Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Enhancement in the Catalytic Activity of Human Salivary Aldehyde Dehydrogenase by Alliin from Garlic: Implications in Aldehyde Toxicity and Oral Health

Author(s): Amaj A. Laskar, Danishuddin, Shaheer H. Khan, Naidu Subbarao and Hina Younus*

Volume 20, Issue 6, 2019

Page: [506 - 516] Pages: 11

DOI: 10.2174/1389201020666190416140817

Price: $65

Abstract

Background: Lower human salivary aldehyde dehydrogenase (hsALDH) activity increases the risk of aldehyde mediated pathogenesis including oral cancer. Alliin, the bioactive compound of garlic, exhibits many beneficial health effects.

Objective: To study the effect of alliin on hsALDH activity.

Methods: Enzyme kinetics was performed to study the effect of alliin on the activity of hsALDH. Different biophysical techniques were employed for structural and binding studies. Docking analysis was done to predict the binding region and the type of binding forces.

Results: Alliin enhanced the dehydrogenase activity of the enzyme. It slightly reduced the Km and significantly enhanced the Vmax value. At 1 µM alliin concentration, the initial reaction rate increased by about two times. Further, it enhanced the hsALDH esterase activity. Biophysical studies indicated a strong complex formation between the enzyme and alliin (binding constant, Kb: 2.35 ± 0.14 x 103 M-1). It changes the secondary structure of hsALDH. Molecular docking study indicated that alliin interacts to the enzyme near the substrate binding region involving some active site residues that are evolutionary conserved. There was a slight increase in the nucleophilicity of active site cysteine in the presence of alliin. Ligand efficiency metrics values indicate that alliin is an efficient ligand for the enzyme.

Conclusion: Alliin activates the catalytic activity of the enzyme. Hence, consumption of alliincontaining garlic preparations or alliin supplements and use of alliin in pure form may lower aldehyde related pathogenesis including oral carcinogenesis.

Keywords: Human salivary aldehyde dehydrogenase, alliin, activity, binding, aldehyde, oral carcinogenesis, ligand efficiency.

