Significant Seed Oil Feedstocks for Renewable Production of Biodiesel: A Review

Author(s): Mirza Muhammad Ikram, Muhammad Asif Hanif, Ghufrana Samin Khan, Umer Rashid*, Farwa Nadeem.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 14 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The rapidly increasing demand for biodiesel is now tying agriculture and energy more closely than ever. Biodiesel may be one of the key ways to pump immediate life into the flaccid economy of many underdeveloped countries. The present review critically describes leading potential feedstocks available for biodiesel production based on a full life-cycle analysis which comprises major producer countries, important cultivation practices and major fatty acid compositions of the produced biodiesel. This article provides a comprehensive approach about the twenty leading plant sources which can contribute to enhance biodiesel production throughout the world along with their production methodologies, physical and chemical fuel quality parameters and analytical techniques for the assessment of the quality of the prepared biodiesel. Biodiesel has become further interesting in recent years because of its eco-friendly benefits and the fact that it is made from renewable and sustainable resources. A wide literature review was conducted and the major fatty acid composition of various vegetable oils was discussed as it significantly affects biodiesel properties. Lipids obtained from filamentous fungi, for example, Cunninghamella echinulata exhibit great promise for biofuel production. Finally, this review will be helpful in promoting the development of biodiesel by several countries not only by extending scientific research and knowledge but also through the introduction of policies and expressing reasons underlying these policies.

Conclusion: This review explains the potential feedstocks for renewable production of biodiesel.

Keywords: Biodiesel, feedstocks, renewable, oil seeds crops, fuel qualities, production methodologies.

[1]
Martini, N.; Schell, J.S. Plant oils as fuels: Present state of science and future developments Proceedings of the symposium held in, Germany, , 16-18.
[2]
Balat, M.; Balat, H. Progress in biodiesel processing. Appl. Energy, 2010, 87(6), 1815-1835.
[http://dx.doi.org/10.1016/j.apenergy.2010.01.012]
[3]
Johnston, M.; Holloway, T. A global comparison of national biodiesel production potentials. Environ. Sci. Technol., 2007, 41(23), 7967-7973.
[http://dx.doi.org/10.1021/es062459k] [PMID: 18186324]
[4]
Atadashi, I.; Aroua, M.; Aziz, A.A. Biodiesel separation and purification. J. Renew. Sustain. Energy, 2011, 36(2), 437-443.
[http://dx.doi.org/10.1016/j.renene.2010.07.019]
[5]
Demirbaş, A. Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energy Sources, 2002, 24(9), 835-841.
[http://dx.doi.org/10.1080/00908310290086798]
[6]
Singh, S.; Singh, D. Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of die-sel: A review. Renew. Sustain. Energy Rev., 2010, 14(1), 200-216.
[http://dx.doi.org/10.1016/j.rser.2009.07.017]
[7]
Achten, W.; Verchot, L.; Franken, Y.J.; Mathijs, E.; Singh, V.P.; Aerts, R.; Muys, B. Jatropha bio-diesel production and use. Bioresour. Technol., 2008, 32(12), 1063-1084.
[8]
Pinzi, S.; Garcia, I.L.; Lopez-Gimenez, F.J.; Luque de Castro, M.D.; Dorado, G.; Dorado, M.P. The ideal vegetable oil-based biodiesel composition: A review of social, economic and technical implications. Energy Fuels, 2009, 23(5), 2325-2341.
[http://dx.doi.org/10.1021/ef801098a]
[9]
Musa, U.; Aberuagba, F. Characteristics of a typical Nigerian Jatropha curcas oil seeds for biodiesel production. Res. J. Chem. Sci., 2012, 2(10), 7-12.
[10]
Juan, J.C.; Kartika, D.A.; Wu, T.Y.; Hin, T.Y.Y. Biodiesel production from Jatropha oil by catalytic and non-catalytic approaches: An overview. Bio-resource Tech., 2011, 102(2), 452-460.
