajipour, A.R.; Tarrari, M.K.; Jajarmi, S. Synthesis and characterization of 4-AMTT-Pd(II) complex over Fe3O4@SiO2 as supported nanocatalyst for Suzuki-Miyaura and Mizoroki-Heck cross-coupling reactions in water. Appl. Organomet. Chem., 2018, 32e4171
[145]
Ohtaka, A.; Yamaguchi, T.; Nishikiori, R.; Shimomura, O.; Nomura, R. One-pot synthesis of dibenzyls and 3-arylpropionic acids catalyzed by linear polystyrene-stabilized PdO nanoparticles in water. Asian J. Org. Chem., 2013, 2, 399-402.
[146]
Fang, P-P.; Jutand, A.; Tian, Z-Q.; Amatore, C. Au-Pd core-shell nanoparticles catalyzed Suzuki-Miyaura reactions in water through Pd leaching. Angew. Chem. Int. Ed., 2011, 50, 12184-12188.
[147]
Song, H.M.; Moosa, B.A.; Khashab, N.M. Water-dispersable hybrid Au-Pd nanoparticles as catalysts in ethanol oxidation, aqueous phase Suzuki-Miyaura and Heck reactions. J. Mater. Chem., 2012, 22, 15953-15959.
[148]
Nasrollahzadeh, M.; Sajadi, S.M.; Rostami-Vartoooni, A.; Khalaj, M. Journey of greener phathways: use of Euphorbia condylocarpa M. bieb as reductant and stabilizer for green synthesis of Au/Pd bimetallic nanoparticles as reusable catalysts in the Suzuki and Heck coupling reactions in water. RSC Advances, 2014, 4, 43477-43484.
[149]
Hoseini, S.J.; Agahi, B.H.; Fard, Z.S.; Fath, R.H.; Bahrami, M. Modification of palladium-copper thin film by reduced graphene oxide or platinum as catalyst for Suzuki-Miyaura reactions. Appl. Organomet. Chem., 2017, 31e3607
[150]
Dabiri, M.; Vajargahy, M.P. PdCo bimetallic nanoparticles supported on three-dimensional graphene as a highly active catalyst for Sonogashira cross-coupling reaction. Appl. Organomet. Chem., 2017, 31e3594
[151]
Fatahi, P.; Hoseini, S.J. Formation of PdNiZn thin film at oil-water interface: XPS study and application as Suzuki-Miyaura catalyst. Appl. Organomet. Chem., 2018, 32e4187
[152]
Han, J.; Liu, Y.; Guo, R. Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling reaction in water. J. Am. Chem. Soc., 2009, 131, 2060-2061.
[153]
Fakhri, P.; Nasrollahzadeh, M.; Jaleh, B. Graphene oxide supported Au nanoparticles as an efficient catalyst for reduction of nitro compounds and Suzuki-Miyaura coupling in water. RSC Advances, 2014, 4, 48691-48697.
[154]
Handa, S.; Slack, E.D.; Lipshutz, B.H. Nanonickel-catalyzed Suzuki-Miyaura cross-coupling in water. Angew. Chem. Int. Ed., 2015, 54, 11994-11998.
[155]
Handa, S.; Wang, Y.; Gallou, F.; Lipshutz, B.H. Sustainable Fe-ppm Pd nanoparticle catalysis of Suzuki-Miyaura cross-coupling in water. Science, 2015, 349, 1087-1091.
[156]
Lamei, K.; Eshghi, H.; Bakavoli, M.; Rostamnia, S. Highly dispersed copper/ppm palladium nanoparticles as novel magnetically recoverable catalyst for Suzuki reaction under aqueous conditions at room temperature. Appl. Organomet. Chem., 2017, 31e3743
[157]
Lamei, K.; Eshghi, H.; Bakavoli, M.; Rounaghi, S.A.; Esmaeili, E. Carbon coated copper nanostructures as a green and ligand free nanocatalyst for Suzuki cross-coupling reaction. Catal. Commun., 2017, 92, 40-45.
[158]
Liao, W-T.; Yang, X-J.; Tseng, Y-Y.; Wu, C-C.; Liu, L-J.; Tsai, F-Y. Mizoroki-Heck reaction of aryl halides and dialkyl allylphosphonates in water catalyzed by reusable palladium nanoparticles. Asian J. Org. Chem., 2015, 4, 1112-1119.
[159]
Khalafi-Nezhad, A.; Panahi, F. Size-controlled synthesis of palladium nanoparticles on a silica-cyclodextrin substrate: A novel palladium catalyst system for the Heck reaction in water. ACS Sustain. Chem.& Eng., 2014, 2, 1177-1186.
[160]
Azaroon, M.; Kiasat, A.R. An efficient and new protocol for the Heck reaction using palladium nanoparticle-engineered dibenzo-18-crown-6-ether/MCM-41 nanocomposite in water. Appl. Organomet. Chem., 2018, 32e4271
[161]
Sadjadi, S.; Heravi, M.M.; Raja, M. Combination of carbon nanotube and cyclodextrin nanosponge chemistry to develop a heterogeneous Pd-based catalyst for ligand and copper free C-C coupling reactions. Carbohydr. Polym., 2018, 185, 48-55.
[162]
Qiao, K.; Sugimura, R.; Bao, Q.; Tomida, D.; Yokoyama, C. An efficient Heck reaction in water catalyzed by palladium nanoparticles immobilized on imidazolium-styrene copolymers. Catal. Commun., 2008, 9, 2470-2474.
[163]
Liu, X.; Zhao, X.; Lu, M. Pd nanoparticles immobilized on Fe3O4@poly(ethylene glycol) bridged amine functionalized imidazolium ionic liquid: A magnetically separable catalyst for Heck in warer. Catal. Lett., 2015, 145, 1549-1556.
[164]
Zong, Y.; Wang, J.; An, P.; Yue, G.; Pan, Y.; Wang, X. Self-assembled Pd nanoparticles-containing ionic liquid: Efficient and reusable catalyst for the Heck reaction in water. Appl. Organomet. Chem., 2017, 31e3762
[165]
Wan, Y.; Wang, H.; Zhao, Q.; Klingstedt, M.; Terasaki, O.; Zhao, D. Ordered mesoporous Pd/silica-carbon as a highly active heterogeneous catalyst for coupling reaction of chlorobenzene in aqueous media. J. Am. Chem. Soc., 2009, 131, 4541-4550.
[166]
Mondal, J.; Modak, A.; Bhaumik, A. One-pot efficient Heck coupling in water catalyzed by palladium nanoparticles tethered into mesoporous organic polymer. J. Mol. Catal. A: Chem., 2011, 350, 40-48.
[167]
Boffi, A.; Cacchi, S.; Ceci, P.; Cirilli, R.; Fabrizi, G.; Prastaro, A.; Niembro, S.; Shafir, A.; Vallribera, A. The Heck reaction of allylic alcohols catalyzed by palladium nanoparticles in water: Chemoenzymatic synthesis of (R)-(-)-rhodendrol. ChemCatChem, 2011, 3, 347-353.
[168]
Ohtaka, A.; Yamaguchi, T.; Teratani, T.; Shimomura, O.; Nomura, R. Linear polystyrene-stabilized PdO nanoparticle-catalyzed Mizoroki-Heck reactions in water. Molecules, 2011, 16, 9067-9076.
[169]
Khalafi-Nezhad, A.; Panahi, F. Immobilized palladium nanoparticles on a silica-starch substrate (PNP-SSS): As an efficient heterogeneous catalyst for Heck and copper-free Sonogashira reactions in water. Green Chem., 2011, 13, 2408-2415.
[170]
Kalbasi, R.J.; Mosaddegh, N.; Abbaspourrad, A. Palladium nanoparticles supported on a poly(N-vinyl-2-pyrrolidone)-modified mesoporous carbon nanocage as a novel heterogeneous catalyst for the Heck reaction in water. Tetrahedron Lett., 2012, 53, 3763-3766.
[171]
Kamal, A.; Srinivasulu, V.; Seshadri, B.N.; Markandeya, N.; Alarifi, A.; Shankaraiah, N. Water mediated Heck and Ullmann couplings by supported palladium nanoparticles: Importance of surface polarity of the carbon spheres. Green Chem., 2012, 14, 2513-2522.
[172]
Keshipour, S.; Shojaei, S.; Shaabani, A. Palladium nano-particles supported on ethylenediamine-functionalized cellulose as a novel and efficient catalyst for the Heck and Sonogashira couplings in water. Cellulose, 2013, 20, 973-980.
[173]
Nabid, M.R.; Bide, Y. H40-PCL-PEG unimolecular micelles both as anchoring sites for palladium nanoparticles and micellar catalyst for Heck reaction in water. Appl. Catal. A Gen., 2014, 469, 183-190.
[174]
Basavaprabhu, M.; Samarasimhareddy, M. Prabhu, G.; Sureshbabu, V.V. A simple and greener approach for the synthesis of PVC supported Pd(0): Application to Heck and Sonogashira reactions in water. Tetrahedron Lett., 2014, 55, 2256-2260.
[175]
Baruah, D.; Das, R.N.; Hazarika, S.; Konwar, D. Biogenic synthesis of cellulose supported Pd(0) nanoparticles using hearth wood extract of Artocarpus lakoocha Roxb – A green, efficient and versatile catalyst for Suzuki and Heck coupling in water under microwave heating. Catal. Commun., 2015, 72, 73-80.
[176]
Nasrollahzadeh, M.; Banaei, A. Hybrid Au/Pd nanoparticles as reusable catalysts for Heck coupling reactions in water under aerobic conditions. Tetrahedron Lett., 2015, 56, 500-503.
[177]
Gaikwad, D.S.; Pore, D.M. Palladium-nanoparticle-catalyzed Matsuda-Heck reaction in water. Synlett, 2012, 23, 2631-2634.
[178]
Gholinejad, M. Palladium nanoparticles supported on agarose-catalyzed Heck-Matsuda and Suzuki-Miyaura coupling reactions using aryl diazonium salts. Appl. Organomet. Chem., 2013, 27, 19-22.
[179]
Gaikwad, D.S.; Undale, K.A.; Patil, D.B.; Pore, D.M.; Kamble, A.A. Triton X-100 stabilized Pd nanoparticles and their catalytic application in one-pot sequential Heck and Hiyama coupling in water. Res. Chem. Intermed., 2018, 44, 265-275.
[180]
Chinchilla, R.; Nájera, C. The Sonogashira reaction: A booming methodology in synthetic organic chemistry. Chem. Rev., 2007, 107, 874-922.
[181]
Nasrollahzadeh, M.; Maham, M.; Tohidi, M.M. Green synthesis of water-dispersable palladium nanoparticles and their catalytic application in the ligand- and copper-free Sonogashira coupling reaction under aerobic conditions. J. Mol. Catal. A: Chem., 2014, 391, 83-87.
[182]
Nasrollahzadeh, M.; Sajadi, S.M.; Maham, M.; Ehsani, A. Facile and surfactant-free synthesis of Pd nanoparticles by the extract of the fruits of Piper longum and their catalytic performance for the Sonogashira coupling reaction in water under ligand- and copper-free conditions. RSC Advances, 2015, 5, 2562-2567.
[183]
Shunmughanathan, M.; Puthiaraj, P.; Pitchumani, K. Melamine-based microporous network polymer supported palladium nanoparticles: A stable and efficient catalyst for the Sonogashira coupling reaction in water. ChemCatChem, 2015, 7, 666-673.
[184]
Baghbanian, S.M.; Yadollahy, H.; Tajbakhsh, M.; Farhang, M.; Biparva, P. Palladium nanoparticles supported on natural nanozeolite clinoptilolite as a catalyst for ligand and copper-free C-C and C-O cross coupling reactions in aqueous medium. RSC Advances, 2014, 4, 62532-62543.
[185]
Isfahani, A.L.; Mohammadpoor-Baltork, I.; Mirkhani, V.; Khosropour, A.R.; Moghadam, M.; Tangestaninejad, S. Pd nanoparticles immobilized on nanosilica triazine dendritic polymer: A reusable catalyst for the synthesis of mono-, di-, and trialkynylaromatics by Sonogashira cross-coupling in water. Eur. J. Org. Chem., 2014, 5603-5609.
[186]
Dendrimer-encapsulated, Pd. (0) nanoparticles immobilized on nanosilica as a highly active and recyclable catalyst for the copper- and phosphine-free Sonogashira-Hagihara coupling reactions in water. Catal. Sci. Technol., 2016, 6, 4005-4019.
[187]
Teratani, T.; Ohtaka, A.; Kawashima, T.; Shimomura, O.; Nomura, R. Copper-free Sonogashira coupling in water with linear polystyrene-stabilized PdO nanoparticles. Synlett, 2010, 2271-2274.
[188]
Xiao, Q.; Sarina, S.; Bo, A.; Jia, J.; Liu, H.; Arnold, D.P.; Huang, Y.; Wu, H.; Zhu, H. Visible light-driven cross-coupling reactions at lower temperatures using a photocatalyst of palladium and gold alloy nanoparticles. ACS Catal., 2014, 4, 1725-1734.
[189]
Moghaddam, F.M.; Tavakoli, G.; Rezvani, H.R. A copper-free Sonogashira reaction using nickel ferrite as catalyst. Catal. Commun., 2015, 60, 82-87.
[190]
Saha, D.; Dey, R.; Ranu, B.C. A simple and efficient one-pot synthesis of substituted benzo[b]furans by Sonogashira coupling-5-endo-dig cyclization catalyzed by palladium nanoparticles in water under ligand- and copper-free aerobic conditions. Eur. J. Org. Chem., 2010, 6067-6071.
[191]
Ohtaka, A.; Teratani, T.; Fujii, R.; Ikeshita, K.; Kawashima, T.; Tatsumi, K.; Shimomura, O.; Nomura, R. Linear polystyrene-stabilized palladium nanoparticles-catalyzed C-C coupling reaction in water. J. Org. Chem., 2011, 76, 4052-4060.
[192]
Li, H.; Zhu, Z.; Zhang, F.; Xie, S.; Li, H.; Li, P.; Zhou, X. Palladium nanoparticles confined in the cages of MIL-101: An efficient catalyst for the one-pot indole synthesis in water. ACS Catal., 2011, 1, 1604-1612.
[193]
Pal, R.; Chatterjee, N.; Roy, M.; Nouh, E.S.A.; Sarkar, S.; Jaisankar, P.; Sarkar, S.; Sen, A.K. Reusable palladium nanoparticles in one-pot domino Sonogashira-cyclization: Region- and stereo-selective syntheses of (Z)-3-methyleneisoindoline-1-ones and furo[3,2-h]quinolines in water. Tetrahedron Lett., 2016, 57, 43-47.
[194]
Wang, Y.; Yang, X.; Yu, J. A polysalen based on polyacrylamide stabilized palladium nanoparticle catalyst for efficient carbonylative Sonogashira reaction in aqueous media. RSC Advances, 2017, 7, 31850-31857.
[195]
Wolf, C.; Lerebours, R. Efficient Stille cross-coupling reaction using aryl chlorides or bromides in water. J. Org. Chem., 2003, 68, 7551-7554.
[196]
Lu, G.P.; Cai, C.; Lipshutz, B.H. Stille couplings in water at room temperature. Green Chem., 2013, 15, 105-109.
[197]
Briggs, B.D.; Bedford, N.M.; Seifert, S.; Koerner, H.; Ramezani-Dakhel, H.; Heinz, H.; Naik, R.R.; Frenkel, A.I.; Knecht, M.R. Atomic-scale identification of Pd leaching in nanoparticle catalyzed C-C coupling: Effects of particle surface disorder. Chem. Sci., 2015, 6, 6413-6419.
[198]
Bernechea, M.; de Jesús, E.; López-Mardomingo, C.; Terreros, P. Dendrimer-Encapsulated Pd nanoparticles versus palladium acetate as catalytic precursors in the Stille reaction in water. Inorg. Chem., 2009, 48, 4491-4496.
[199]
Wu, L.; Zhang, X.; Tao, Z. A mild and recyclable nano-sized nickel catalyst for the Stille reaction in water. Catal. Sci. Technol., 2012, 2, 707-710.
[200]
Wolf, C.; Lerebours, R. Palladium-phosphinous acid-catalyzed NaOH-promoted cross-coupling reactions of arylsiloxanes with aryl chlorides and bromides in water. Org. Lett., 2004, 6, 1147-1150.
[201]
Ranu, B.C.; Dey, R.; Chattopadhyay, K. A one-pot efficient and fast Hiyama coupling using palladium nanoparticles in water under fluoride-free conditions. Tetrahedron Lett., 2008, 49, 3430-3432.
[202]
Sreedhar, B.; Kumar, A.S.; Yada, D. Magnetically recoverable Pd/Fe3O4-catalyzed Hiyama cross-coupling of aryl bromides with aryl siloxanes. Synlett, 2011, 1081-1084.
[203]
Nasrollahzadeh, M.; Sajadi, S.M.; Honarmand, E.; Maham, M. Preparation of palladium nanoparticles using Euphorbia thymifolia L. leaf extract and evaluation of catalytic activity in the ligand-free Stille and Hiyama cross-coupling reactions in water. New J. Chem., 2015, 39, 4745-4752.
[204]
Ohtaka, A.; Kotera, T.; Sakon, A.; Ueda, K.; Hamasaka, G.; Uozumi, Y.; Shinagawa, T.; Shimomura, O.; Nomura, R. Fluoride-free Hiyama coupling reaction catalyzed by linear polystyrene-stabilized PdO nanoparticles in water: Specific reactivity of PdO nanoparticles over Pd nanoparticles. Synlett, 2016, 27, 1202-1206.
[205]
Sakon, A.; Ii, R.; Hamasaka, G.; Uozumi, Y.; Shinagawa, T.; Shimomura, O.; Nomura, R.; Ohtaka, A. Detailed mechanism for Hiyama coupling reaction in water catalyzed by linear polystyrene-stabilized PdO nanoparticles. Organometallics, 2017, 36, 1618-1622.
[206]
Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev., 2002, 102, 1359-1469.
[207]
Monopoli, A.; Calò, V.; Ciminale, F.; Cotugno, P.; Angelici, C.; Cioffi, N.; Nacci, A. Glucose as a clean and renewable reductant in the Pd-nanoparticle-catalyzed reductive homcoupling of bromo- and chloroarenes in water. J. Org. Chem., 2010, 75, 3908-3911.
[208]
Firouzabadi, H.; Iranpoor, N.; Kazemi, F. Carbon-carbon bond formation via homocoupling reaction of substrates with a broad diversity in water using Pd(OAc)2 and agarose as a bioorganic ligand, support and reductant. J. Mol. Catal. A: Chem., 2011, 348, 94-99.
[209]
Zhang, F.; Yin, J.; Chai, W.; Li, H. Self-assembly of palladium nanoparticles on periodic mesoporous organosilica using an in situ reduction approach: Catalysts for Ullmann reactions in water. ChemSusChem, 2010, 3, 724-727.
[210]
Huang, J.; Yin, J.; Chai, W.; Liang, C.; Shen, J.; Zhang, F. Muntifunctional mesoporous silica supported palladium nanoparticles as efficient and reusable catalyst for water-medium Ullmann reaction. New J. Chem., 2012, 36, 1378-1384.
[211]
Karimi, B.; Behzadnia, H.; Vali, H. Palladium on ionic liquid derived nanofibrillated mesoporous carbon: A recyclable catalyst for the Ullmann homocoupling reactions of aryl halides in water. ChemCatChem, 2014, 6, 745-748.
[212]
Puthiaraj, P.; Ahn, W-S. Ullmann coupling of aryl chlorides in water catalyzed by palladium nanoparticles supported on amine-grafted porous aromatic polymer. Mol. Catal., 2017, 437, 73-79.
[213]
Ohtaka, A.; Sakon, A.; Yasui, A.; Kawaguchi, T.; Hamasaka, G.; Uozumi, Y.; Shinagawa, T.; Shimomura, O.; Nomura, R. Catalytic specificity of linear polystyrene-stabilized Pd nanoparticles during Ullmann coupling reaction in water and the associated mechanism. J. Organomet. Chem., 2018, 854, 87-93.
[214]
Llevot, A.; Monney, B.; Sehlinger, A.; Behrens, S.; Meier, M.A.R. Highly efficient Tsuji-Trost allylation in water catalyzed by Pd-nanoparticles. Chem. Commun., 2017, 53, 5175-5178.
[215]
Liu, J.; Huo, X.; Li, T.; Yang, Z.; Xi, P.; Wang, Z.; Wang, B. Palladium nanoparticles bonded to two-dimensional Iron oxide graphene nanosheets: A synergistic and highly reusable catalyst for the Tsuji-Trost reaction in water and air. Chem. Eur. J., 2014, 20, 11549-11555.
[216]
Liu, J.; Hu, G.; Yang, Y.; Zhang, H.; Zuo, W.; Liu, W.; Wang, B. Rational synthesis of Pd nanoparticles-embedded reduced graphene oxide frameworks with enhanced selective catalysis in water. Nanoscale, 2016, 8, 2787-2794.
[217]
Zhao, J.; Ye, J.; Zhang, Y.J. Stereospecific allyl-aryl coupling catalyzed by in situ generated palladium nanoparticles in water under ambient conditions. Adv. Synth. Catal., 2013, 355, 491-498.
[218]
Lee, Y.; Shabbir, S.; Lee, S.; Ahn, H.; Rhee, H. Catalytic allylic arylation of cinnamyl carbonates over palladium nanoparticles supported on a thermoresponsive polymer in water. Green Chem., 2015, 17, 3579-3583.
[219]
Meng, Q.Y.; Liu, Q.; Zhong, J.J.; Zhang, H.H.; Li, Z.J.; Chen, B.; Tung, C.H.; Wu, L.Z. Graphene-supported RuO2 nanoparticles for efficient aerobic cross-dehydrogenative coupling reaction in water. Org. Lett., 2012, 14, 5992-5995.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 6
Year: 2019
Page: [689 - 703]
Pages: 15
DOI: 10.2174/1385272823666190419211714
Price: $58

Article Metrics

PDF: 14
HTML: 2