Recent Developments in Natural Product Inspired Synthetic 1,2,4- Trioxolanes (Ozonides): An Unusual Entry into Antimalarial Chemotherapy

Author(s): Mohit K. Tiwari, Dharmendra K. Yadav, Sandeep Chaudhary*.

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

According to WHO “World health statistics 2018”, malaria alongside acute respiratory infections and diarrhoea, is one of the major infectious disease causing children’s death in between the age of 1-5 years. Similarly, according to another report (2016) malaria accounts for approximately 3.14% of the total disease burden worldwide. Although malaria has been widely eradicated in many parts of the world, the global number of cases continues to rise due to the rapid spread of malaria parasites that are resistant to antimalarial drugs. Artemisinin (8), a major breakthrough in the antimalarial chemotherapy was isolated from the plant Artemisia annua in 1972. Its semi-synthetic derivatives such as artemether (9), arteether (10), and artesunic acid (11) are quite effective against multi-drug resistant malaria strains and are currently the drug of choice for the treatment of malaria. Inspite of exhibiting excellent antimalarial activity by artemisinin (8) and its derivatives, parallel programmes for the discovery of novel natural and synthetic peroxides were also the area of investigation of medicinal chemists all over the world. In these continuous efforts of extensive research, natural ozonide (1,2,4- trioxolane) was isolated from Adiantum monochlamys (Pteridaceae) and Oleandra wallichii (Davalliaceae) in 1976. These naturally occurring stable ozonides inspired chemists to investigate this novel class for antimalarial chemotherapy. The first identification of unusually stable synthetic antimalarial 1,2,4-trioxolanes was reported in 1992. Thus, an unusual entry of ozonides in the field of antimalarial chemotherapy had occurred in the early nineties. This review highlights the recent advancements and historical developments observed during the past 42 years (1976-2018) focusing mainly on important ventures of the antimalarial 1,2,4-trioxolanes (ozonides).

Keywords: Malaria, Antimalarial peroxides, Artemisinin, Synthetic ozonides, 1, 2, 4-Trioxolane, Multi-drug resistant strains.

[1]
Levels & Trends in Child Mortality. Report 2017. 2017. (Available at: http://www.unicef.org).
[2]
WHO drug Information Bulletin 1999, 13, 9. (Available at: https://apps.who.int).
[3]
Sachs, J.; Malaney, P. The economic and social burden of malaria. Nature, 2002, 415, 680-685. [DOI: 10.1038/415680a].
[4]
World health statistics 2018. 2018. (Accessed, May-2018 at: https://apps.who.int).
[5]
Go, M.L. Novel antiplasmodial agents. Med. Res. Rev., 2003, 23(4), 456-487. [DOI: 10.1002/med.10040].
[6]
(a) WHO. World Malaria Report: 2012. 2012. (Available at: https://www.who.int/malaria/publications/world_malaria_report_2012/en/
(b) Status report on artemisinin and ACT resistance, WHO reference number: WHO/HTM/GMP/2017.9. 2017. (Accessed, April-2017 at https://apps.who.int
(c) WHO. World Malaria Report: 2017. 2017. (Available at: https://www.who.int/malaria/publications/world-malaria-report-2017/en/
[7]
Roser, M.; Ritchie, H. "Burden of Disease". (Accessed, Nov-2018 at: https://ourworldindata.org/burden-of-disease
[8]
Cowman, A.F.; Healer, J.; Marapana, D.; Marsh, K. Malaria: Biology and Disease. Cell, 2016, 167, 610-624. [DOI: 10.1016/j.cell.2016.07.055]
[9]
Dunst, J.; Kamena, F.; Matuschewski, K. Cytokines and chemokines in cerebral malaria pathogenesis. Front. Cell. Infect. Microbiol., 2017, 7, 1-16. [doi: 10.3389/fcimb.2017.00324]
[10]
Rodrigues, T.; Moreira, R.; Lopes, F. NEW hope in the fight against malaria? Future Med. Chem., 2011, 3, 1-3. [DOI: 10.4155/fmc.10.274
[11]
Pink, R.; Hudson, A.; Mouriès, M-A.; Bendig, M. Opportunities and challenges in antiparasitic drug discovery. Nat. Rev. Drug Discov., 2005, 4, 727-740. [DOI: 10.1038/nrd1824
[12]
Kim, H.; Certa, U.; Döbeli, H.; Jakob, P.; Hol, W.G.J. Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. Biochemistry, 1998, 37, 4388-4396. [DOI: 10.1021/bi972233h
[13]
Jonckers, T.H.M.; Miert, S-v.; Cimanga, K.; Bailly, C.; Colson, P.; De Pauw-Gillet, M-C. Heuvel, H-v-d.; Claeys, M.; Lemiere, F.; Esmans, E.L.; Rozenski, J.; Quirijnen, L.; Maes, L.; Dommisse, R. Lemiere, G.L.F.; Vlietinck, A.; Pieters, L. Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new neocryptolepine derivatives. J. Med. Chem., 2002, 45, 3497-3508. [https://doi.org/10.1021/jm011102i
[14]
Zhang, Y.; Anderson, M.; Weisman, J.L.; Lu, M.; Choy, C.J.; Boyd, V.A.; Price, J.; Sigal, M.; Clark, J.; Connelly, M.; Zhu, F.; Guiguemde, W.A.; Jeffries, C.; Yang, L.; Lemoff, A.; Liou, A.P.; Webb, T.R.; DeRisi, J.L.; Guy, R.K. Evaluation of diarylureas for activity against Plasmodium falciparum. ACS Med. Chem. Lett., 2010, 1, 460-465. [DOI: 10.1021/ml100083c
[15]
Chaturvedi, D.; Goswami, A.; Saikia, P.P.; Barua, N.C.; Rao, P.G. Artemisinin and its derivatives: a novel class of anti-malarial and anti-cancer agents. Chem. Soc. Rev., 2010, 39, 435-454. [DOI: 10.1039/b816679j
[16]
Rosenthal, P.J. Antimalarial drug discovery: old and new approaches. J. Exp. Biol., 2003, 206, 3735-3744. [DOI: 10.1242/jeb.00589
[17]
Miller, L.H.; Ackerman, H.C.; Su, X-Z.; Wellems, T.E. Malaria biology and disease pathogenesis: insights for new treatments. Nat. Med., 2013, 19, 156-157. [DOI: 10.1038/nm.3073
[18]
Meshnick, S.R.; Dobson, M.J. The History of Antimalarial Drugs In: Antimalarial Chemotherapy; P.J. Rosenthal (ed.); Humana Press, Totowa, NJ, 2001, pp. 15-25. [DOI:10.1007/978-1-59259- 111-4_2]
[19]
Hussain, H.; Specht, S.; Sarite, S.R.; Saeftel, M. Hoerauf, A.; Schulz, B.; Krohn, K. A new class of phenazines with activity against a chloroquine resistant Plasmodium falciparum strain and antimicrobial activity. J. Med. Chem., 2011, 54, 4913-4917. [https://doi.org/10.1021/jm200302d
[20]
Ranson, H.; Jensen, B.; Wang, X.; Prapanthadara, L.; Hemingway, J.; Collins, F.H. Genetic mapping of two loci affecting DDT resistance in the malaria vector Anopheles gambiae. Insect Mol. Biol., 2000, 9, 499-507. [PMID: 11029668]
[21]
Greenwood, B.M.; Fidock, D.A.; Kyle, D.E.; Kappe, S.H.I.; Alonso, P.L.; Collins, F.H.; Duffy, P.E. Malaria: progress, perils, and prospects for eradication. J. Clin. Invest., 2008, 118, 1266-1276. [DOI: 10.1172/JCI33996
[22]
Wassmer, S.C.; Grau, G.E. Severe malaria: what’s new on the pathogenesis front? Int. J. Parasitol., 2017, 47, 145-152. [doi: 10.1016/j.ijpara.2016.08.002
[23]
Rodrigues, T.; Prudêncio, M.; Moreira, R.; Mota, M.M.; Lopes, F. Structural optimization of Quinolon-4(1H)-imines as dual-stage antimalarials: toward increased potency and metabolic stability. J. Med. Chem., 2012, 55, 995-1012. [https://doi.org/10.1021/jm4011466
[24]
Lacroix, R.; Mukabana, W.R.; Gouagna, L.C.; Koella, J.C. Malaria infection increases attractiveness of humans to mosquitoes. PLoS Biol., 2005, 3, e298. [DOI: 10.1371/journal.pbio.0030298
[25]
Ismail, H.M.; Barton, V.; Phanchana, M.; Charoensutthivarakul, S.; Wong, M.H.L.; Hemingway, J.; Biagini, G.A.; O’Neill, P.M.; Ward, S.A. Artemisinin activity-based probes identify multiple molecular targets within the asexual stage of the malaria parasites Plasmodium falciparum 3D7. Proc. Natl. Acad. Sci. USA, 2016, 113, 2080-2085. [DOI: 10.1073/pnas.1600459113
[26]
Delves, M.; Plouffe, D.; Scheurer, C.; Meister, S.; Wittlin, S.; Winzeler, E.A.; Sinden, R.E.; Leroy, D. The activities of current antimalarial drugs on the life cycle stages of Plasmodium: a comparative study with human and rodent parasites. PLoS Med., 2012, 9, e1001169. [DOI: 10.1371/journal.pmed.1001169
[27]
Dembele, L.; Franetich, J-F.; Lorthiois, A.; Gego, A.; Zeeman, A-M.; Kocken, C.H.M.; Le Grand, R.; Dereuddre-Bosquet, N.; Gemert, G-J-v.; Sauerwein, R.; Vaillant, J-C.; Hannoun, L.; Fuchter, M.J.; Diagana, T.T.; Malmquist, N.A.; Scherf, A.; Snounou, G.; Mazier, D. Persistence and activation of malaria hypnozoites in long-term primary hepatocyte cultures. Nat. Med., 2014, 20, 307-312. [DOI: 10.1038/nm.3461
[28]
Wiesner, J.; Ortmann, R.; Jomaa, H.; Schlitzer, M. New antimalarial drugs. Angew. Chem. Int. Ed. Engl., 2003, 42, 5274-5293. [DOI: 10.1002/anie.200200569
[29]
Greenwood, B.; Mutabingwa, T. Malaria in 2002. Nature, 2002, 415, 670-672. [DOI: 10.1038/415670a
[30]
Delepine, M. Joseph Pelletier and Joseph Caventou. J. Chem. Educ., 1951, 28(9), 454-461. [DOI: https://doi.org/10.1021/ed028p454
[31]
Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar. J., 2011, 10(1), 144. [DOI: https://doi.org/10.1186/1475-2875-10-144
[32]
Gramiccia, G. Ledger’s cinchona seeds: a composite of field experience, chance, and intuition. Parassitologia, 1987, 29(2-3), 207-220.
[PMID: 3334083]
[33]
Krafts, K.; Hempelmann, E.; Skórska-Stania, A. From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy. Parasitol. Res., 2012, 111(1), 1-6. [DOI: 10.1007/s00436-012-2886-x
[34]
Curtis, C.F.; Mnzava, A.E.P. Comparison of house spraying and insecticide-treated nets for malaria control. Bull. World Health Organ., 2000, 78, 1389-1400.
[PMID: 11196486]
[35]
Winstanley, P.A.; Ward, S.A.; Snow, R.W. Clinical status and implications of antimalarial drug resistance. Microbes Infect., 2002, 4, 157-164. [DOI: 10.1016/S1286-4579(01)01523-4
[36]
Bacon, P.; Spalton, D.J.; Smith, S.E. Blindness from quinine toxicity. Br. J. Ophthalmol., 1988, 72, 219-224. [DOI: 10.1136/bjo.72.3.219
[37]
Carvalho, L.H.; Krettli, A.U. Antimalarial Chemotherapy with natural products and chemically defined molecules. Mem. Inst. Oswaldo Cruz, 1991, 86, 181-184. [DOI: 10.1590/s0074-02761991000600041
[38]
Coatney, G.R. Pitfalls in a discovery: the chronicle of chloroquine. Am. J. Trop. Med. Hyg., 1963, 12, 121-128. [DOI: 10.4269/ajtmh.1963.12.121
[39]
Foley, M.; Tilley, L. Quinoline antimalarials: mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther., 1998, 79, 55-87.
[PMID: 9719345]
[40]
Sullivan, Jr, D.J.; Gluzman, I.Y.; Russell, D.G.; Goldberg, D.E. On the molecular mechanism of chloroquine’s antimalarial action. Proc. Natl. Acad. Sci. USA, 1996, 93, 11865-11870. [DOI: 10.1 073/pnas.93.21.11865
[41]
Cheruku, S.R.; Maiti, S.; Dorn, A.; Scorneaux, B.; Bhattacharjee, A.K.; Ellis, W.Y.; Vennerstrom, J.L. Carbon Isosteres of the 4-Aminopyridine Substructure of Chloroquine: Effects on pKa, Hematin Binding, Inhibition of Hemozoin Formation, and Parasite Growth. J. Med. Chem., 2003, 46, 3166-3169. [DOI: https://doi.org/10.1021/jm030038x
[42]
Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem., 2018, 158, 917-936. [DOI: 10.1016/j.ejmech.2018.08.040
[43]
Baird, J.K. Resurgent malaria at the millennium: control strategies in crisis. Drugs, 2000, 59, 719-743. [DOI: 10.2165/00003495-200059040-00001
[44]
White, N.J. Drug resistance in malaria. Br. Med. Bull., 1998, 54, 703-715. [DOI: 10.1093/oxfordjournals.bmb.a011721
[45]
Augusto, O.; Weingrill, C.L.V.; Schreier, S.; Amemiya, H. Hydroxyl radical formation as a result of the interaction between primaquine and reduced pyridine nucleotides. Arch Biochem Biophys, 1986. 244, 147-155. [PMID: 3004336]
[46]
Fletcher, K.A.; Barton, P.F.; Kelly, J.A. Biochem. Pharmacol., 1988, 37, 2683-2690.