[http://dx.doi.org/10.1016/j.biortech.2010.09.093]
[11]
Hossain, A.; Mekhled, M. Biodiesel fuel production from waste canola cooking oil as sustainable energy and environmental recycling process. Aust. J. Crop Sci., 2010, 4(7), 543.
[12]
Rashid, U.; Anwar, F.; Moser, B.R.; Knothe, G. Moringa oleifera oil: A possible source of biodiesel. Bioresour. Technol., 2008, 99(17), 8175-8179.
[http://dx.doi.org/10.1016/j.biortech.2008.03.066] [PMID: 18474424]
[13]
Issariyakul, T.; Kulkarni, M.G.; Meher, L.C.; Dalai, A.K.; Bakhshi, N.N. Biodiesel production from mixtures of canola oil and used cooking oil. Chem. Eng. J., 2008, 140(1), 77-85.
[http://dx.doi.org/10.1016/j.cej.2007.09.008]
[14]
Kesari, V.; Das, A.; Rangan, L. Physico-chemical characterization and antimicrobial activity from seed oil of Pongamia pinnata, a potential bio-fuel crop. Biomass Bioenergy, 2010, 34(1), 108-115.
[http://dx.doi.org/10.1016/j.biombioe.2009.10.006]
[15]
Sahoo, P.; Das, L. Process optimization for biodiesel production from Jatropha, Karanja and Polanga oils. Fuel, 2009, 88(9), 1588-1594.
[http://dx.doi.org/10.1016/j.fuel.2009.02.016]
[16]
Kamath, H.V.; Regupathi, I.; Saidutta, M.B. Optimization of two step karanja biodiesel synthesis under microwave irradiation. Fuel Process. Technol., 2011, 92(1), 100-105.
[http://dx.doi.org/10.1016/j.fuproc.2010.09.003]
[17]
Meher, L.C.; Dharmagadda, V.S.; Naik, S.N. Optimization of alkali-catalyzed transesterification of Pongamia pinnata oil for production of biodiesel. Bioresour. Technol., 2006, 97(12), 1392-1397.
[http://dx.doi.org/10.1016/j.biortech.2005.07.003] [PMID: 16359862]
[18]
Dwivedi, G.; Sharma, M. Prospects of biodiesel from pongamia in India. Renew. Sustain. Energy Rev., 2014, 32, 114-122.
[http://dx.doi.org/10.1016/j.rser.2014.01.009]
[19]
Aris, N.; Norhuda, I.; Adeib, I. Extraction of Phoenix dactylifera (Mariami) seeds oil using supercritical carbon dioxide (SC-CO2). Int. J., 2013, 4(1)
[20]
Al-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem., 2008, 108(3), 977-985.
[http://dx.doi.org/10.1016/j.foodchem.2007.12.009] [PMID: 26065761]
[21]
Besbes, S.C. Blecker.; C, Deroanne.; G, Lognay.; N.-E, Drira.; H, Attia.; Heating effects on some quality characteristics of date seed oil. Food Chem., 2005, 91(3), 469-476.
[http://dx.doi.org/10.1016/j.foodchem.2004.04.037]
[22]
Al-Hooti, S.; Sidhu, S.; Gabazard, H. Chemical composition of seeds of date fruit cultivars of United Arab Emirates. J. Food Sci. Technol., 1998, 35(1), 44-46.
[23]
Al-Shahib, W.; Marshall, R.J. The fruit of the date palm: its possible use as the best food for the future? Int. J. Food Sci. Nutr., 2003, 54(4), 247-259.
[http://dx.doi.org/10.1080/09637480120091982] [PMID: 12850886]
[24]
Al-Showiman, S. Chemical composition of some date palm seeds (Phoenix dactylifera L.) in Saudi Arabia. Arab Gulf J. Sci. Res., 1990, 8(1), 15-24.
[25]
FAO-statistics. Food and Agriculture Organization of the United Nations., 2010. Available at:. http://faostat3.fao.org/home/idex.html#download
[26]
Budin, J.T.; Breene, W.M.; Putnam, D.H. Some compositional properties of camelina (Camelina sativa L. Crantz) seeds and oils. J. Am. Oil Chem. Soc., 1995, 72(3), 309-315.