Graphical Abstract
[1]
Alam, M.F.; Laskar, A.A.; Choudhary, H.H.; Younus, H. Human salivary aldehyde dehydrogenase: Purification, kinetic characterization and effect of ethanol, hydrogen peroxide and sodium dodecyl sulfate on the activity of the enzyme. Cell Biochem. Biophys., 2016, 74, 307-315.
[2]
Dyck, L.E. Polymorphism of a class 3 aldehyde dehydrogenase present in human saliva and in hair roots. Alcohol. Clin. Exp. Res., 1995, 19, 420-426.
[3]
Giebultowicz, J.; Wolinowska, R.; Sztybor, A.; Pietrzak, M.; Wroczynski, P.; Wierzchowski, J. Salivary aldehyde dehydrogenase: activity towards aromatic aldehydes and comparison with recombinant ALDH3A1. Molecules, 2009, 14, 2363-2372.
[4]
Wierzchowski, J.; Wroczynski, P.; Laszuk, K.; Interewicz, E. Fluorimetric detection of aldehyde dehydrogenase activity in human blood, saliva, and organ biopsies and kinetic differentiation between class I and class III isozymes. Anal. Biochem., 1997, 245, 69-78.
[5]
Giebultowicz, J.; Dziadek, M.; Wroczynski, P.; Woznicka, K.; Wojno, B.; Pietrzak, M.; Wierzchowski, J. Salivary aldehyde dehydrogenase - temporal and population variability, correlations with drinking and smoking habits and activity towards aldehydes contained in food. Acta Biochim. Pol., 2010, 57, 361-368.
[6]
Dolle, L.; Gao, B. Pharmacological chaperone therapies: Can aldehyde dehydrogenase activator make us healthier? J. Hepatol., 2015, 62, 1228-1230.
[7]
Glatt, H.; Rost, K.; Frank, H.; Seidel, A.; Kollock, R. Detoxification of promutagenic aldehydes derived from methylpyrenes by human aldehyde dehydrogenases ALDH2 and ALDH3A1. Arch. Biochem. Biophys., 2008, 477(2), 196-205.
[8]
Giebultowicz, J.; Wroczynski, P.; Samolczyk-Wanyura, D. Can lower aldehyde dehydrogenase activity in saliva be a risk factor for oral cavity cancer? Oral Dis., 2013, 19, 763-766.
[9]
Giebułtowicz, J.; Wroczyński, P.; Piekarczyk, J.; Wierzchowski, J. Fluorimetric detection of aldehyde dehydrogenase activity in human tissues in diagnostic of cancers of oral cavity. Acta Pol. Pharm., 2008, 65(1), 81-84.
[10]
Townsend, A.J.; Leone-Kabler, S.; Haynes, R.L.; Wu, Y.; Szweda, L.; Bunting, K.D. Selective protection by stably transfected human ALDH3A1 (but not human ALDH1A1) against toxicity of aliphatic aldehydes in V79 cells. Chem. Biol. Interact., 2001, 130-132, 261-273.
[11]
Bogucka, M.; Giebułtowicz, J.; Zawada, K.; Wroczyński, P.; Wierzchowski, J.; Pietrzak, M.; Piekarczyk, P.; Romanowska, K. The oxidation status of ALDH3A1 in human saliva and its correlation with antioxidant capacity measured by ORAC method. Acta Pol. Pharm., 2009, 66(5), 477-482.
[12]
Sladek, N.E. Human aldehyde dehydrogenases: Potential pathological, pharmacological, and toxicological impact. J. Biochem. Mol. Toxicol., 2003, 17, 7-23.
[13]
Sreerama, L.; Hedge, M.W.; Sladek, N.E. Identification of a class 3 aldehyde dehydrogenase in human saliva and increased levels of this enzyme, glutathione S-transferases, and DT-diaphorase in the saliva of subjects who continually ingest large quantities of coffee or broccoli. Clin. Cancer Res., 1995, 1, 1153-1163.
[14]
Laskar, A.A.; Alam, M.F.; Ahmad, M.; Younus, H. Kinetic and biophysical investigation of the inhibitory effect of caffeine on human salivary aldehyde dehydrogenase: Implications in oral health and chemotherapy. J. Mol. Struct., 2018, 1157, 61-68.
[15]
Wierzchowski, J.; Pietrzak, M.; Szelag, M.; Wroczynski, P. Salivary aldehyde dehydrogenase-reversible oxidation of the enzyme and its inhibition by caffeine, investigated using fluorimetric method. Arch. Oral Biol., 2008, 53, 423-428.
[16]
Alam, M.F.; Laskar, A.A.; Maryam, L.; Younus, H. Activation of human salivary aldehyde dehydrogenase by sulforaphane: Mechanism and significance. PLoS One, 2016, 11, e0168463.
[17]
Laskar, A.A.; Khan, M.A.; Askari, F.; Younus, H. Thymoquinone binds and activates human salivary aldehyde dehydrogenase: Potential therapy for the mitigation of aldehyde toxicity and maintenance of oral health. Int. J. Biol. Macromol., 2017, 103, 99-110.
[18]
Banh, A.; Xiao, N.; Cao, H.; Chen, C.H.; Kuo, P.; Krakow, T.; Bavan, B.; Khong, B.; Yao, M.; Ha, C.; Kaplan, M.J.; Sirjani, D.; Jensen, K.; Kong, C.S.; Mochly-Rosen, D.; Koong, A.C.; Le, Q.T. A novel aldehyde dehydrogenase-3 activator leads to adult salivary stem cell enrichment in vivo. Clin. Cancer Res., 2011, 17, 7265-7272.
[19]
Perez-Miller, S.; Younus, H.; Vanam, R.; Chen, C.H.; Mochly-Rosen, D.; Hurley, T.D. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat. Struct. Mol. Biol., 2010, 17, 159-164.
[20]
Stachowicz, A.; Olszanecki, R.; Suski, M.; Wisniewska, A.; Toton-Zuranska, J.; Madej, J.; Jawien, J.; Bialas, M.; Okon, K.; Gajda, M.; Glombik, K.; Basta-Kaim, A.; Korbut, R. Mitochondrial aldehyde dehydrogenase activation by Alda-1 inhibits atherosclerosis and attenuates hepatic steatosis in apolipoprotein E-knockout mice. J. Am. Heart Assoc., 2014, 3, e001329.
[21]
Xiao, N.; Cao, H.; Chen, C.H.; Kong, C.S.; Ali, R.; Chan, C.; Sirjani, D.; Graves, E.; Koong, A.; Giaccia, A.; Mochly-Rosen, D.; Le, Q.T. A novel aldehyde dehydrogenase-3 activator (Alda-89) protects submandibular gland function from irradiation without accelerating tumor growth. Clin. Cancer Res., 2013, 19, 4455-4464.