[47]
Thornalley, P.J.; Stern, A.; Bannister, J.V. Studies on the Mechanism of oxidation in the erythrocyte by metabolites of promaquine. Biochem. Pharmacol., 1983, 32, 3571-3575.
[PMID: 2839199]
[48]
Fidock, D.A.; Rosenthal, P.J.; Croft, S.L.; Brun, R.; Nwaka, S. Antimalarial drug discovery: efficacy models for compound screening. Nat. Rev. Drug Discov., 2004, 3, 509-520. [DOI: 10.1038/nrd1416
[49]
Sanchez, C.P.; McLean, J.E.; Stein, W.; Lanzer, M. Evidence for a substrate specific and inhibitable drug efflux system in chloroquine resistant Plasmodium falciparum strains. Biochemistry, 2004, 43, 16365-16373.
[PMID: 15610031]
[50]
Burgess, S.J.; Selzer, A.; Kelly, J.X.; Smilkstein, M.J.; Riscoe, M.K.; Peyton, D.H. A chloroquine-like molecule designed to reverse resistance in Plasmodium falciparum. J. Med. Chem., 2006, 49, 5623-5625. [DOI: 10.1021/jm060399n
[51]
Baro, N.K.; Callaghan, P.S.; Roepe, P.D. Function of resistance conferring Plasmodium falciparum chloroquine resistance transporter isoforms. Biochemistry, 2013, 52, 4242-4249. [DOI: 10.1021/bi400557x
[52]
Payne, D. Parasitol. Today (Regul. Ed.).1987, 3(8), 241-246.
[53]
Wellems, T.E.; Plowe, C.V. Chloroquine-resistant malaria. J. Infect. Dis., 2001, 184(6), 770-776. [DOI: 10.1086/322858
[54]
Qinghaosu Antimalarial Coordinating Research Group. Antimalaria studies on Qinghaosu. Chin. Med. J. 1979, 92, 811-816.[PMID: 117984
[55]
Klayman, D.L. Qinghaosu (artemisinin): an antimalarial drug from China. Science, 1985, 228, 1049-1055. [DOI: 10.1126/science.3887571
[56]
Luo, X.D.; Shen, C.C. The chemistry, pharmacology, and clinical applications of qinghaosu (artemisinin) and its derivatives. Med. Res. Rev., 1987, 7, 29-52.
[PMID: 3550324]
[57]
Cooperative Research Group on Qinghaosu. Studies on new anti-malarial drug Qinghaosu (in Chinese). Yaoxue Tongbao, 1979, 14, 49.
[58]
"Biography of Youyou Tu". The Nobel Foundation. Retrieved (Accessed, Jan- 2019 at: https://www.nobelprize.org/prizes/medicine/2015/tu/biographical/
[59]
Liu, W.; Liu, Y. Youyou Tu: significance of winning the 2015 nobel prize in physiology or medicine. Cardiovasc. Diagn. Ther., 2009, 6, 1-2. [DOI: 10.3978/j.issn.2223-3652.2015.12.11
[60]
Coordinating Group for Research on the Structure of Qing Hau. K'o Hsueh T'ung Pao, 1977, 22, 142. Chem. Abstr.1977, 87, 98788g.
[61]
China Cooperative Research Group on Qinghaosu and its derivatives as antimalarials. The chemistry and synthesis of qinghaosu derivatives. J. Tradit. Chin. Med., 1982, 2, 9-16.
[PMID: 6765848]
[62]
Liu, J-M.; Ni, M-Y.; Fan, J-F.; Tu, Y-Y.; Wu, Z-H.; Wu, Y-L.; Chou, W-S. Structure and reaction of arteannuin. Acta Chimi. Sin., 1979, 37, 129-143.
[63]
Ying, L.; Peilin, Y.; Yixin, C.; Liangquan, L.; Yuanzhu, G.; Desheng, W.; Yaping, Z. Studies on analogs of artemisinine. I. The synthesis of ethers, carboxylic esters and carbonates of dihydroartemisinine. Yao Xue Xue Bao, 1981, 16, 429-439.
[PMID: 7270170]
[64]
O’Neill, P.M.; Posner, G.H. A medicinal chemistry perspective on artemisinin and related endoperoxides. J. Med. Chem., 2004, 47, 2945-2964. [DOI: https://doi.org/10.1021/jm030571c
[65]
Posner, G.H.; Oh, C.H.; Wang, D.; Gerena, L.; Milhous, W.K.; Meshnick, S.R.; Asawamahasadka, W. Mechanism-based design, synthesis, and in vitro antimalarial testing of new 4-methylated trioxanes structurally related to artemisinin: the importance of a carbon-centered radical for antimalarial activity. J. Med. Chem., 1994, 37, 1256-1258. [DOI: https://doi.org/10.1021/jm00035a003
[66]
Woerdenbag, H.J.; Moskal, T.A.; Pras, N.; Malingré, T.M.; El-Feraly, F.S.; Kampinga, H.H.; Konings, A.W. Cytotoxicity of artemisinin-related endoperoxides to ehrlich ascites tumor cells. J. Nat. Prod., 1993, 56, 849-856. [DOI: https://doi.org/10.1021/np50096a007
[67]
Asawamahasadka, W.; Ittarat, I.; Pu, Y-M.; Ziffer, H.; Meshnick, S.R. Reaction of antimalarial endoperoxides with specific parasite proteins. Antimicrob. Agents Chemother., 1994, 38, 1854-1858.
[PMID: 7986020]
[68]
Crespo, M.D.P.; Avery, T.D.; Hanssen, E.; Fox, E.; Robinson, T.V.; Valente, P.; Taylor, D.K.; Tilley, L. Artemisinin and a series of novel endoperoxide antimalarials exert early effects on digestive vacuole morphology. Antimicrob. Agents Chemother., 2008, 52, 98-109. [doi: 10.1128/AAC.00609-07
[69]
Yang, Q.C.; Shi, W.Z.; Li, R. Gan, J. Traditional Chinese Medicine (TCM) and Herbal Hepatotoxicity: RUCAM and the Role of Novel Diagnostic Biomarkers Such as MicroRNAs. J. Tradit. Chin. Med., 1982, 2, 99-103. [doi: 10.3390/medicines3030018
[70]
Mohanty, A.K.; Rath, B.K.; Mohanty, R.; Samal, A.K.; Mishra, K. Randomized control trial of quinine and artesunate in complicated malaria. Indian J. Pediatr., 2004, 71, 291-295. [DOI: https://doi.org/10.1007/BF02724090
[71]
Dondorp, A.; Nosten, F.; Stepniewska, K.; Day, N.; White, N. Artesunate versus quinine for treatment of severe falciparum malaria: a randomised trial. Lancet, 2005, 366, 717-725. [DOI: 10.1016/S0140-6736(05)67176-0
[72]
Kremsner, P.G.; Krishna, S. Antimalarial combinations. Lancet, 2004, 364, 285-294. [DOI: 10.1016/S0140-6736(04)16680-4
[73]
Karunajeewa, H.A.; Reeder, J.; Lorry, K.; Dadod, E.; Hamzah, J.; Page-Sharp, M.; Chiswell, G.M.; Ilett, K.F.; Davis, T.M.E. Efficacy of a novel sublingual spray formulation of artemether in african children with Plasmodium falciparum malaria. Antimicrob. Agents Chemother., 2006, 50, 968-974. [doi: 10.1128/AAC.00243-15
[74]
Davis, T.M.E.; Phuong, H.L.; Ilett, K.F.; Hung, N.C.; Batty, K.T.; Phuong, V.D.B.; Powell, S.M.; Thien, H.V.; Binh, T.Q. Interspecies allometric scaling of antimalarial drugs and potential application to pediatric dosing. Antimicrob. Agents Chemother., 2001, 45, 181-186. [doi: 10.1128/AAC.02538-14
[75]
Krishna, S.; Planche, T.; Agbenyega, T.; Woodrow, C.; Agranoff, D.; Bedu-Addo, G.; Owusu, A.K. Ofori; Appiah, J.A.; Ramanathan, S; Mansor, S.M.; Navaratnam, V. Bioavailability and preliminary clinical efficacy.of intrarectal artesenuateiin Ghanaian children with moderate malaria. Antimicrob. Agents. Chemother.,2001, 45, 509-516. [DOI: 10.1128/AAC.45.2.509-516.2001
[76]
Adjuik, M.; Babiker, A.; Garner, P.; Olliaro, P.; Taylor, W.; White, N. Artesunate combinations for treatment of malaria: meta-analysis. Lancet, 2004, 363, 9-17. [DOI: 10.1016/s0140-6736(03)15162-8
[77]
Carrara, V.I.; Sirilak, S.; Thonglairuam, J.; Rojanawatsirivet, C.; Proux, S.; Gilbos, V.; Brockman, A.; Ashley, E.A.; McGready, R.; Krudsood, S.; Leemingsawat, S.; Looareesuwan, S.; Singhasivanon, P.; White, N.; Nosten, F. Deployment of early diagnosis and mefloquine-artesunate treatment of falciparum malaria in thailand: the tak malaria initiative. PLoS Med., 2006, 3, e183. [DOI: 10.1371/journal.pmed.0030183
[78]
Li, Q.G.; Si, Y.Z.; Lee, P.; Wong, E.; Xie, L.H.; Kyle, D.E.; Dow, G.S. Efficacy comparison of intravenous artelinate and artesunate in Plasmodium berghei-infected Sprague–Dawley rats. Parasitology, 2003, 126, 283-291.
[PMID: 12741507]
[79]
Li, Q.; Xie, L.H.; Si, Y.; Wong, E.; Upadhyay, R.; Yanez, D.; Weina, P.J. Toxikokinetics and hydrolysis of artilinetein Plasmodium berghei-infected and uninfected rats. Int. J. Toxicol., 2005, 24, 241-250. [https://doi.org/10.1080/10915810591007201
[80]
Xie, L.H.; Johnson, T.O.; Weina, P.J.; Haeberle, A.; Upadhyay, R.; Wong, E.; Li, Q. Risk assessment and therapeutic indices of artesunate and artelinate in Plasmodium berghei-infected and uninfected rats. Int. J. Toxicol., 2005, 24, 251-264. [DOI: 10.1080/10915810591007229
[81]
Woodrow, C.J.; Haynes, R.K.; Krishna, S. Artemisinins. Postgrad. Med. J., 2005, 81, 71-78. [DOI: 10.1136/pgmj.2004.028399
[82]
Milhous, W.K.; Klayman, D.L.; Lambros, C. XI international congress for tropical medicine and malaria, Calgary, Alberta, Canada. 1984.
[83]
Chemical studies on qinghaosu (artemisinin). China cooperative research group on qinghaosu and its derivatives as antimalarials. J. Tradit. Chin. Med., 1982, 2(1), 3-8.
[PMID: 6765845]
[84]
Metabolism and pharmacokinetics of qinghaosu and its derivatives. China cooperative research group on qinghaosu and its derivatives as antimalarials. J. Tradit. Chin. Med., 1982, 2(1), 25-30.
[PMID: 6765844]
[85]
Schmid, G.; Hofheinz, W. Total synthesis of qinghaosu. J. Am. Chem. Soc., 1983, 105, 624. [DOI: https://doi.org/10.1021/ja00341a054
[86]
Xu, X.X.; Zhu, J.; Huang, D.Z.; Zhou, W.S. Tetrahedron; Elsevier, 1986, Vol. 42, p. 819.
[87]
Avery, M.A.; Chong, W.K.M.; Jennings-White, C. Stereoselective total synthesis of (+)-artemisinin, the antimalarial constituent of Artemisia annua L. J. Am. Chem. Soc., 1992, 114, 974. [DOI: https://doi.org/10.1021/ja00029a028
[88]
Ravindranathan, T.; Anil Kumar, M.; Menon, R.B.; Hiremath, S.V. Stereoselective synthesis of artemisinin+. Tet. Lett., 1990, 31, 755. [DOI: https://doi.org/10.1016/S0040-4039(00)94621-5
[89]
Lansbury, P.T.; Nowak, D.M. An efficient synthesis of artemisinin and deoxyartemisinin. Tet. Lett., 1992, 33, 1029.
[90]
Zhou, W.S.; Xu, X.X. Total Synthesis of the Antimalarial Sesquiterpene Peroxide Qinghaosu and Yingzhaosu A. Acc. Chem. Res., 1994, 27(7), 211-216. [DOI: https://doi.org/10.1021/ar00043a005
[91]
Dondorp, A.M.; Nosten, F.; Yi, P.; Das, D.; Phyo, A.P.; Tarning, J.; Lwin, K.M.; Ariey, F.; Hanpithakpong, W.; Lee, S.J.; Ringwald, P.; Silamut, K.; Imwong, M.; Chotivanich, K.; Lim, P.; Herdman, T.; An, S.S.; Yeung, S.; Singhasivanon, P.; Day, N.P.J.; Lindegardh, N.; Socheat, D.; White, N.J. Artemisinin resistance in Plasmodium falciparum malaria. N. Engl. J. Med., 2009, 361, 455-467. [Doi: 10.1056/NEJMoa0808859
[92]
Fairhurst, R.M.; Nayyar, G.M.L.; Breman, J.G.; Hallett, R.; Vennerstrom, J.L.; Duong, S.; Ringwald, P.; Wellems, T.E.; Plowe, C.V.; Dondorp, A.M. Artemisinin-resistant malaria: research challenges, opportunities, and public health implications. Am. J. Trop. Med. Hyg., 2012, 87, 231-241. [DOI: doi: 10.4269/ajtmh.2012.12-0025
[93]
Lu, F.; Culleton, R.; Zhang, M.; Ramaprasad, A.; von Seidlein, L.; Zhou, H.; Zhu, G.; Tang, J.; Liu, Y.; Wang, W.; Cao, Y.; Xu, S.; Gu, Y.; Li, J.; Zhang, C.; Gao, Q.; Menard, D.; Pain, A.; Yang, H.; Zhang, Q.; Cao, J. Emergence of Indigenous Artemisinin-Resistant Plasmodium falciparum in Africa. N. Engl. J. Med., 2017, 376, 991-993. [DOI: 10.1056/NEJMc1612765
[94]
Dodoo, A.N.; Fogg, C.; Asiimwe, A.; Nartey, E.T.; Kodua, A.; Tenkorang, O.; Ofori-Adjei, D. Potential contribution of prescription practices to the emergence and spread of chloroquine resistance in south-west Nigeria: caution in the use of artemisinin combination therapy. Malar. J., 2009, 8, 1-8. [Doi: 10.1186/1475-2875-8-313
[95]
Yeung, S.; Pongtavornpinyo, W.; Hastings, I.M.; Mills, A.J.; White, N.J. Intraspecific nucleotide variation in Anopheles gambiae: new insights into the biology of malaria vectors. Am. J. Trop. Med. Hyg., 2004, 71, 179-186.
[PMID: 15642974]
[96]
Duffy, P.E.; Mutabingwa, T.K. Artemisinin combination therapies. Lancet, 2006, 367, 2037-2039. [DOI:10.1016/S0140-6736(06)68900-9
[97]
Douglas, N.M.; Anstey, N.M.; Angus, B.J.; Nosten, F.; Price, R.N. Artemisinin combination therapy for vivax malaria. Lancet Infect. Dis., 2010, 10, 405-416. [DOI: 10.1016/S1473-3099(10)70079-7
[98]
Holmgren, G.; Hamrin, J.; Svard, J.; Martensson, A.; Gil, J.P.; Bjorkman, A. Selection of pfmdr1 mutations after amodiaquine monotherapy and amodiaquine plus artemisinin combination therapy in East Africa. Infect. Genet. Evol., 2007, 7, 562-569. [DOI: 10.1016/j.meegid.2007.03.005
[99]
Sinclair, D.; Zani, B.; Doregan, S.; Olliaro, P.; Garner, P. Artemisinin-based combination therapy for treating uncomplicated malaria. Cochrane Database Syst. Rev., 2009, 3, CD007483. [DOI: 10.1002/14651858.CD007483.pub2
[100]
Zani, B.; Gathu, M.; Doregan, S.; Olliaro, P.L.; Sinclair, D. Dihydroartemisinin-piperaquine for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst. Rev., 2014, 1, CD010927. [DOI: 10.1002/14651858.CD010927
[101]
Bathurst, I.; Hentschel, C. Medicines for Malaria Venture: sustaining antimalarial drug development. Trends Parasitol., 2006, 22, 301-307. PMID: 16757213[ DOI: 10.1016/j.pt.2006.05.011]
[102]
Wernsdorfer, W.H. Coartemether (artemether and lumefantrine): an oral antimalarial drug. Expert Rev. Anti Infect. Ther., 2004, 2, 181-196.
[PMID: 15482185]
[103]
Omari, A.A.; Gamble, C.; Garner, P. Artemether-lumefantrine for uncomplicated malaria: a systematic review. Trop. Med. Int. Health, 2004, 9, 192-199.
[PMID: 15040555]
[104]
Leskovac, V., and A. D. Theoharides. 1991. Hepatic metabolism of artemisinin drugs. I. Drug metabolism in rat liver microsomes. Comp. Biochem. Physiol., 99C, 383-390.
[PMID: 1685412]
[105]
Baker, J.K.; McChesney, J.D.; Chi, H.T. Decomposition of arteether in simulated stomach acid yielding compounds retaining antimalarial activity. Pharm. Res., 1993, 10, 662-666. [PMID: 8321829][DOI: 10.4269/ajtmh.2009.08-0326]
[106]
Brewer, T.G.; Peggins, J.O.; Grate, S.J.; Petras, J.M.; Levine, B.S.; Weina, P.J.; Swearengen, J.; Heiffer, M.H.; Schuster, B.G. Neurotoxicity in animals due to arteether and artemether. Trans. R. Soc. Trop. Med. Hyg., 1994, 88, 33-36. [PMID: 8053022] [DOI: 10.1016/0035-9203(94)90469-3]
[107]
Brewer, T.G.; Grate, S.J.; Peggins, J.O.; Weina, P.J.; Petras, J.M.; Levine, B.S.; Heiffer, M.H.; Schuster, B.G. Am. J. Trop. Med. Hyg., 1994, 51, 251-259. [PMCID: PMC2843440
[PMID: 19141850]
[108]
Navaratnam, V.; Mansor, S.M.; Sit, N-W.; Grace, J.; Li, Q. Pharmacokinetics of artemisinin-type compounds. Clin. Pharmacokinet., 2000, 39, 255-270. [PMID: 11069212] [DOI: 10.2165/ 00003088-200039040-00002]
[109]
Genovese, R.F.; Newman, D.B.; Brewer, T.G. Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats. Pharmacol. Biochem. Behav., 2000, 67, 37-44. [PMID: 11113482]
[110]
Nontprasert, A.; Pukrittayakamee, S.; Nosten-Bertrand, M.; Vanijanonta, S.; White, N.J. Prolongation of the QTc interval in African children treated for falciparum malaria. Am. J. Trop. Med. Hyg., 2000, 62, 409-412. [PMID: 9790416] [DOI: 10.4269/ajtmh.1998.59.503]
[111]
Schmuck, G.; Roehrdanz, E.; Haynes, R.K.; Kahl, R. Neurotoxic Mode of Action of Artemisinin. Antimicrob. Agents Chemother., 2002, 46, 821-827. [DOI: 10.1128/AAC.46.3.821-827.2002
[112]
