Recyclable Heterogeneous Fe-Mo Nanocatalyst: Application in Solvent Free Synthesis of β-enaminones

Author(s): Swapnil R. Bankar*.

Journal Name: Current Organocatalysis

Volume 6 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: In recent years, green organic transformation has become a challenge for a chemist in areas like social sector, health, and environment. Literature survey revealed that a nano magnetite supported heterogeneous catalysis is an emergent field with huge application in chemical synthesis.

Objective: In the present article, the aim was to develop a simple and facile method to carry organic reaction under benign media. So, the focus was on the synthesis of nano-magnetite supported molybdenum catalyst and its application in β-enaminones synthesis.

Methods: Magnetically recyclable heterogeneous ferrite-molybdenum catalyst was prepared by simple impregnation method. The synthesized nanocatalyst Fe-Mo was well analysed by spectroscopic techniques like X-ray diffraction analysis, X-ray photoelectron spectroscopy, transmission electron microscopy, field-emission gun scanning electron microscopy and vibrating-sample magnetometry. The functionalized nanocatalyst Fe-Mo was employed in the synthesis of β-enaminones under solvent free condition.

Results: The competency of synthesized nanocatalyst-Fe-Mo was observed to be good for the synthesis of β-enaminones derivatives under microwave irradiation and gave excellent yield (86-96%) of the product. The catalyst was recycled for more than five consecutive runs without significant loss in its activity.

Conclusion: In the present research article, synthesis of highly active, magnetically recyclable Fe- Mo nanocatalyst was obtained from easily available precursor. The MNP was stable under investigated conditions and effective in β-enaminones synthesis. The simple eco-friendly method, low catalyst loading, short transformation time, and reusability of the catalyst thoroughly follow the sustainable protocol.

Keywords: Green transformation, magnetic nanocatalyst-Fe-Mo, microwave irradiation, reusability of catalyst, solvent-free, β- enaminones.