[22]
Zhong, W.; Zhang, W.; Li, Q.; Xie, G.; Sun, Q.; Sun, X.; Tan, X.; Jia, W.; Zhou, Z. Pharmacological activation of aldehyde dehydrogenase 2 by Alda-1 reverses alcohol-induced hepatic steatosis and cell death in mice. J. Hepatol., 2014, 62, 1375-1381.
[23]
Hahn, G. History, folk medicine, and legendary uses of garlic. In: Koch, H.P.; Lawson, L.D. (Eds.). Garlic: The science and therapeutic application of Allium sativum L and related species; ,Baltimore Williams and Wilkins,. , 1996. 2nd Edn,1-24.
[24]
Bayan, L.; Koulivand, P.H.; Gorji, A. Garlic: A review of potential therapeutic effects. Avicenna J. Phytomed., 2014, 4(1), 1-14.
[25]
Dewick, P.M. Medicinal natural products: A biosynthetic approach; John Wiley & Sons, 2009.
[26]
Kimura, S.; Tung, Y.C.; Pan, M.H.; Su, N.W.; Lai, Y.J.; Cheng, K.C. Black garlic: A critical review of its production, bioactivity, and application. J. Food Drug Anal., 2017, 25(1), 62-70.
[27]
Abdullah, T.H.; Kandil, O.; Elkadi, A.; Carter, J. Garlic revisited: therapeutic for the major diseases of our times? J. Natl. Med. Assoc., 1988, 80, 439-445.
[28]
Gebreyohannes, G.; Gebreyohannes, M. Medicinal values of garlic: A review. Int. J. Med. Med. Sci, 2013, 5(9), 401-408.
[29]
Kuete, V. Allium sativum.In: Kuete, V. (Eds.). Medicinal spices and vegetables from Africa; Academic Press, 2017, pp. 363-377.
[30]
Anwar, S.; Younus, H. Inhibitory effect of alliin from Allium sativum on the glycation of superoxide dismutase. Int. J. Biol. Macromol., 2017, 103, 182-193.
[31]
Asdaq, S.M.; Inamdar, M.N. Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine, 2010, 17(13), 1016-1026.
[32]
Chung, L.Y. The antioxidant properties of garlic compounds: Allylcysteine, alliin, allicin, and allyldisulfide. J. Med. Food, 2006, 9, 205-213.
[33]
Kourounakis, P.N.; Rekka, E.A. Effect on active oxygen species of alliin and Allium sativum (garlic) powder. Res. Commun. Chem. Pathol. Pharmacol., 1991, 74(2), 249-252.
[34]
Amani, H.; Ajami, M.; Maleki, S.N.; Pazoki-Toroudi, H.; Daglia, M.; Sokeng, A.J.; Di Lorenzo, A.; Nabavi, S.F.; Devi, K.P.
Nabavi, S.M. Targeting signal transducers and activators of transcription (STAT) in human cancer by dietary polyphenolic antioxidants. Biochimie, 2017, 142, 63-79.
[35]
Amani, H.; Habibey, R.; Hajmiresmail, S.J.; Latifi, S.; Pazoki-Toroudi, H.; Akhavan, O. Antioxidant nanomaterials in advanced diagnoses and treatments of ischemia reperfusion injuries. J. Mater. Chem. B, 2017, 5, 9452-9476.
[36]
Salman, H.; Bergman, M.; Bessler, H.; Punsky, I.; Djaldetti, M. Effect of a garlic derivative (alliin) on peripheral blood cell immune responses. Int. J. Immunopharmacol., 1999, 21(9), 589-597.
[37]
Sheela, C.G.; Augusti, K.T. Hypoglycemic effects of S-allyl cysteine sulphoxide isolated from garlic Allium sativum Linn. Indian J. Exp. Biol., 1992, 30, 523-526.
[38]
Wroczynski, P.; Wierzchowski, J.; Rakowska, A.; Chimkowska, M.; Targonski, J. Aldehyde dehydrogenase in human saliva-evaluation of its oxidation status. Acta Pol. Pharm., 2004, 61, 62-64.
[39]
Smith, P.K.; Krohn, R.I.; Hermanson, G.T.; Mallia, A.k.; Gartner, F.H.; Provenzano, M.D.; Fujimoto, E.K.; Goeke, N.M.; Olson, B.J.; Klenk, D.C. Measurement of protein using bicinchoninic acid. Anal. Biochem., 1985, 150, 76-85.
[40]
Laskar, A.A.; Alam, M.F.; Younus, H. In vitro activity and stability of pure human salivary aldehyde dehydrogenase. Int. J. Biol. Macromol., 2017, 96, 798-806.
[41]
Michaelis, L.; Menten, M.L.; Johnson, K.A.; Goody, R.S. The original Michaelis constant: Translation of the 1913 Michaelis-Menten paper. Biochemistry, 2011, 50, 8264-8269.
[42]
Lineweaver, H.; Burk, D. The determination of enzyme dissociation constants. J. Am. Chem. Soc., 1934, 56, 658-666.
[43]
Perez-Iratxeta, C.; Andrade-Navarro, M.A. K2D2: Estimation of protein secondary structure from circular dichroism spectra. BMC Struct. Biol., 2008, 8, 25.
[44]
Kuntz, I.D.; Chen, K.; Sharp, K.A.; Kollman, P.A. The maximal affinity of ligands. Proc. Natl. Acad. Sci. USA, 1999, 96(18), 9997-10002.
[45]
Abad-Zapatero, C. Ligand efficiency indices for effective drug discovery. Expert Opin. Drug Discov., 2007, 2(4), 469-488.
[46]
Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today, 2004, 9(10), 430-431.
[47]
Abad-Zapatero, C.; Metz, J.T. Ligand efficiency indices as guideposts for drug discovery. Drug Discov. Today, 2005, 10(7), 464-469.
[48]
Koppaka, V.; Thompson, D.C.; Chen, Y.; Ellermann, M.; Nicolaou, K.C.; Juvonen, R.O.; Petersen, D.; Deitrich, R.A.; Hurley, T.D.; Vasiliou, V. Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev., 2012, 64, 520-539.
[49]
Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov., 2014, 13(2), 105-121.
[50]
Schultes, S.; de Graaf, C.; Haaksma, E.E.; de Esch, I.J.; Leurs, R.; Krämer, O. Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discov. Today. Technol., 2010, 7(3), e147-e202.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy