Recent Status and Advancements in the Development of Antifungal Agents: Highlights on Plant and Marine Based Antifungals

Author(s): P. Marie Arockianathan , Monika Mishra , Rituraj Niranjan* .

Journal Name: Current Topics in Medicinal Chemistry

Volume 19 , Issue 10 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The developing resistance in fungi has become a key challenge, which is being faced nowadays with the available antifungal agents in the market. Further search for novel compounds from different sources has been explored to meet this problem. The current review describes and highlights recent advancement in the antifungal drug aspects from plant and marine based sources. The current available antifungal agents act on specific targets on the fungal cell wall, like ergosterol synthesis, chitin biosynthesis, sphingolipid synthesis, glucan synthesis etc. We discuss some of the important anti-fungal agents like azole, polyene and allylamine classes that inhibit the ergosterol biosynthesis. Echinocandins inhibit β-1, 3 glucan synthesis in the fungal cell wall. The antifungals poloxins and nikkomycins inhibit fungal cell wall component chitin. Apart from these classes of drugs, several combinatorial therapies have been carried out to treat diseases due to fungal resistance. Recently, many antifungal agents derived from plant and marine sources showed potent activity. The renewed interest in plant and marine derived compounds for the fungal diseases created a new way to treat these resistant strains which are evident from the numerous literature publications in the recent years. Moreover, the compounds derived from both plant and marine sources showed promising results against fungal diseases. Altogether, this review article discusses the current antifungal agents and highlights the plant and marine based compounds as a potential promising antifungal agents.

Keywords: Plant based antifungal agents, Marine based antifungal agents, Fungal resistance, Natural drugs, Azole, Polymers.

[1]
Cox, F.; Newsham, K.K.; Bol, R.; Dungait, J.A.J.; Robinson, C.H. Not poles apart: Antarctic soil fungal communities show similarities to those of the distant Arctic. Ecol. Lett., 2016, 19(5), 528-536.
[http://dx.doi.org/10.1111/ele.12587] [PMID: 26932261]
[2]
CDC. Types of fungal diseases. 25 January 2017- 10 February 2017.
[3]
Pianalto, K.M.; Alspaugh, J.A. New horizons in antifungal therapy. J. Fungi (Basel), 2016, 2(4), 1-24.
[http://dx.doi.org/10.3390/jof2040026] [PMID: 29376943]
[4]
Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: human fungal infections, 2012. [http://dx.doi.org/10.1126/scitranslmed.3004404]
[5]
Diekema, D.; Arbefeville, S.; Boyken, L.; Kroeger, J.; Pfaller, M. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn. Microbiol. Infect. Dis., 2012, 73(1), 45-48.
[http://dx.doi.org/10.1016/j.diagmicrobio.2012.02.001] [PMID: 22578938]
[6]
Marr, K.A.; Schlamm, H.T.; Herbrecht, R.; Rottinghaus, S.T.; Bow, E.J.; Cornely, O.A.; Heinz, W.J.; Jagannatha, S.; Koh, L.P.; Kontoyiannis, D.P.; Lee, D.G.; Nucci, M.; Pappas, P.G.; Slavin, M.A.; Queiroz-Telles, F.; Selleslag, D.; Walsh, T.J.; Wingard, J.R.; Maertens, J.A. Combination antifungal therapy for invasive aspergillosis: a randomized trial. Ann. Intern. Med., 2015, 162(2), 81-89.
[http://dx.doi.org/10.7326/M13-2508] [PMID: 25599346]
[7]
Denning, D.W.; Hope, W.W. Therapy for fungal diseases: opportunities and priorities. Trends Microbiol., 2010, 18(5), 195-204.
[http://dx.doi.org/10.1016/j.tim.2010.02.004] [PMID: 20207544]
[8]
Castelli, M.V.; Butassi, E.; Monteiro, M.C.; Svetaz, L.A.; Vicente, F.; Zacchino, S.A.; Zacchino, S.A. Novel antifungal agents: a patent review (2011 - present). Expert Opin. Ther. Pat., 2014, 24(3), 323-338.
[http://dx.doi.org/10.1517/13543776.2014.876993] [PMID: 24392809]
[9]
Denning, D.W.; Bromley, M. J. Infectious Disease. How to bolster the antifungal pipeline. Science, 2015, 347(6229), 1414-1416.
[http://dx.doi.org/10.1126/science.aaa6097] [PMID: 25814567]
[10]
Perfect, J.R. Is there an emerging need for new antifungals? Expert Opin. Emerg. Drugs, 2016, 21(2), 129-131.
[http://dx.doi.org/10.1517/14728214.2016.1155554] [PMID: 26883732]
[11]
Roemer, T.; Krysan, D.J. Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb. Perspect. Med., 2014, 4(5), a019703.
[http://dx.doi.org/10.1101/cshperspect.a019703] [PMID: 24789878]
[12]
Campoy, S.; Adrio, J.L. Antifungals. Biochem. Pharmacol., 2017, 133, 86-96.
[http://dx.doi.org/10.1016/j.bcp.2016.11.019] [PMID: 27884742]
[13]
Chang, Y-L.; Yu, S-J.; Heitman, J.; Wellington, M.; Chen, Y.L. New facets of antifungal therapy. Virulence, 2017, 8(2), 222-236.
[http://dx.doi.org/10.1080/21505594.2016.1257457] [PMID: 27820668]
[14]
Ebaa, M. El-Hossary, Cheng Cheng, Mostafa M. Hamed, Ashraf Nageeb El-Sayed Hamed, Knut Ohlsen, Ute Hentschel, Usama Ramadan Abdelmohsen. Antifungal potential of marine natural products. Eur. J. Med. Chem., 2017, 126, 631-651.
[15]
Negri, M.; Salci, T.P.; Shinobu-Mesquita, C.S.; Capoci, I.R.G.; Svidzinski, T.I.E.; Kioshima, E.S. Early state research on antifungal natural products. Molecules, 2014, 19(3), 2925-2956.
[http://dx.doi.org/10.3390/molecules19032925] [PMID: 24609016]
[16]
Saag, M.S.; Dismukes, W.E. Azole antifungal agents: emphasis on new triazoles. Antimicrob. Agents Chemother., 1988, 32(1), 1-8.
[http://dx.doi.org/10.1128/AAC.32.1.1] [PMID: 2831809]
[17]
Sheehan, D.J.; Hitchcock, C.A.; Sibley, C.M. Current and emerging azole antifungal agents. Clin. Microbiol. Rev., 1999, 12(1), 40-79.
[http://dx.doi.org/10.1128/CMR.12.1.40] [PMID: 9880474]
[18]
Ghannoum, M.A. Future of antimycotic therapy. Dermatol. Ther., 1997, 3, 104-111.
[19]
Carrillo-Muñoz, A.J.; Giusiano, G.; Ezkurra, P.A.; Quindós, G. Antifungal agents: mode of action in yeast cells. Rev. Esp. Quimioter., 2006, 19(2), 130-139.
[PMID: 16964330]
[20]
Dawson, J.H.; Sono, M. Cytochrome P-450 and chloroperoxidase: thiolateligated heme enzymes. Spectroscopic determination of their active-site structures and mechanistic implications of thiolate ligation. Chem. Rev., 1987, 87, 1255-1276.
[http://dx.doi.org/10.1021/cr00081a015]
[21]
Pfaller, M.A.; Messer, S.A.; Boyken, L.; Rice, C.; Tendolkar, S.; Hollis, R.J.; Doern, G.V.; Diekema, D.J. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J. Clin. Microbiol., 2005, 43(5), 2163-2167.
[http://dx.doi.org/10.1128/JCM.43.5.2163-2167.2005] [PMID: 15872236]
[22]
Pfaller, M.A.; Messer, S.A.; Boyken, L.; Hollis, R.J.; Rice, C.; Tendolkar, S.; Diekema, D.J. In vitro activities of voriconazole, posaconazole, and fluconazole against 4,169 clinical isolates of Candida spp. and Cryptococcus neoformans collected during 2001 and 2002 in the ARTEMIS global antifungal surveillance program. Diagn. Microbiol. Infect. Dis., 2004, 48(3), 201-205.
[http://dx.doi.org/10.1016/j.diagmicrobio.2003.09.008] [PMID: 15023430]
[23]
Pardasani, A. Oral antifungal agents used in dermatology. Curr. Probl. Dermatol., 2000, 11, 270.
[http://dx.doi.org/10.1016/S1040-0486(00)90023-1]
[24]
Pappas, P.G.; Rex, J.H.; Sobel, J.D.; Filler, S.G.; Dismukes, W.E.; Walsh, T.J.; Edwards, J.E. Guidelines for treatment of candidiasis. Clin. Infect. Dis., 2004, 38(2), 161-189.
[http://dx.doi.org/10.1086/380796] [PMID: 14699449]
[25]
Andriole, V.T. Current and future antifungal therapy: new targets for antifungal therapy. Int. J. Antimicrob. Agents, 2000, 16(3), 317-321.
[http://dx.doi.org/10.1016/S0924-8579(00)00258-2] [PMID: 11091055]
[26]
Diekema, D.J.; Messer, S.A.; Hollis, R.J.; Jones, R.N.; Pfaller, M.A. Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J. Clin. Microbiol., 2003, 41(8), 3623-3626.
[http://dx.doi.org/10.1128/JCM.41.8.3623-3626.2003] [PMID: 12904365]
[27]
González, G.M.; Fothergill, A.W.; Sutton, D.A.; Rinaldi, M.G.; Loebenberg, D. In vitro activities of new and established triazoles against opportunistic filamentous and dimorphic fungi. Med. Mycol., 2005, 43(3), 281-284.
[http://dx.doi.org/10.1080/13693780500088416] [PMID: 16010855]
[28]
Nett, J.E.; Andes, D.R. Antifungal agents: spectrum of activity, pharmacology, and clinical indications. Infect. Dis. Clin. North Am., 2016, 30(1), 51-83.