[http://dx.doi.org/10.1007/BF02541088]
[27]
Séguin-Swartz, G.C. Eynck.; R, Gugel.; S, Strelkov.; C, Olivier.; J, Li.; H, Klein-Gebbinck.; H, Borhan.; C, Caldwell.; K, Falk. Diseases of Camelina sativa (false flax). Can. J. Plant Pathol., 2009, 31(4), 375-386.
[28]
Ciubota-Rosie, C.J.R. Ruiz.; M.J, Ramos.; Á, Pérez. Biodiesel from Camelina sativa: A comprehensive characterization. Fuel, 2013, 105, 572-577.
[http://dx.doi.org/10.1016/j.fuel.2012.09.062]
[29]
A, WIKLUND. The genus Cynara L. (Asteraceae Cardueae). Bot J. Linean. Soc., 1992, 109(1), 75-123.
[http://dx.doi.org/10.1111/j.1095-8339.1992.tb00260.x]
[30]
Curt, M.G. Sanchez.; J, Fernández. The potential of Cynara cardunculus L. for seed oil production in a perennial cultivation system. Biomass Bioenergy, 2002, 23(1), 33-46.
[http://dx.doi.org/10.1016/S0961-9534(02)00030-2]
[31]
Cajarville, C.; González, J.; Repetto, J.; Alvir, M.; Rodríguez, C. Nutritional evaluation of cardoon (Cynara cardunculus) seed for ruminants. Anim. Feed Sci. Technol., 2000, 87(3), 203-213.
[http://dx.doi.org/10.1016/S0377-8401(00)00198-X]
[32]
Maran, J.P.; Priya, B. Modeling of ultrasound assisted intensification of biodiesel production from neem (Azadirachta indica) oil using response surface methodology and artificial neural network. Fuel, 2015, 143, 262-267.
[http://dx.doi.org/10.1016/j.fuel.2014.11.058]
[33]
Giannelos, P.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G. Tobacco seed oil as an alternative diesel fuel: Physical and chemical properties. Ind. Crops Prod., 2002, 16(1), 1-9.
[http://dx.doi.org/10.1016/S0926-6690(02)00002-X]
[34]
Aziz, A.A.; Said, M.F.; Awang, M.A.; Said, M. Performance of palm oil-based biodiesel fuels in a single cylinder direct injection engine. Palm Oil Dev., 2005, 42, 15-27.
[35]
Benjumea, P.; Agudelo, J.; Agudelo, A. Basic properties of palm oil bio-diesel-diesel blends. Fuel, 2008, 87(10), 2069-2075.
[http://dx.doi.org/10.1016/j.fuel.2007.11.004]
[36]
Benjumea, P.; Agudelo, J.; Agudelo, A. Biodiesel fuels from vegetable oils via catalytic and non-catalytic supercritical alcohol transesterifications and other methods: A survey. Energy Convers. Manage., 2003, 44(13), 2093-2109.
[http://dx.doi.org/10.1016/S0196-8904(02)00234-0]
[37]
Rashid, U.; Anwar, F. Production of biodiesel through base-catalyzed transesterification of safflower oil using an optimized protocol. Energy Fuels, 2008, 22(2), 1306-1312.
[http://dx.doi.org/10.1021/ef700548s]
[38]
Kostik, V.; Memeti, S.; Bauer, B. Fatty acid composition of edible oils and fats. J. Hyg. Eng. Des., 2013, 4, 112-116.
[39]
Nile, S.H.; Par, K.S.W. Fatty acid composition and antioxidant activity of groundnut (Arachis hypogaea L.) Products. J. Food Sci. Technol., 2013, 19(6), 957-962.
[40]
Ziejewski, M.; Kaufman, K.R.; Schwab, A.W.; Pryde, E.H. Diesel engine evaluation of a nonionic sunflower oil-aqueous ethanol microemulsion. J. Am. Oil Chem. Soc., 1984, 61(10), 1620-1626.
[http://dx.doi.org/10.1007/BF02541646]
[41]
Anilakumar, K.R.; Pal, A.; Khanum, F.; Bawa, A.S. medicinal and industrial uses of sesame (Sesamum indicum L.) seeds-an overview. In: Agric. conspec. sci., (ACS); , 2010; 75, p. (4)159 .
[42]
Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feed stocks for biodiesel production. Bioresour. Technol., 2010, 101(19), 7201-7210.
[http://dx.doi.org/10.1016/j.biortech.2010.04.079] [PMID: 20493683]
[43]
Moser, B.R. Biodiesel production, properties, and feedstocks. Biofuels; Springer, 2011, pp. 285-347.
[http://dx.doi.org/10.1007/978-1-4419-7145-6_15]
[44]
Mata, T.M.; Sousa, I.R. de Sá, Caetano. N. Transgenic corn oil for biodiesel production via enzymatic catalysis with ethanol. Chem. Eng., 2012, 27.
[45]
Campbell, C.W.; Phillips, R. The atemoya. In: University of Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences;; EDIS, 1994.
[46]
Krishna, A.G.; Gaurav, R.; Singh, B.A.; Kumar, P.P.; Preeti, C. Coconut oil: Chemistry, production and its applications - a review. Ind. Coconut J., 2010, 73(3), 15-27.
[47]
Alamu, O.J.; Dehinbo, O.; Sulaiman, A.M. Production and testing of coco-nut oil biodiesel fuel and its blend. Leonardo J. Sci., 2010, 16, 95-104.
[48]
Koc, A.B.; Fereidouni, M.; Abdullah, M. Soybeans processing for biodiesel production; INTECH Open Access Publisher, 2011.
[49]
Srivastava, A. Triglycerides-based diesel fuels. Renew. Sust. Energ Rev., 2000, 4(2), 111-133.
[50]
Rashid, U.; Anwar, F.; Moser, B.R.; Ashraf, S. Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass Bioenergy, 2008, 32(12), 1202-1205.
[http://dx.doi.org/10.1016/j.biombioe.2008.03.001]
[51]
Goering, C.; Daugherty, M.; Heakin, A.; Pryde, E.; Schwab, A. Fuel properties of eleven vegetable oils. ASAE Tech. Pap., 1982, 25(6)
[52]
Sahoo, P.K.; Das, L.M.; Babu, M.K.; Naik, S.N. Biodiesel development from high acid value polanga seed oil and performance evaluation in a CI engine. Fuel, 2007, 86(3), 448-454.
[http://dx.doi.org/10.1016/j.fuel.2006.07.025]
[53]
Duhan, A.; Suthar, Y.; Moudgil, H.; Duhan, S. Effect of processing on seed oil of Simarouba glauca (DC): An underutilized plant. J. Agric. Biol. Sci., 2011, 6(7), 16-20.
[54]
Mishra, S.R.; Mohanty, M.K.; Das, S.P.; Pattanaik, A.K.; Pattanaik, A. Production of bio-diesel (methyl ester) from Simarouba glauca oil. J. Chem. Sci. ISSN, 2012, 2231, 606X.
[55]
Ghasias, A. In: Biofuels: challenges and opportunities; Winrock International India, 3rd international conference on biofuels, 2006; p. 216.
[56]
Ghadge, S.V.; Raheman, H. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass Bioenergy, 2005, 28(6), 601-605.
[http://dx.doi.org/10.1016/j.biombioe.2004.11.009]
[57]
Zheng, Y.; Yu, X.; Zeng, J.; Chen, S. Feasibility of filamentous fungi for biofuel production using hydrolysate from dilute sulfuric acid pretreatment of wheat straw. Biotechnol. Biofuels, 2012, 5(1), 50.
[http://dx.doi.org/10.1186/1754-6834-5-50] [PMID: 22824058]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 14
Year: 2019
Page: [1509 - 1516]
Pages: 8
DOI: 10.2174/1385272823666190417103550
Price: $58

Article Metrics

PDF: 17
HTML: 1