Increased Production of Recombinant O-Phospho-L-Serine Sulfhydrylase from the Hyperthermophilic Archaeon Aeropyrum pernix K1 Using Escherichia coli

Author(s): Takashi Nakamura*, Emi Takeda, Tomoko Kiryu, Kentaro Mori, Miyu Ohori, Eiki Kikugawa, Kazuhiko Ishikawa.

Journal Name: Current Biotechnology

Volume 8 , Issue 1 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: O-phospho-L-serine sulfhydrylase from the hyperthermophilic archaeon Aeropyrum pernix K1 (ApOPSS) is thermostable and tolerant to organic solvents. It can produce nonnatural amino acids in addition to L-cysteine.

Objective: We aimed to obtain higher amounts of ApOPSS compared to those reported with previous methods for the convenience of research and for industrial production of L-cysteine and non-natural amino acids.

Methods: We performed codon optimization of cysO that encodes ApOPSS, for optimal expression in Escherichia coli. We then examined combinations of conditions such as the host strain, plasmid, culture medium, and isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration to improve ApOPSS yield.

Results and Discussion: E. coli strain Rosetta (DE3) harboring the expression plasmid pQE-80L with the codon-optimized cysO was cultured in Terrific broth with 0.01 mM IPTG at 37°C for 48 h to yield a 10-times higher amount of purified ApOPSS (650 mg·L-1) compared to that obtained by the conventional method (64 mg·L-1). We found that the optimal culture conditions along with codon optimization were essential for the increased ApOPSS production. The expressed ApOPSS had a 6-histidine tag at the N-terminal, which did not affect its activity. This method may facilitate the industrial production of cysteine and non-natural amino acids using ApOPSS.

Conclusion: We conclude that these results could be used in applied research on enzymatic production of L-cysteine in E. coli, large scale production of non-natural amino acids, an enzymatic reaction in organic solvent, and environmental remediation by sulfur removal.

Keywords: Aeropyrum pernix K1, O-phospho-L-serine sulfhydrylase, cysteine synthesis, high expression level, codon optimization, terrific broth, low IPTG concentration.