Lefevre, G.; Carpenter, P.; Souppart, C.; Schmidli, H.; McClean, M.; Stypinski, D. Pharmacokinetics and electrocardiographic pharmacodynamics of artemether-lumefantrine (Riamet) with concomitant administration of ketoconazole in healthy subjects. Br. J. Clin. Pharmacol., 2002, 54, 485-492. [PMID: 12445027] [PMCID: PMC1874456] [DOI: 10.1046/j.1365-2125.2002.01696.x]
[113]
Davis, T.M.E.; Binh, T.Q.; Ilett, K.F.; Batty, K.T.; Phuöng, H.L.; Chiswell, G.M.; Phuöng, V.D.B.; Agus, C. Comparative in vitro susceptibilities and bactericidal activities of investigational fluoroquinolone ABT-492 and other antimicrobial agents against human mycoplasmas and ureaplasmas. Antimicrob. Agents Chemother., 2003, 47, 368-370. [DOI: 10.1128/aac.47.12.3973-3975.2003
[114]
Thuy-Nhien, N.; Tuyen, N.K.; Tong, N.T.; Vy, N.T.; Thanh, N.V.; Van, H.T.; Huong-Thu, P.; Quang, H.H.; Boni, M.F.; Dolecek, C.; Farrar, J.; Thwaites, G.E.; Miotto, O.; White, N.J.; Hien, T.T. K13 Propeller Mutations in Plasmodium falciparum Populations in Regions of Malaria Endemicity in Vietnam from 2009 to 2016. Antimicrob. Agents Chemother., 2017, 61, e01578-e16. [DOI: 10.1128/AAC.01578-16
[115]
White, N.J.; Pukrittayakamee, S.; Hien, T.T.; Faiz, M.A.; Mokuolu, O.A.; Dondorp, A.M. Malaria. Lancet, 2014, 383, 723-735. [DOI: 10.1016/S0140-6736(13)60024-0
[116]
Itokawa, H.; Tachi, Y.; Kamano, Y.; Iitaka, Y. Structure of gilvanol, a new triterpene isolated from Quercus gilva Blume. Chem. Pharm. Bull., 1978, 26, 331-333. [DOI: https://doi.org/10.1248/cpb.26.331
[117]
Ageta, H.; Shiojima, K.; Kamaya, R.; Masuda, K. Fern constituent: Naturally occurring adian-5-ene ozonide in the leaves of Adiantum monochlamys and Oleandra wallichii. Tetrahedron Lett., 1978, 19(10), 899-900. [DOI:10.1016/S0040-4039(01)91430-3
[118]
Rücker, G.; Manns, D.; Schenkel, E.P.; Hartmann, R.; Heinzmann, B.M. A Triterpene Ozonide from Senecio Selloi. Arch.Pharm. Med. Chem., 2003, 336, 205-207. [DOI:https://doi.org/10.1002/ardp.200300740
[119]
Barbosa, L.C.A.; Cutler, D.; Mann, J.; Kirby, G.C.; Warhurst, D.C. Synthesis of some stable ozonides with anti-malarial activity. J.Chem. Soc. Perkin Trans. 1, 1992, 3251-3252. [DOI:10.1039/P19920003251
[120]
Barbosa, L.C.A.; Cutler, D.; Mann, J.; Crabbe, M.J.; Kirby, G.C.; Warhurst, D.C. The design, synthesis and biological evaluation of stable ozonides with antimalarial activity. J. Chem. Soc., Perkin Trans. 1, 1996, 0, 1101-1105. [DOI:10.1039/P19960001101]
[121]
Griesbaum, K.; Ovez, B.; Huh, T.S.; Dong, Y. Liebigs Ann., 1995, 8, 1571-1574.
[122]
Tang, Y.; Dong, Y.; Karle, J.M.; DiTusa, C.A.; Vennerstrom, J.L. Synthesis of tetrasubstituted ozonides by the griesbaum coozonolysis reaction: diastereoselectivity and functional group transformations by post-ozonolysis reactions. J. Org. Chem., 2004, 69, 6470-6473. [DOI: https://doi.org/10.1021/jo040171
[123]
Vennerstrom, J.L.; Barnes, S.A.; Brun, R.; Charman, S.A.; Chiu, F.C.K.; Chollet, J.; Dong, Y.; Dorn, A.; Hunziker, D.; Matile, H.; McIntosh, K.; Padmanilayam, M.; Tomas, J.S.; Scheurer, C.; Scorneaux, B.; Tang, Y.; Urwyler, H.; Wittlin, S.; Charman, W.N. Identification of an antimalarial synthetic trioxolane drug development candidate. Nature, 2004, 430, 900-904. [DOI: 10.1038/nature02779
[124]
Dong, Y.; Chollet, J.; Matile, H.; Charman, S.A.; Chiu, F.C.K.; Charman, W.N.; Scorneaux, B.; Urwyler, H.; Tomas, J.S.; Scheurer, C.; Snyder, C.; Dorn, A.; Wang, X.; Karle, J.M.; Tang, Y.; Wittlin, S.; Brun, R.; Vennerstrom, J.L. Spiro and Dispiro-1,2,4-trioxolanes as Antimalarial Peroxides: Charting a Workable Structure−Activity Relationship Using Simple Prototypes. J. Med. Chem., 2005, 48, 4953-4961. [DOI: https://doi.org/10.1021/jm049040u
[125]
Tang, Y.; Dong, Y.; Wang, X.; Sriraghavan, K.; Wood, J.K.; Vennerstrom, J.L. Dispiro-1,2,4-trioxane Analogues of a Prototype Dispiro-1,2,4-trioxolane: Mechanistic Comparators for Artemisinin in the Context of Reaction Pathways with Iron(II). J. Org. Chem., 2005, 70, 5103-5110. [DOI: https://doi.org/10.1021/jo050385+
[126]
Padmanilayam, M.; Scorneaux, B.; Dong, Y.; Chollet, J.; Matile, H.; Charman, S.A.; Creek, D.J.; Charman, W.N.; Tomas, J.S.; Scheurer, C.; Wittlin, S.; Brun, R.; Vennerstrom, J.L. Antimalarial activity of N-alkyl amine, carboxamide, sulfonamide, and urea derivatives of a dispiro-1,2,4-trioxolane piperidine. Bioorg. Med. Chem. Lett., 2006, 16, 5542-5545. [DOI: 10.1016/j.bmcl.2006. 08.046
[127]
Dong, Y.; Tang, Y.; Chollet, J.; Matile, H.; Wittlin, S.; Charman, S.A.; Charman, W.N.; Tomas, J.S.; Scheurer, C.; Snyder, C.; Scorneaux, B.; Bajpai, S.; Alexander, S.A.; Wang, X.; Padmanilayam, M.; Cheruku, S.R.; Brun, R.; Vennerstrom, J.L. Effect of functional group polarity on the antimalarial activity of spiro and dispiro-1,2,4-trioxolanes. Bioorg. Med. Chem., 2006, 14, 6368-6382. [DOI: 10.1016/j.bmc.2006.05.041
[128]
Tang, Y.; Dong, Y.; Wittlin, S.; Charman, S.A.; Chollet, J.; Chiu, F.C.K.; Charman, W.N.; Matile, H.; Urwyler, H.; Dorn, A.; Bajpai, S.; Wang, X.; Padmanilayam, M.; Karle, J.M.; Brun, R.; Vennerstrom, J.L. Weak base dispiro-1,2,4-trioxolanes: Potent antimalarial ozonides. Bioorg. Med. Chem. Lett., 2007, 17, 1260-1265. [DOI: 10.1016/j.bmcl.2006.12.007
[129]
Creek, D.J.; Charman, W.N.; Chiu, F.C.K.; Prankerd, R.J.; McCullough, K.; Dong, Y.; Vennerstrom, J.L.; Charman, S.A. J. Pharm. Sci., 2007, 96, 2945-2056.
