A Novel Adaptive GA-based B-spline Curve Interpolation Method

(E-pub Ahead of Print)

Author(s): Maozhen Shao, Liangchen Hu, Huahao Shou*, Jie Shen.

Journal Name: Recent Patents on Engineering

Become EABM
Become Reviewer


Background: Curve interpolation is very important in engineering such as computer aided design, image analysis and NC machining. Many patents on curve interpolation were invented.

Objective: Since different knot vector configuration and data point parameterization can generate different shapes of an interpolated B-spline curve, the goal of this paper is to propose a novel adaptive genetic algorithm (GA) based interpolation method of B-spline curve.

Method: Rely on geometric features owned by the data points and the idea of genetic algorithm which liberalizes the knots of B-spline curve and the data point parameters, a new interpolation method of B-spline curve is proposed. In addition, the constraint of tangent vector is also added to ensure that the obtained B-spline curve can approximately satisfy the tangential constraint while ensuring strict interpolation.

Results: Compared with the traditional method, this method realizes the adaptive knot vector selection and data point parameterization. Therefore, the interpolation result is better than the traditional method to some extent, and the obtained curve is more natural.

Conclusion: The proposed method is effective for the curve reconstruction of any scanned data point set under tangent constraints. Meanwhile, this paper puts forward a kind of tangent calculation method of discrete data points, and users can also set the tangent of each data point in order to get more perfect interpolation results.

Keywords: B-spline curve interpolation, genetic algorithm, tangent vector

Rights & PermissionsPrintExport Cite as

Article Details

(E-pub Ahead of Print)
DOI: 10.2174/1872212113666190416154017
Price: $95