[1]
Gawande, M.B.; Deshpande, S.S.; Satam, J.R.; Jayaram, R.V. A novel N-alkylation of amines by alkyl halides on mixed oxides at room temperature. Catal. Commun., 2007, 8, 576-582.
[2]
Greenhill, J.V. Enaminones. Chem. Soc. Rev., 1977, 6, 277-294.
[3]
Elassar, A.; El-Khair, A. Recent developments in the chemistry of enaminones. Tetrahedron, 2003, 59, 8463-8480.
[4]
Rappoport, Z. The Chemistry of Enamines; John Wiley & Sons: New York, 1994.
[5]
Kascheres, C.M. The chemistry of enaminones, diazocarbonyls and small rings: our contribution. J. Braz. Chem. Soc., 2003, 14, 945-969.
[6]
Li, G.; Watson, K.; Buckheit, R.W.; Zhang, Y. Total synthesis of anibamine, a novel natural product as a chemokine receptor CCR5 antagonist. Org. Lett., 2007, 9, 2043-2046.
[7]
(a)Cimarelli, C.; Palmieri, G.; Volpini, E. An improved synthesis of enantio pure β-amino acid. Synth. Commun., 2001, 31, 2943-2953.
(b)Bartoli, G.; Cimarelli, C.; Marcantoni, E.; Palmieri, G.; Petrini, M. Chemo- and diastereo selective reduction of beta-enamino esters: A convenient synthesis of both cis- and trans-gamma-amino alcohols and beta-amino esters. J. Org. Chem., 1994, 59, 5328-5335.
[8]
Beholz, L.G.; Benovsky, R.; Ward, D.L.; Barta, N.S.; Stille, J.R. Formation of dihydropyridone- and pyridone-based peptide analogs through aza-annulation of β-enamino ester and amide substrates with α-amido acrylate derivatives. J. Org. Chem., 1997, 62(4), 1033-1042.
[9]
Ferraz, H.M.C.; Pereira, F.L.C.; Arrua, M.E.P. Synthesis of N-substituted pyrrole and tetrahydroindole derivatives from alkenyl β-dicarbonyl compounds. Tetrahedron, 1999, 55(36), 10915-10924.
[10]
Alan, C.; Spivey, A.C.; Srikaran, R.; Diaper, C.M.; David, J.; Turner, D. Traceless solid phase synthesis of 2-substituted pyrimidines using an ‘off-the-shelf’ chlorogermane-functionalised resin. J. Org. Biomol. Chem, 2003, 1, 1638-1640.
[11]
Hassneen, H.M.; Abdallah, T.A. New routes to pyridino[2,3-d]pyrimidin-4-one and pyridino-[2,3-d]triazolino[4,5-a]pyrimidin-5-one derivatives. Molecules, 2003, 8(3), 333-341.
[12]
Dannhardt, G.; Bauer, A.; Nowe, U. Non-steroidal anti-inflammatory agents. Part 23. synthesis and pharmacological activity of enaminones which inhibit both bovine cyclooxygenase and 5-lipoxygenase. J. Prakt. Chem., 1998, 340(3), 256-263.
[13]
Epperon, M.T.; Gin, D.Y. Enantiospecific synthesis of the bridged pyrrolizidine core of asparagamine A: Dipolar cycloadditions of azomethine ylides derived from the sulfonylation of vinylogous amides. Angew. Chem. Int. Ed., 2002, 41(10), 1778-1780.
[14]
White, J.D.; Lhle, D.C. Tandem photocycloaddition retro mannich fragmentation of enaminones. A route to spiropyrrolines and the tetracyclic core of koumine. Org. Lett., 2006, 8, 1081-1084.
[15]
Natalie, D.E.; Donna, S.C.; Khurana, M.; Noha, N.S.; James, P.S.; Jacqueline, A.M. Synthesis & anticonvulsant evaluation of ethyl-4-[(substitutedphenyl)-amino]-6-methyl-2-oxocyclohex-3-ene-1-carb oxylates & their corresponding 5-methylcyclohex-2-enone. Eur. J. Med. Chem., 2003, 38(1), 49-64.
[16]
Boger, D.L.; Ishizaki, T.; Wysocki, J.R.; Munk, S.A.; Kitos, P.A.; Suntornwat, O. Total synthesis and evaluation of (+)-N-(tert-butoxycarbonyl)-CBI, (+)-CBI-CDPI1, and (+)-CBI-CDPI2: CC-1065 functional agents incorporating the equivalent 1,2,9,9a-tetrahydrocyclopropa[1,2-c] benz [1,2-e]indol-4-one (CBI) left-hand subunit. J. Am. Chem. Soc., 1989, 111(16), 6461-6463.
[17]
Martin, D.F.; Janusonis, G.A.; Martin, B.B. Stabilities of bivalent metal complexes of some -ketoimines. J. Am. Chem. Soc., 1961, 83(1), 73-75.
[18]
Valduga, C.J.; Squizani, A.; Braibante, H.S.; Braibante, M.E.F. The use of K-10/Ultrasound in the selective synthesis of unsymmetrical β-enamino ketones. Synthesis, 1998, 7, 1019-1027.
[19]
Arcadi, A.; Bianchi, G.; Di Giuseppe, S.; Marinelli, F. Gold catalysis in the reactions of 1, 3-dicarbonyls with nucleophiles. Green Chem., 2003, 5, 64-67.
[20]
Rechsteiner, B.; Texier-Boullet, F.; Hamelin, J. Synthesis in dry media coupled with microwave irradiation: Application to the preparation of enaminoketones. Tetrahedron Lett., 1993, 34, 5071-5074.
[21]
Epifano, F.; Genoveseb, S.; Curinib, M. Ytterbium triflate catalyzed synthesis of β -enaminones. Tetrahedron Lett., 2007, 48, 2717-2720.
[22]
Zhang, Z.H.; Yin, L.; Wang, Y.M. A general and efficient method for the preparation of b-enamino ketones and esters catalyzed by indium tribromide. Adv. Synth. Catal., 2006, 348, 184-190.