[1]
Wada M, Takagi H. Metabolic pathways and biotechnological production of L-cysteine. Appl Microbiol Biotechnol 2006; 73(1): 48-54.
[http://dx.doi.org/10.1007/s00253-006-0587-z] [PMID: 17021879]
[2]
Maier TH. Semisynthetic production of unnatural L-alpha-amino acids by metabolic engineering of the cysteine-biosynthetic pathway. Nat Biotechnol 2003; 21(4): 422-7.
[http://dx.doi.org/10.1038/nbt807] [PMID: 12640465]
[3]
Brown DT. Carbocysteine. Drug Intell Clin Pharm 1988; 22(7-8): 603-8.
[http://dx.doi.org/10.1177/106002808802200721] [PMID: 3046890]
[4]
Kaldor SW, Kalish VJ, Davies JF II, et al. Viracept (nelfinavir mesylate, AG1343): a potent, orally bioavailable inhibitor of HIV-1 protease. J Med Chem 1997; 40(24): 3979-85.
[http://dx.doi.org/10.1021/jm9704098] [PMID: 9397180]
[5]
Ho JN, Kang M, Lee S, et al. Anticancer effect of S-allyl-L-cysteine via induction of apoptosis in human bladder cancer cells. Oncol Lett 2018; 15(1): 623-9.
[PMID: 29285203]
[6]
Mino K, Ishikawa K. Characterization of a novel thermostable O-acetylserine sulfhydrylase from Aeropyrum pernix K1. J Bacteriol 2003; 185(7): 2277-84.
[http://dx.doi.org/10.1128/JB.185.7.2277-2284.2003] [PMID: 12644499]
[7]
Mino K, Ishikawa K. A novel O-phospho-L-serine sulfhydrylation reaction catalyzed by O-acetylserine sulfhydrylase from Aeropyrum pernix K1. FEBS Lett 2003; 551(1-3): 133-8.
[http://dx.doi.org/10.1016/S0014-5793(03)00913-X] [PMID: 12965218]
[8]
Mino K, Oda Y, Ataka M, Ishikawa K. Crystallization and preliminary X-ray diffraction analysis of O-acetylserine sulfhydrylase from Aeropyrum pernix K1. Acta Crystallogr D Biol Crystallogr 2003; 59(Pt 2): 338-40.
[http://dx.doi.org/10.1107/S0907444902017900] [PMID: 12554945]
[9]
Oda Y, Mino K, Ishikawa K, Ataka M. Three-dimensional structure of a new enzyme, O-phosphoserine sulfhydrylase, involved in l-cysteine biosynthesis by a hyperthermophilic archaeon, Aeropyrum pernix K1, at 2.0A resolution. J Mol Biol 2005; 351(2): 334-44.
[http://dx.doi.org/10.1016/j.jmb.2005.05.064] [PMID: 16005886]
[10]
Nakamura T, Kawai Y, Kunimoto K, et al. Structural analysis of the substrate recognition mechanism in O-phosphoserine sulfhydrylase from the hyperthermophilic archaeon Aeropyrum pernix K1. J Mol Biol 2012; 422(1): 33-44.
[http://dx.doi.org/10.1016/j.jmb.2012.05.009] [PMID: 22580223]
[11]
Takeda E, Kunimoto K, Kawai Y, Kataoka M, Ishikawa K, Nakamura T. Role of F225 in O-phosphoserine sulfhydrylase from Aeropyrum pernix K1. Extremophiles 2016; 20(5): 733-45.
[http://dx.doi.org/10.1007/s00792-016-0862-6] [PMID: 27377295]
[12]
Nakamura T, Asai S, Nakata K, Kunimoto K, Oguri M, Ishikawa K. Thermostability and reactivity in organic solvent of O-phospho-L-serine sulfhydrylase from hyperthermophilic archaeon Aeropyrum pernix K1. Biosci Biotechnol Biochem 2015; 79(8): 1280-6.
[http://dx.doi.org/10.1080/09168451.2015.1020753] [PMID: 25779754]
[13]
Ishikawa K, Mino K, Nakamura T. New function and applica-tion of the cysteine synthase from archaea. Biochem Eng J 2010; 48(3): 315-22.
[http://dx.doi.org/10.1016/j.bej.2009.10.015]
[14]
Nakamura T, Kunimoto K, Yuki T, Ishikawa K. Unnatural amino acid synthesis by thermostable O-phospho-L-serine sulfhydrylase from hyperthermophilic archaeon Aeropyrum pernix K1. Chem Lett 2017; 46(12): 1789-92.
[http://dx.doi.org/10.1246/cl.170822]
[15]
Dhulipala PD, Armstrong CD. Enzymes for removing sulfurous compounds in downhole fluids. US Patent 0160105 2016.
[16]
Hosseinkhani H, Hong PD, Yu DS. Self-assembled proteins and peptides for regenerative medicine. Chem Rev 2013; 113(7): 4837-61.
[http://dx.doi.org/10.1021/cr300131h] [PMID: 23547530]
[17]
Hosseinkhani H, Hiraoka Y, Li CH, et al. Engineering three-dimensional collagen-IKVAV matrix to mimic neural microenvironment. ACS Chem Neurosci 2013; 4(8): 1229-35.
[http://dx.doi.org/10.1021/cn400075h] [PMID: 23705903]
[18]
Zhao C, Kumada Y, Imanaka H, Imamura K, Nakanishi K. Cloning, overexpression, purification, and characterization of O-acetylserine sulfhydrylase-B from Escherichia coli. Protein Expr Purif 2006; 47(2): 607-13.
[http://dx.doi.org/10.1016/j.pep.2006.01.002] [PMID: 16546401]
[19]