[130]
Kaiser, M.; Wittlin, S.; Nehrbass-Stuedli, A.; Dong, Y.; Wang, X.; Hemphill, A.; Matile, H.; Brun, R.; Vennerstrom, J.L. Peroxide Bond-Dependent Antiplasmodial Specificity of Artemisinin and OZ277 (RBx11160). Antimicrob. Agents Chemother., 2007, 51, 2991-2993. [doi:10.1128/AAC.00225-07
[131]
Creek, D.J.; Chalmers, D.K.; Charman, W.N.; Duke, B.J. Modeling the binding modes of Kv1.5 potassium channel and blockers. J. Mol. Graph. Model., 2008, 27, 394-400. [DOI: 10.1016/j.jmgm.2008.04.002
[132]
Zhou, L.; Alker, A.; Ruf, A.; Wang, X.; Chiu, F.C.; Morizzi, J.; Charman, S.A.; Charman, W.N.; Scheurer, C.; Wittlin, S.; Dong, Y.; Hunziker, D.; Vennerstrom, J.L. Characterization of the two major CYP450 metabolites of ozonide (1,2,4-trioxolane) OZ277. Bioorg. Med. Chem. Lett., 2008, 18(5), 1555-1558. [DOI: https://doi.org/10.1016/j.bmcl.2008.01.087
[133]
Creek, D.J.; Charman, W.N.; Chiu, F.C.K.; Prankerd, R.J.; Dong, Y.; Vennerstrom, J.L.; Charman, S.A. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials. Antimicrob. Agents Chemother., 2008, 52, 1291-1296. [DOI: 10.1128/AAC.01033-07
[134]
Dong, Y.; Wittlin, S.; Sriraghavan, K.; Chollet, J.; Charman, S.A.; Charman, W.N.; Scheurer, C.; Urwyler, H.; Tomas, J.S.; Snyder, C.; Creek, D.J.; Morizzi, J.; Koltun, M.; Matile, H.; Wang, X.; Padmanilayam, M.; Tang, Y.; Dorn, A.; Brun, R.; Vennerstrom, J.L. The Structure−Activity Relationship of the Antimalarial Ozonide Arterolane (OZ277). J. Med. Chem., 2010, 53, 481-491. [DOI: https://doi.org/10.1021/jm901473s
[135]
Tang, Y.; Wittlin, S.; Charman, S.A.; Chollet, J.; Chiu, F.C.K.; Morizzi, J.; Johnson, L.M.; Tomas, J.S.; Scheurer, C.; Snyder, C.; Zhou, L.; Dong, Y.; Charman, W.N.; Matile, H.; Urwyler, H.; Dorn, A.; Vennerstrom, J.L. The comparative antimalarial properties of weak base and neutral synthetic ozonides. Bioorg. Med. Chem. Lett., 2010, 20, 563-566. [DOI: https://doi.org/10.1016/j.bmcl.2009.11.088
[136]
Valecha, N.; Looreesuwan, S.; Martensson, A.; Abdulla, S.M.; Krudsood, S.; Tanpukdee, N.; Mohnty, S.; Mishra, S.K.; Tyagi, P.K.; Sharma, S.K.; Moehrle, J.; Gautam, A.; Roy, A.; Paliwal, J.K.; Kotbari, M.; Saha, N.; Dash, A.P.; Björkman, A. Arterolane, a New Synthetic Trioxolane for Treatment of Uncomplicated Plasmodium falciparum Malaria: A Phase II, Multicenter, Randomized, Dose-Finding Clinical Trial. Clin. Infect. Dis., 2010, 51, 684-691. [DOI: https://doi.org/10.1086/655831
[137]
Charman, S.A.; Arbe-Barnes, S.; Bathurst, I.C.; Brun, R.; Campbell, M.; Charman, W.N.; Chiu, F.C.K.; Chollet, J.; Craft, J.C.; Creek, D.J.; Dong, Y.; Matile, H.; Maurer, M.; Morizzi, J.; Nguyen, T.; Papastogiannidis, P.; Scheurer, C.; Shackleford, D.M.; Sriraghavan, K.; Stingelin, L.; Tang, Y.; Urwyler, H.; Wang, X.; White, K.L.; Wittlin, S.; Zhou, L.; Vennerstrom, J.L. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc. Natl. Acad. Sci. USA, 2011, 108, 4400-4405. [DOI: https://doi.org/10.1073/pnas.1015762108
[138]
Yang, T.; Xie, S.C.; Cao, P.; Giannangelo, C.; McCaw, J.; Creek, D.J.; Charman, S.A.; Klonis, N.; Tilley, L. Comparison of the exposure time dependence of the activities of synthetic ozonide antimalarials and dihydroartemisinin against K13 wild-type and mutant plasmodium falciparum strains. Antimicrob. Agents Chemother., 2016, 60(8), 4501-4510. [DOI: 10.1128/AAC.00574-16
[139]
Blank, B.R.; Gut, J.; Rosenthal, P.J.; Renslo, A.R. Enantioselective synthesis and in vivo evaluation of regioisomeric analogues of the antimalarial arterolane. J. Med. Chem., 2017, 60, 6400-6407. [DOI: DOI: 10.1021/acs.jmedchem.7b00699
[140]
Dong, Y.; Wang, X.; Kamaraj, S.; Bulbule, V.J.; Chiu, F.C.K.; Chollet, J.; Manickam, D.; Hein, C.D.; Papastogiannidis, P.; Morizzi, J.; Shackleford, D.M.; Barker, H.; Ryan, E.; Scheurer, C.; Tang, Y.; Zhao, Q.; Zhou, L.; White, K.L.; Urwyler, H.; Charman, W.N.; Matile, H.; Wittlin, S.; Charman, S.A.; Vennerstrom, J.L. Structure–activity relationship of the antimalarial ozonide artefenomel (OZ439). J. Med. Chem., 2017, 60(7), 2654-2668. [DOI: https://doi.org/10.1021/acs.jmedchem.6b01586
[141]
Kim, H.S.; Hammill, J.T.; Guy, R.K. Seeking the elusive long-acting ozonide: discovery of artefenomel (OZ439). J. Med. Chem., 2017, 60, 2651-2653. [DOI: https://doi.org/10.1021/acs.jmedchem.7b00299
[142]
Giannangelo, C.; Stingelin, L.; Yang, T.; Tilley, L.; Charman, S.A.; Creek, D.J. Parasite-mediated degradation of synthetic ozonide antimalarials impacts in vitro antimalarial activity. Antimicrob. Agents Chemother., 2018, 62(3), e01566-e17. [doi: 10.1128/AAC.01566-17
[143]
Chaudhary, S.; Sharma, V.; Jaiswal, P.K.; Gaikwad, A.N.; Sinha, S.K.; Puri, S.K.; Sharon, A.; Maulik, P.R.; Chaturvedi, V. Stable tricyclic antitubercular ozonides derived from artemisinin. Org. Lett., 2015, 17(20), 4948-4951. [DOI: https://doi.org/10.1021/acs.orglett.5b02296
[144]
(a)Peters, W. Chemotherapy and drug resistance in malaria; Academic Press: London, 1970, pp. 64-136.