[23]
Zhan-Hui, Z.; Jin-Yong, H. Cobalt (II) chloride-mediated synthesis of β-enamino compounds under solvent-free conditions. J. Braz. Chem. Soc., 2006, 17(7), 1447-1451.
[24]
Das, B.; Venkateswarlu, K.; Majhi, A.; Reddy, M.R.; Reddy, K.N.; Rao, Y.K.; Ravikumar, K.; Sridhar, B. Highly efficient, mild & chemo & stereo selective synthesis of enaminones & enamino esters using HClO4-SiO2 under solvent-free conditions. J. Mol. Catal.A: Chem., 2006, 246, 276-281.
[25]
Gawande, M.B.; Branco, P.S.; Varma, R.S. Nano-magnetite (Fe3O4) as a support for recyclable catalysts in the development of sustainable methodologies. Chem. Soc. Rev., 2013, 42, 3371-3393.
[26]
Vaddula, B.R.; Saha, A.; Varma, R.S. A simple and facile Heck-type arylation of alkenes with diaryl iodonium salts using magnetically recoverable Pd-catalyst. Green Chem., 2012, 14(8), 2133-2136.
[27]
Li, G.; Luo, Y. Preparation and characterization of dendrimer-templated Ag−Cu bimetallic nanoclusters. Inorg. Chem., 2008, 47(1), 360-364.
[28]
Baig, R.B.N.; Varma, R.S. A highly active and magnetically retrievable nanoferrite-DOPA-copper catalyst for the coupling of thiophenols with aryl halides. Chem. Commun., 2012, 48(20), 2582-2584.
[29]
Bruckmann, A.; Krebs, A.; Bolm, C. Organo catalytic reactions: Effect of ball milling, microwave and ultrasound irradiation. Green Chem., 2008, 10, 1131-1141.
[30]
Shelke, S.N.; Bankar, S.R.; Gawande, M.B. Iron oxide- supported copper oxide nanoparticles (Nanocat-Fe-CuO): magnetically recyclable catalyst for the synthesis of pyrazole derivatives, 4-Methoxyanline and ullmann type condensation reaction. ACS Sustain. Chem.& Eng., 2014, 2, 1699-1706.
[31]
Gawande, M.B.; Shelke, S.N.; Zboril, R.; Varma, R.S. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterial and organics. Acc. Chem. Res., 2014, 47(4), 1338-1348.
[32]
Bankar, S.R.; Shelke, S.N. Applicability of magnetically recyclable ferrite-L-cysteine nanocatalyst for the green synthesis of quinoline and pyrazole derivatives under microwave irradiation. Curr. Catal., 2018, 7(1), 43-51.
[33]
Bankar, S.R.; Shelke, S.N. Nano magnetite-supported molybdenum oxide (nanocat-Fe-Mo): an efficient green catalyst for multicomponent synthesis of amidoalkyl naphthols. Res. Chem. Intermed., 2018, 44(5), 3507-3521.
[34]
Bankar, S.R. Nano-Fe3O4 @ L-Cysteine as an efficient recyclable organocatalyst for the green synthesis of Bis (Indolyl) methanes under microwave irradiation. Curr. Organocatal., 2018, 5, 42-50.
[35]
Gawande, M.B.; Branco, P.S.; Nogueira, I.D.; Bundaleski, N.; Teodoro, O.; Luque, R. Catalytic applications of a versatile magnetically separable Fe-Mo (Nanocat-Fe-Mo) nanocatalyst. Green Chem., 2013, 15(3), 682-689.
[36]
Calver, C.F.; Dash, P.; Scott, R.W.J. Selective hydrogenations with Ag-Pd catalysts prepared by galvanic exchange reactions. ChemCatChem, 2011, 3, 695-697.
[37]
Mallick, S.; Sanpui, P.; Ghosh, S.S.; Chattopadhyaya, A.; Paul, A. Synthesis, characterization and enhanced bactericidal action of a chitosan supported core-shell copper-silver nanoparticle composite. RSC Advances, 2015, 5, 12268-12276.
[38]
Sengar, S.K.; Mehta, B.R. Govind. size and alloying induced shift in core and valence bands of Pd-Ag and Pd-Cu nanoparticles. J. Appl. Phys., 2014, 115, 124301-124310.
[39]
Rout, L.; Kumar, A.; Dhaka, R.S.; Dash, P. Bimetallic Ag-Cu alloy nanoparticles as a highly active catalyst for the enamination of 1, 3-dicarbonyl compounds. RSC Advances, 2016, 6, 49923-49940.
[40]
Weber, T.; Muijsers, J.C.; Niemantsverdriet, J.W. Basic reaction steps in the sulfidation of crystalline MoO3 to MoS2, As studied by X-ray photoelectron and infrared emission spectroscopy. J. Phys. Chem., 1996, 100, 14144-14150.
[41]
Scanlon, D.O.; Watson, G.W.; Payne, D.J.; Atkinson, G.R.; Egdell, R.G.; Law, D.S. Theoretical and experimental study of the electronic structures of MoO3 and MoO2. J. Phys. Chem. C, 2010, 114, 4636-4645.
[42]
Lu, H.M.; Zheng, W.T.; Jiang, Q. Saturation magnetization of ferromagnetic and ferrimagnetic nanocrystals at room temperature. J. Phys. D Appl. Phys., 2007, 40(2), 320-325.
[43]
Yale, H.L.; Spitzmiller, E.R. 2-Pyridylenamines via transenamination. J. Heterocycl. Chem., 1977, 14, 1419-1421.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 3
Year: 2019
Page: [238 - 247]
Pages: 10
DOI: 10.2174/2213337206666190415125053

Article Metrics

PDF: 15
HTML: 1