Kim J, Kim SI, Hong E, Ryu Y. Strategies for increasing heterologous expression of a thermostable esterase from Archaeoglobus fulgidus in Escherichia coli. Protein Expr Purif 2016; 127: 98-104.
[http://dx.doi.org/10.1016/j.pep.2016.07.012] [PMID: 27449918]
[20]
Papaneophytou CP, Kontopidis G. Statistical approaches to maximize recombinant protein expression in Escherichia coli: a general review. Protein Expr Purif 2014; 94: 22-32.
[http://dx.doi.org/10.1016/j.pep.2013.10.016] [PMID: 24211770]
[21]
Sørensen HP, Mortensen KK. Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 2005; 115(2): 113-28.
[http://dx.doi.org/10.1016/j.jbiotec.2004.08.004] [PMID: 15607230]
[22]
Weickert MJ, Doherty DH, Best EA, Olins PO. Optimization of heterologous protein production in Escherichia coli. Curr Opin Biotechnol 1996; 7(5): 494-9.
[http://dx.doi.org/10.1016/S0958-1669(96)80051-6] [PMID: 8939627]
[23]
Welch M, Govindarajan S, Ness JE, et al. Design parameters to control synthetic gene expression in Escherichia coli. PLoS One 2009; 4(9)e7002 [cited: 14th Sep 2009
[http://dx.doi.org/10.1371/journal.pone.0007002] [PMID: 19759823]
[24]
Sambrook J, Russel DW. Molecular cloning: a laboratory manual 2001.
[25]
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72: 248-54.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[26]
Gaitonde MK. A spectrophotometric method for the direct determination of cysteine in the presence of other naturally occurring amino acids. Biochem J 1967; 104(2): 627-33.
[http://dx.doi.org/10.1042/bj1040627] [PMID: 6048802]
[27]
Kopetzki E, Schumacher G, Buckel P. Control of formation of active soluble or inactive insoluble baker’s yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. Mol Gen Genet 1989; 216(1): 149-55.
[http://dx.doi.org/10.1007/BF00332244] [PMID: 2659969]
[28]
Zheng H, Yu Z, Fu X, et al. High level extracellular production of a truncated alkaline β-mannanase from alkaliphilic Bacillus sp. N16-5 in Escherichia coli by the optimization of induction condition and fed-batch fermentation. J Ind Microbiol Biotechnol 2016; 43(7): 977-87.
[http://dx.doi.org/10.1007/s10295-016-1773-3] [PMID: 27130461]
[29]
Choi JH, Jeong KJ, Kim SC, Lee SY. Efficient secretory production of alkaline phosphatase by high cell density culture of recombinant Escherichia coli using the Bacillus sp. endoxylanase signal sequence. Appl Microbiol Biotechnol 2000; 53(6): 640-5.
[http://dx.doi.org/10.1007/s002530000334] [PMID: 10919319]
[30]
Ashayeri-Panah M, Eftekhar F, Kazemi B, Joseph J. Cloning, optimization of induction conditions and purification of Mycobacterium tuberculosis Rv1733c protein expressed in Escherichia coli. Iran J Microbiol 2017; 9(2): 64-73.
[PMID: 29213997]
[31]
Choi T-J, Geletu TT. High level expression and purification of recombinant flounder growth hormone in E. coli. J Genet Eng Biotechnol 2018; 16(2): 347-55.
[http://dx.doi.org/10.1016/j.jgeb.2018.03.006] [PMID: 30733745]
[32]
Hall A, Troupin A, Londono-Renteria B, Colpitts TM. Garlic Organosulfur compounds reduce inflammation and oxidative stress during dengue virus infection. Viruses 2017; 9(7): 159.
[http://dx.doi.org/10.3390/v9070159] [PMID: 28644404]
[33]
Carson M, Johnson DH, McDonald H, Brouillette C, Delucas LJ. His-tag impact on structure. Acta Crystallogr D Biol Crystallogr 2007; 63(Pt 3): 295-301.
[http://dx.doi.org/10.1107/S0907444906052024] [PMID: 17327666]
[34]
Claus MT, Zocher GE, Maier TH, Schulz GE. Structure of the O-acetylserine sulfhydrylase isoenzyme CysM from Escherichia coli. Biochemistry 2005; 44(24): 8620-6.
[http://dx.doi.org/10.1021/bi050485+] [PMID: 15952768]
[35]
Zocher G, Wiesand U, Schulz GE. High resolution structure and catalysis of O-acetylserine sulfhydrylase isozyme B from Escherichia coli. FEBS J 2007; 274(20): 5382-9.
[http://dx.doi.org/10.1111/j.1742-4658.2007.06063.x] [PMID: 17894825]
[36]
Shin SA, Chang JS, Um HW, Jo JH, Song BC, Lee KM. Ophosphoserine sulfhydrylase mutants and method for pro-duction of cysteine using the same. WO Patent 053777 2012.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 8
ISSUE: 1
Year: 2019
Page: [15 - 23]
Pages: 9
DOI: 10.2174/2211550108666190418125138

Article Metrics

PDF: 14
HTML: 3
EPUB: 1
PRC: 1