(b)Singh, C.; Chaudhary, S.; Puri, S.K. New orally active derivatives of artemisinin with high efficacy against multidrug-resistant malaria in mice. J. Med. Chem., 2006, 49, 7227-7233. [DOI: https://doi.org/10.1021/jm060826x
[145]
Chaudhary, S.; Puri, S.K.; Singh, C. Orally active arteminisin derivatives. Med. Chem. Res., 2004, 12(6/7), 362.
[146]
Singh, C.; Chaudhary, S.; Puri, S.K. Orally active esters of dihydroartemisinin: Synthesis and antimalarial activity against multidrug-resistant Plasmodium yoelii in mice. Bioorg. Med. Chem. Lett., 2008, 18, 1436-1441. [doi: 10.1016/j.bmcl.2007.12.074
[147]
Singh, C.; Chaudhary, S.; Puri, S.K. Indian Patent, 2010, Patent No. A 20100326 (IN2004DE00209).
[148]
Singh, C.; Chaudhary, S.; Puri, S.K. Indian Patent, 2012, Patent No.253045A1 20120622 (IN2006DE00391).
[149]
Singh, C.; Kanchan, R.; Chaudhary, S.; Puri, S.K. Singh, C.; Kanchan, R.; Chaudhary, S.; Puri, S. K. Linker-Based Hemisuccinate Derivatives of Artemisinin: Synthesis and antimalarial assessment against multidrug-resistant plasmodium yoelii nigeriensis in mice. J. Med. Chem., 2012, 55(3), 1117-1126. [DOI: https://doi.org/10.1021/jm2010699
[150]
Yadav, L.; Tiwari, M.K.; Shyamlal, B.R.K.; Mathur, M.; Swami, A.K.; Puri, S.K.; Naikade, N.K.; Chaudhary, S. Synthesis and Antimalarial activity of novel bicyclic and tricyclic aza-peroxides. RSC Advances, 2016, 6, 23718-23725.
[http://dx.doi.org/10.1039/C5RA16781G]]
[151]
Chaudhary, S.; Naikade, N.K.; Tiwari, M.K.; Yadav, L.; Shyamlal, B.R.K.; Puri, S.K. New orally active diphenylmethyl-based ester analogues of dihydroartemisinin: Synthesis and antimalarial assessment against multidrug-resistant Plasmodium yoelii nigeriensis in mice. Bioorg. Med. Chem. Lett., 2016, 26(6), 1536-1541. [ doi: 10.1016/j.bmcl.2016.02.019
[152]
Terent’ev, A.O.; Yaremenko, I.A.; Glinushkin, A.P.; Nikishin, G.I. Synthesis of peroxides from β,δ-triketones under heterogeneous conditions. Russ. J. Org. Chem., 2015, 51, 1681-1687. [DOI: 10.1134/S1070428015120027
[153]
Yaremenko, I.A.; Gomes, G.P.; Radulov, P.S.; Belyakova, Y.Y.; Vilikotskiy, A.E.; Vil’, V.A.; Korlyukov, A.A.; Nikishin, G.I.; Alabugin, I.V.; Terent’ev, A.O. Ozone-Free Synthesis of Ozonides: Assembling Bicyclic Structures from 1,5-Diketones and Hydrogen Peroxide. J. Org. Chem., 2018, 83, 4402-4426. [https://doi.org/10.1021/acs.joc.8b00130
[154]
Baumgärtner, F.; Jourdan, J.; Scheurer, C.; Blasco, B.; Campo, B.; Mäser, P.; Wittlin, S. In vitro activity of anti-malarial ozonides against an artemisinin-resistant isolate. Malar. J., 2017, 16, 45. [DOI: 10.1186/s12936-017-1696-0
[155]
Pearce, A.N.; Kaiser, M.; Copp, B.R. Synthesis and antimalarial evaluation of artesunate-polyamine and trioxolane-polyamine conjugates. Eur. J. Med. Chem., 2017, 140, 595-603. [DOI: 10.1016/j.ejmech.2017.09.040
[156]
Yamansarov, E.Y.; Kazakov, D.V.; Medvedeva, N.I.; Khusnutdinova, E.F.; Kazakova, O.B.; Legostaeva, Y.V.; Ishmuratova, G.Y.; Huongc, M.L.; Ha, T.T.H.; Huongc, D.T.; Suponitsky, K.Y. Synthesis and antimalarial activity of 3′-trifluoromethylated 1,2,4-trioxolanes and 1,2,4,5-tetraoxane based on deoxycholic acid. Steroids, 2018, 129, 17-23. [https://doi.org/10.1016/j.steroids.2017.11.008
[157]
Lobo, L.; Cabral, L.I.L.; Sena, M.I.; Guerreiro, B.; Rodrigues, A.S.; Neto, V.F.A.; Cristiano, M.L.S.; Nogueira, F. New endoperoxides highly active in vivo and in vitro against artemisinin-resistant Plasmodium falciparum. Malar. J., 2018, 17(1), 145. [DOI: 10.1186/s12936-018-2281-x
[158]
Coghi, P.; Yaremenko, I.A.; Prommana, P.; Radulov, P.S.; Syroeshkin, M.A.; Wu, Y.J.; Gao, J.Y.; Martinez, F.M.G.; Mok, S.; Wong, V.K.W.; Uthaipibull, C.; Terent’ev, A.O. ChemMedChem, 2018, 13(9), 902-908. [DOI:10.1002/cmdc.201700804


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 10
Year: 2019
Page: [831 - 846]
Pages: 16
DOI: 10.2174/1568026619666190412104042
Price: $58

Article Metrics

PDF: 9
HTML: 3
EPUB: 1