Enhancement in the Catalytic Activity of Human Salivary Aldehyde Dehydrogenase by Alliin from Garlic: Implications in Aldehyde Toxicity and Oral Health

Author(s): Amaj A. Laskar, Danishuddin, Shaheer H. Khan, Naidu Subbarao, Hina Younus*.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 6 , 2019

Submit Manuscript
Submit Proposal


Background: Lower human salivary aldehyde dehydrogenase (hsALDH) activity increases the risk of aldehyde mediated pathogenesis including oral cancer. Alliin, the bioactive compound of garlic, exhibits many beneficial health effects.

Objective: To study the effect of alliin on hsALDH activity.

Method: Enzyme kinetics was performed to study the effect of alliin on the activity of hsALDH. Different biophysical techniques were employed for structural and binding studies. Docking analysis was done to predict the binding region and the type of binding forces.

Results: Alliin enhanced the dehydrogenase activity of the enzyme. It slightly reduced the Km and significantly enhanced the Vmax value. At 1 µM alliin concentration, the initial reaction rate increased by about two times. Further, it enhanced the hsALDH esterase activity. Biophysical studies indicated a strong complex formation between the enzyme and alliin (binding constant, Kb: 2.35 ± 0.14 x 103 M-1). It changes the secondary structure of hsALDH. Molecular docking study indicated that alliin interacts to the enzyme near the substrate binding region involving some active site residues that are evolutionary conserved. There was a slight increase in the nucleophilicity of active site cysteine in the presence of alliin. Ligand efficiency metrics values indicate that alliin is an efficient ligand for the enzyme.

Conclusion: Alliin activates the catalytic activity of the enzyme. Hence, consumption of alliin-containing garlic preparations or alliin supplements and use of alliin in pure form may lower aldehyde related pathogenesis including oral carcinogenesis.

Keywords: Human salivary aldehyde dehydrogenase, alliin, activity, binding, aldehyde, oral carcinogenesis, ligand efficiency.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [506 - 516]
Pages: 11
DOI: 10.2174/1389201020666190416140817
Price: $95

Article Metrics

PDF: 3