[http://dx.doi.org/10.1016/j.idc.2015.10.012] [PMID: 26739608]
[29]
Mullard, A. FDA approvals for the first 6 months of 2015. Nat. Rev. Drug Discov., 2015, 14, 517.
[http://dx.doi.org/10.1038/nrd4703]
[30]
Thompson, G.R., III; Wiederhold, N.P. Isavuconazole: a comprehensive review of spectrum of activity of a new triazole. Mycopathologia, 2010, 170(5), 291-313.
[http://dx.doi.org/10.1007/s11046-010-9324-3] [PMID: 20524153]
[31]
Pettit, N.N.; Carver, P.L. Isavuconazole: a new option for the management of invasive fungal infections. Ann. Pharmacother., 2015, 49(7), 825-842.
[http://dx.doi.org/10.1177/1060028015581679] [PMID: 25940222]
[32]
Peyton, L.R.; Gallagher, S.; Hashemzadeh, M. Triazole antifungals: a review. Drugs Today (Barc), 2015, 51(12), 705-718.
[PMID: 26798851]
[33]
Mayers, D.L. Antimicrobial Drug Resistance: Mechanism of drug Resistance; Humana Press/Springer: Totowa, New York, 2009, Vol. 1, p. 299.
[34]
Hossain, M.A.; Ghannoum, M.A. New investigational antifungal agents for treating invasive fungal infections. Expert Opin. Investig. Drugs, 2000, 9(8), 1797-1813.
[http://dx.doi.org/10.1517/13543784.9.8.1797] [PMID: 11060778]
[35]
Hossain, M.A.; Ghannoum, M.A. New developments in chemotherapy for non-invasive fungal infections. Expert Opin. Investig. Drugs, 2001, 10(8), 1501-1511.
[http://dx.doi.org/10.1517/13543784.10.8.1501] [PMID: 11772265]
[36]
Andes, D. In vivo pharmacodynamics of antifungal drugs in treatment of candidiasis. Antimicrob. Agents Chemother., 2003, 47(4), 1179-1186.
[http://dx.doi.org/10.1128/AAC.47.4.1179-1186.2003] [PMID: 12654644]
[37]
Gray, K.C.; Palacios, D.S.; Dailey, I.; Endo, M.M.; Uno, B.E.; Wilcock, B.C.; Burke, M.D. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA, 2012, 109(7), 2234-2239.
[http://dx.doi.org/10.1073/pnas.1117280109] [PMID: 22308411]
[38]
Kovacic, P.; Cooksy, A. Novel, unifying mechanism for amphotericin B and other polyene drugs: electronaffinity, radicals, electron transfer, autoxidation, toxicity, and antifungal action. MedChemComm, 2012, 3, 274-280.
[http://dx.doi.org/10.1039/C2MD00267A]
[39]
Pfaller, M.A.; Diekema, D.J.; Messer, S.A.; Boyken, L.; Hollis, R.J.; Jones, R.N. In vitro activities of voriconazole, posaconazole, and four licensed systemic antifungal agents against Candida species infrequently isolated from blood. J. Clin. Microbiol., 2003, 41(1), 78-83.
[http://dx.doi.org/10.1128/JCM.41.1.78-83.2003] [PMID: 12517829]
[40]
Diekema, D.J.; Messer, S.A.; Hollis, R.J.; Jones, R.N.; Pfaller, M.A. Activities of caspofungin, itraconazole, posaconazole, ravuconazole, voriconazole, and amphotericin B against 448 recent clinical isolates of filamentous fungi. J. Clin. Microbiol., 2003, 41(8), 3623-3626.
[http://dx.doi.org/10.1128/jcm.41.8.3623-3626.2003]
[41]
Pfaller, M.A.; Messer, S.A.; Boyken, L.; Rice, C.; Tendolkas, S.; Hollis, R.J.; Doern, G.V.; Diekema, D.J. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J. Clin. Microbiol., 2005, 43(5), 2163-2167.
[42]
Sabatelli, F.; Patel, R.; Mann, P.A.; Mendrick, C.A.; Norris, C.C.; Hare, R.; Loebenberg, D.; Black, T.A.; McNicholas, P.M. In vitro activities of posaconazole, fluconazole, itraconazole, voriconazole, and amphotericin B against a large collection of clinically important molds and yeasts. Antimicrob. Agents Chemother., 2006, 50(6), 2009-2015.
[http://dx.doi.org/10.1128/AAC.00163-06] [PMID: 16723559]
[43]
Li, R.K.; Ciblak, M.A.; Nordoff, N.; Pasarell, L.; Warnock, D.W.; McGinnis, M.R. In vitro activities of voriconazole, itraconazole, and amphotericin B against Blastomyces dermatitidis, Coccidioides immitis, and Histoplasma capsulatum. Antimicrob. Agents Chemother., 2000, 44(6), 1734-1736.
[http://dx.doi.org/10.1128/AAC.44.6.1734-1736.2000] [PMID: 10817743]
[44]
McGinnis, M.R.; Nordoff, N.; Li, R.K.; Pasarell, L.; Warnock, D.W. Sporothrix schenckii sensitivity to voriconazole, itraconazole and amphotericin B. Med. Mycol., 2001, 39(4), 369-371.
[http://dx.doi.org/10.1080/mmy.39.4.369.371] [PMID: 11556767]
[45]
Davis, S.A.; Vincent, B.M.; Endo, M.M.; Whitesell, L.; Marchillo, K.; Andes, D.R.; Lindquist, S.; Burke, M.D. Nontoxic antimicrobials that evade drug resistance. Nat. Chem. Biol., 2015, 11(7), 481-487.
[http://dx.doi.org/10.1038/nchembio.1821] [PMID: 26030729]
[46]
Sklenár, Z.; Scigel, V.; Horácková, K.; Slanar, O. Compounded preparations with nystatin for oral and oromucosal administration. Acta Pol. Pharm., 2013, 70(4), 759-762.
[PMID: 23923400]
[47]
Lalitha, P.; Vijaykumar, R.; Prajna, N.V.; Fothergill, A.W. In vitro natamycin susceptibility of ocular isolates of Fusarium and Aspergillus species: comparison of commercially formulated natamycin eye drops to pharmaceutical-grade powder. J. Clin. Microbiol., 2008, 46(10), 3477-3478.
[http://dx.doi.org/10.1128/JCM.00610-08] [PMID: 18701666]
[48]
Farid, M.A.; el-Enshasy, H.A.; el-Diwany, A.I. el-Sayed el-S, A. Optimization of the cultivation medium for natamycin production by Streptomyces natalensis. J. Basic Microbiol., 2000, 40(3), 157-166.
[http://dx.doi.org/10.1002/1521-4028(200007)40:3<157:AID-JOBM157>3.0.CO;2-1] [PMID: 10957957]
[49]
Hughes, D.; Andersson, D.I. Evolutionary consequences of drug resistance: shared principles across diverse targets and organisms. Nat. Rev. Genet., 2015, 16(8), 459-471.
[http://dx.doi.org/10.1038/nrg3922] [PMID: 26149714]
[50]
Pemán, J.; Cantón, E.; Espinel-Ingroff, A. Antifungal drug resistance mechanisms. Expert Rev. Anti Infect. Ther., 2009, 7(4), 453-460.
[http://dx.doi.org/10.1586/eri.09.18] [PMID: 19400764]
[51]
Pfaller, M.A. Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am. J. Med., 2012, 125(1)(Suppl.), S3-S13.
[http://dx.doi.org/10.1016/j.amjmed.2011.11.001] [PMID: 22196207]
[52]
Andriole, V.T. Current and future antifungal therapy: new targets for antifungal therapy. Int. J. Antimicrob. Agents, 2000, 16(3), 317-321.
[http://dx.doi.org/10.1016/S0924-8579(00)00258-2] [PMID: 11091055]
[53]
Abdel-Kader, M.S.; Muharram, M.M. New microbial source of the antifungal allylamine “Terbinafine”. Saudi Pharm. J., 2017, 25(3), 440-442.
[http://dx.doi.org/10.1016/j.jsps.2016.06.006] [PMID: 28344499]
[54]
Gupta, A.K.; Ryder, J.E.; Cooper, E.A. Naftifine: a review. J. Cutan. Med. Surg., 2008, 12(2), 51-58.
[http://dx.doi.org/10.2310/7750.2008.06009] [PMID: 18346400]
[55]
Ghannoum, M.; Isham, N.; Verma, A.; Plaum, S.; Fleischer, A., Jr; Hardas, B. In vitro antifungal activity of naftifine hydrochloride against dermatophytes. Antimicrob. Agents Chemother., 2013, 57(9), 4369-4372.
[http://dx.doi.org/10.1128/AAC.01084-13] [PMID: 23817365]
[56]
Kofla, G.; Ruhnke, M. Pharmacology and metabolism of anidulafungin, caspofungin and micafungin in the treatment of invasive candidosis: review of the literature. Eur. J. Med. Res., 2011, 16(4), 159-166.
[http://dx.doi.org/10.1186/2047-783X-16-4-159] [PMID: 21486730]
[57]
Walker, S.S.; Xu, Y.; Triantafyllou, I.; Waldman, M.F.; Mendrick, C.; Brown, N.; Mann, P.; Chau, A.; Patel, R.; Bauman, N.; Norris, C.; Antonacci, B.; Gurnani, M.; Cacciapuoti, A.; McNicholas, P.M.; Wainhaus, S.; Herr, R.J.; Kuang, R.; Aslanian, R.G.; Ting, P.C.; Black, T.A. Discovery of a novel class of orally active antifungal beta-1,3-D-glucan synthase inhibitors. Antimicrob. Agents Chemother., 2011, 55(11), 5099-5106.
[http://dx.doi.org/10.1128/AAC.00432-11] [PMID: 21844320]
[58]
Muilwijk, E.W.; Lempers, V.J.C.; Burger, D.M.; Warris, A.; Pickkers, P.; Aarnoutse, R.E.; Brüggemann, R.J. Impact of special patient populations on the pharmacokinetics of echinocandins. Expert Rev. Anti Infect. Ther., 2015, 13(6), 799-815.
[http://dx.doi.org/10.1586/14787210.2015.1028366] [PMID: 25947367]
[59]
Pappas, P.G.; Rex, J.H.; Sobel, J.D.; Filler, S.G.; Dismukes, W.E.; Walsh, T.J.; Edwards, J.E. Guidelines for treatment of candidiasis. Clin. Infect. Dis., 2004, 38(2), 161-189.
[http://dx.doi.org/10.1086/380796] [PMID: 14699449]
[60]
Gershkovich, P.; Wasan, E.K.; Lin, M.; Sivak, O.; Leon, C.G.; Clement, J.G.; Wasan, K.M. Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. J. Antimicrob. Chemother., 2009, 64(1), 101-108.
[http://dx.doi.org/10.1093/jac/dkp140] [PMID: 19398459]
[61]
Akins, R.A. An update on antifungal targets and mechanisms of resistance in Candida albicans. Med. Mycol., 2005, 43(4), 285-318.
[http://dx.doi.org/10.1080/13693780500138971] [PMID: 16110776]
[62]
Arévalo, M.P.; Carrillo-Muñoz, A.J.; Salgado, J.; Cardenes, D.; Brió, S.; Quindós, G.; Espinel-Ingroff, A. Antifungal activity of the echinocandin anidulafungin (VER002, LY-303366) against yeast pathogens: a comparative study with M27-A microdilution method. J. Antimicrob. Chemother., 2003, 51(1), 163-166.
[http://dx.doi.org/10.1093/jac/dkg018] [PMID: 12493803]
[63]
Perlin, D.S. Mechanisms of echinocandin antifungal drug resistance. Ann. N. Y. Acad. Sci., 2015, 1354, 1-11.
[http://dx.doi.org/10.1111/nyas.12831] [PMID: 26190298]
[64]
Pfaller, M.A.; Messer, S.A.; Rhomberg, P.R.; Jones, R.N.; Castanheira, M. Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates. J. Antimicrob. Chemother., 2016, 71(10), 2868-2873.
[http://dx.doi.org/10.1093/jac/dkw214] [PMID: 27287236]
[65]
Bowers, B.; Levin, G.; Cabib, E. Effect of polyoxin D on chitin synthesis and septum formation in Saccharomyces cerevisiae. J. Bacteriol., 1974, 119(2), 564-575.
[PMID: 4604393]
[66]
Naider, F.; Shenbagamurthi, P.; Steinfeld, A.S.; Smith, H.A.; Boney, C.; Becker, J.M. Synthesis and biological activity of tripeptidyl polyoxins as antifungal agents. Antimicrob. Agents Chemother., 1983, 24(5), 787-796.
[http://dx.doi.org/10.1128/AAC.24.5.787] [PMID: 6362556]
[67]
Shubitz, L.F.; Roy, M.E.; Nix, D.E.; Galgiani, J.N. Efficacy of Nikkomycin Z for respiratory coccidioidomycosis in naturally infected dogs. Med. Mycol., 2013, 51(7), 747-754.
[http://dx.doi.org/10.3109/13693786.2013.770610] [PMID: 23488972]
[68]
Rollin-Pinheiro, R.; Singh, A.; Barreto-Bergter, E.; Del Poeta, M. Sphingolipids as targets for treatment of fungal infections. Future Med. Chem., 2016, 8(12), 1469-1484.
[http://dx.doi.org/10.4155/fmc-2016-0053] [PMID: 27502288]
[69]
Takesako, K.; Ikai, K.; Haruna, F.; Endo, M.; Shimanaka, K.; Sono, E.; Nakamura, T.; Kato, I.; Yamaguchi, H. Aureobasidins, new antifungal antibiotics. Taxonomy, fermentation, isolation, and properties. J. Antibiot. (Tokyo), 1991, 44(9), 919-924.
[http://dx.doi.org/10.7164/antibiotics.44.919] [PMID: 1938613]
[70]
Zhong, W.; Jeffries, M.W.; Georgopapadakou, N.H. Inhibition of inositol phosphorylceramide synthase by aureobasidin A in Candida and Aspergillus species. Antimicrob. Agents Chemother., 2000, 44(3), 651-653.
[http://dx.doi.org/10.1128/AAC.44.3.651-653.2000] [PMID: 10681333]
[71]
Hashida-Okado, T.; Ogawa, A.; Endo, M.; Yasumoto, R.; Takesako, K.; Kato, I. AUR1, a novel gene conferring aureobasidin resistance on Saccharomyces cerevisiae: a study of defective morphologies in Aur1p-depleted cells. Mol. Gen. Genet., 1996, 251(2), 236-244.
[PMID: 8668135]
[72]
Onishi, J.; Meinz, M.; Thompson, J.; Curotto, J.; Dreikorn, S.; Rosenbach, M.; Douglas, C.; Abruzzo, G.; Flattery, A.; Kong, L.; Cabello, A.; Vicente, F.; Pelaez, F.; Diez, M.T.; Martin, I.; Bills, G.; Giacobbe, R.; Dombrowski, A.; Schwartz, R.; Morris, S.; Harris, G.; Tsipouras, A.; Wilson, K.; Kurtz, M.B. Discovery of novel antifungal (1,3)-beta-D-glucan synthase inhibitors. Antimicrob. Agents Chemother., 2000, 44(2), 368-377.
[http://dx.doi.org/10.1128/AAC.44.2.368-377.2000] [PMID: 10639364]
[73]
Zhao, C.; Huang, T.; Chen, W.; Deng, Z. Enhancement of the diversity of polyoxins by a thymine-7-hydroxylase homolog outside the polyoxin biosynthesis gene cluster. Appl. Environ. Microbiol., 2010, 76(21), 7343-7347.
[http://dx.doi.org/10.1128/AEM.01257-10] [PMID: 20817795]
[74]
Francis, P.; Walsh, T.J. Evolving role of flucytosine in immunocompromised patients: new insights into safety, pharmacokinetics, and antifungal therapy. Clin. Infect. Dis., 1992, 15(6), 1003-1018.
[http://dx.doi.org/10.1093/clind/15.6.1003] [PMID: 1457631]
[75]
Rock, F.L.; Mao, W.; Yaremchuk, A.; Tukalo, M.; Crépin, T.; Zhou, H.; Zhang, Y.K.; Hernandez, V.; Akama, T.; Baker, S.J.; Plattner, J.J.; Shapiro, L.; Martinis, S.A.; Benkovic, S.J.; Cusack, S.; Alley, M.R. An antifungal agent inhibits an aminoacyl-tRNA synthetase by trapping tRNA in the editing site. Science, 2007, 316(5832), 1759-1761.
[http://dx.doi.org/10.1126/science.1142189] [PMID: 17588934]
[76]
Konishi, M.; Nishio, M.; Saitoh, K.; Miyaki, T.; Oki, T.; Kawaguchi, H. Cispentacin, a new antifungal antibiotic. I. Production, isolation, physico-chemical properties and structure. J. Antibiot. (Tokyo), 1989, 42(12), 1749-1755.
[http://dx.doi.org/10.7164/antibiotics.42.1749] [PMID: 2516082]
[77]
Herreros, E.; Martinez, C.M.; Almela, M.J.; Marriott, M.S.; De Las Heras, F.G.; Gargallo-Viola, D. Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob. Agents Chemother., 1998, 42(11), 2863-2869.
[http://dx.doi.org/10.1128/AAC.42.11.2863] [PMID: 9797217]
[78]
Develoux, M. [Griseofulvin]. Ann. Dermatol. Venereol., 2001, 128(12), 1317-1325.
[PMID: 11908134]
[79]
Vandeputte, P.; Ferrari, S.; Coste, A.T. Antifungal resistance and new strategies to control fungal infections. Int. J. Microbiol., 2012, 2012, 713687.
[http://dx.doi.org/10.1155/2012/713687] [PMID: 22187560]
[80]
Sanglard, D.D. Emerging threats in antifungal-resistant fungal pathogens. Front. Med., 2016, 15(3), 11.
[81]
Mishra, N.N.; Prasad, T.; Sharma, N.; Payasi, A.; Prasad, R.; Gupta, D.K.; Singh, R. Pathogenicity and drug resistance in Candida albicans and other yeast species. A review. Acta Microbiol. Immunol. Hung., 2007, 54(3), 201-235.
[http://dx.doi.org/10.1556/AMicr.54.2007.3.1] [PMID: 17896473]
[82]
Sardi, J.C.; Almeida, A.M.; Mendes Giannini, M.J. New antimicrobial therapies used against fungi present in subgingival sites--a brief review. Arch. Oral Biol., 2011, 56(10), 951-959.
[http://dx.doi.org/10.1016/j.archoralbio.2011.03.007] [PMID: 21676377]
[83]
Mogavero, S.; Tavanti, A.; Senesi, S.; Rogers, P.D.; Morschhäuser, J. Differential requirement of the transcription factor Mcm1 for activation of the Candida albicans multidrug efflux pump MDR1 by its regulators Mrr1 and Cap1. Antimicrob. Agents Chemother., 2011, 55(5), 2061-2066.
[http://dx.doi.org/10.1128/AAC.01467-10] [PMID: 21343453]
[84]
Calabrese, D.; Bille, J.; Sanglard, D. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology, 2000, 146(Pt 11), 2743-2754.
[http://dx.doi.org/10.1099/00221287-146-11-2743] [PMID: 11065353]
[85]
Henry, K.W.; Nickels, J.T.; Edlind, T.D. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob. Agents Chemother., 2000, 44(10), 2693-2700.
[http://dx.doi.org/10.1128/AAC.44.10.2693-2700.2000] [PMID: 10991846]
[86]
White, T.C. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. Antimicrob. Agents Chemother., 1997, 41(7), 1482-1487.
[http://dx.doi.org/10.1128/AAC.41.7.1482] [PMID: 9210670]
[87]
Lopez-Ribot, J.L.; McAtee, R.K.; Lee, L.N.; Kirkpatrick, W.R.; White, T.C.; Sanglard, D.; Patterson, T.F. Distinct patterns of gene expression associated with development of fluconazole resistance in serial candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob. Agents Chemother., 1998, 42(11), 2932-2937.
[http://dx.doi.org/10.1128/AAC.42.11.2932] [PMID: 9797228]
[88]
Sardi, J.C.O.; Scorzoni, L.; Bernardi, T.; Fusco-Almeida, A.M.; Mendes Giannini, M.J.S. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J. Med. Microbiol., 2013, 62(1), 10-24.
[http://dx.doi.org/10.1099/jmm.0.045054-0] [PMID: 23180477]
[89]
Fanning, S.; Mitchell, A.P. Fungal biofilms. PLoS Pathog., 2012, 8(4), e1002585.
[http://dx.doi.org/10.1371/journal.ppat.1002585] [PMID: 22496639]
[90]
Desai, J.V.; Mitchell, A.P.; Andes, D.R. Fungal biofilms, drug resistance, and recurrent infection. Cold Spring Harb. Perspect. Med., 2014, 4(10), a019729.
[http://dx.doi.org/10.1101/cshperspect.a019729] [PMID: 25274758]
[91]
Vincent, B.M.; Lancaster, A.K.; Scherz-Shouval, R.; Whitesell, L.; Lindquist, S. Fitness trade-offs restrict the evolution of resistance to amphotericin B. PLoS Biol., 2013, 11(10), e1001692.
[http://dx.doi.org/10.1371/journal.pbio.1001692] [PMID: 24204207]
[92]
Borris, R.P. Natural products research: perspectives from a major pharmaceutical company. J. Ethnopharmacol., 1996, 51(1-3), 29-38.
[http://dx.doi.org/10.1016/0378-8741(95)01347-4] [PMID: 9213624]
[93]
Arif, T.; Mandal, T.K.; Dabur, R. Natural products: Anti-fungal agents derived from plants. In: Opportunity, challenge and scope of natural products in medicinal chemistry, 2011, pp. 283-311.
[94]
Negri, M.; Salci, T.P.; Shinobu-Mesquita, C.S.; Capoci, I.R.G.; Svidzinski, T.I.E.; Kioshima, E.S. Early state research on antifungal natural products. Molecules, 2014, 19(3), 2925-2956.
[http://dx.doi.org/10.3390/molecules19032925] [PMID: 24609016]
[95]
Rawat, S.; Jain, A.; Jain, S. Recent Herbal Trends against Fungal Infections: A Review. Pharmacogn. Rev., 2008, 2, 257-265.
[96]
Rai, M.; Mares, D., Eds.; Plant-derived antimycotics: Current trends and future prospects; The Haworth Press: New York, 2003.
[97]
Zhang, R.; Xu, Z.; Yin, W.; Liu, P.; Zhang, W. Microwave-assisted synthesis and antifungal activities of polysubstituted Furo[3,2-c] chromen-4-ones and 7,8,9,10-tetrahydro-6 H-benzofuro[3,2-c] chromen-6-ones. Synth. Commun., 2014, 44, 3257-3263.
[http://dx.doi.org/10.1080/00397911.2014.935436]
[98]
Tiwari, S.V.; Seijas, J.A.; Vazquez-Tato, M.P.; Sarkate, A.P.; Karnik, K.S.; Nikalje, A.P.G. Facile synthesis of novel coumarin derivatives, antimicrobial analysis, enzyme assay, docking study, ADMET prediction and toxicity study. Molecules, 2017, 22(7), 1172.
[http://dx.doi.org/10.3390/molecules22071172] [PMID: 28703783]
[99]
Ayine-Tora, D.M.; Kingsford-Adaboh, R.; Asomaning, W.A.; Harrison, J.J.; Mills-Robertson, F.C.; Bukari, Y.; Sakyi, P.O.; Kaminta, S.; Reynisson, J. Coumarin antifungal lead compounds from millettia thonningii and their predicted mechanism of action. Molecules, 2016, 21(10), 1369. [DOI: 10.3390/molecules21101369
[100]
Tian, J.; Ban, X.; Zeng, H.; He, J.; Chen, Y.; Wang, Y. The mechanism of antifungal action of essential oil from dill (Anethum graveolens L.) on Aspergillus flavus. PLoS One, 2012, 7(1), e30147.
[http://dx.doi.org/10.1371/journal.pone.0030147] [PMID: 22272289]
[101]
Ahmad, A.; Khan, A.; Kumar, P.; Bhatt, R.P.; Manzoor, N. Antifungal activity of Coriaria nepalensis essential oil by disrupting ergosterol biosynthesis and membrane integrity against Candida. Yeast, 2011, 28(8), 611-617.
[http://dx.doi.org/10.1002/yea.1890] [PMID: 21755533]
[102]
Khan, A.; Ahmad, A.; Akhtar, F.; Yousuf, S.; Xess, I.; Khan, L.A.; Manzoor, N. Ocimum sanctum essential oil and its active principles exert their antifungal activity by disrupting ergosterol biosynthesis and membrane integrity. Res. Microbiol., 2010, 161(10), 816-823.
[http://dx.doi.org/10.1016/j.resmic.2010.09.008] [PMID: 20868749]
[103]
Zeng, H.; Chen, X.; Liang, J. In vitro antifungal activity and mechanism of essential oil from fennel (Foeniculum vulgare L.) on dermatophyte species. J. Med. Microbiol., 2015, 64(Pt 1), 93-103.
[http://dx.doi.org/10.1099/jmm.0.077768-0] [PMID: 25351709]
[104]
Ouraini, D. Étude de l’activité des huiles essentielles de plantes aromatiques à propriétés antifongiques sur les différen- tes étapes du développement des dermatophytes. Phytotherapie, 2005, 4, 147-157.
[http://dx.doi.org/10.1007/s10298-005-0094-x]
[105]
Baptista, E.B.; Zimmermann-Franco, D.C.; Lataliza, A.A.; Raposo, N.R. Chemical composition and antifungal activity of essential oil from Eucalyptus smithii against dermatophytes. Rev. Soc. Bras. Med. Trop., 2015, 48(6), 746-752.
[http://dx.doi.org/10.1590/0037-8682-0188-2015] [PMID: 26676500]
[106]
Ezoubeiri, A.; Gadhi, C.A.; Fdil, N.; Benharref, A.; Jana, M.; Vanhaelen, M. Isolation and antimicrobial activity of two phenolic compounds from Pulicaria odora L. J. Ethnopharmacol., 2005, 99(2), 287-292.
[http://dx.doi.org/10.1016/j.jep.2005.02.015] [PMID: 15894140]
[107]
Mahboubi, M. Artemisia sieberi Besser essential oil and treatment of fungal infections. Biomed. Pharmacother., 2017, 89, 1422-1430.
[http://dx.doi.org/10.1016/j.biopha.2017.03.036] [PMID: 28346993]
[108]
Campbell, B.C.; Chan, K.L.; Kim, J.H. Chemosensitization as a means to augment commercial antifungal agents. Front. Microbiol., 2012, 3, 79.
[http://dx.doi.org/10.3389/fmicb.2012.00079] [PMID: 22393330]
[109]
Rodríguez, M.V.; Sortino, M.A.; Ivancovich, J.J.; Pellegrino, J.M.; Favier, L.S.; Raimondi, M.P.; Gattuso, M.A.; Zacchino, S.A. Detection of synergistic combinations of Baccharis extracts with terbinafine against Trichophyton rubrum with high throughput screening synergy assay (HTSS) followed by 3D graphs. Behavior of some of their components. Phytomedicine, 2013, 20(13), 1230-1239.
[http://dx.doi.org/10.1016/j.phymed.2013.06.015] [PMID: 23906773]
[110]
Hufford, C.D.; Liu, S.C.; Clark, A.M. Antifungal activity of Trillium grandiflorum constituents. J. Nat. Prod., 1988, 51(1), 94-98.
[http://dx.doi.org/10.1021/np50055a013] [PMID: 3373231]
[111]
Fajinmi, O.O.; Kulkarni, M.G.; Benická, S.; Ćavar Zeljković, S.; Doležal, K.; Tarkowski, P.; Finnie, J.F.; Van Staden, J. Antifungal activity of the volatiles of Agathosma betulina and Coleonema album commercial essential oil and their effect on the morphology of fungal strains Trichophyton rubrum and T. mentagrophytes. S. Afr. J. Bot., 2018.
[http://dx.doi.org/10.1016/j.sajb.2018.03.003]
[112]
Chandra, S. Mathela, Vinod K. Antifungal Activities of Essential Oils from Himalayan Plants. Natural Antimicrobial Agents. Sustainable Development and Biodiversity, Natural Antimicrobial Agents,2018,19, 75-94; Mérillon, J.M.; Riviere, C., Eds.
[113]
Arassu, R.R.T.; Balwin, N.; Ramya, D.R. Pelargonium graveolens plant leaf essential oil mediated green syn-thesis of Silver Nano particles and its antifungal activity against human pathogenic fungi. J. Pharmacog. Phytochem., 2018, 6, 1778-1784.
[114]
Asish, K. Bhattacharya,Hemender R.Chand,JyothisJohn,Mukund V.Deshpande,Clerodane type diterpene as a novel antifungal agent from Polyalthia longifolia var. Pendula. S. Afr. J. Bot., 2018, 115, 132-137.
[115]
Carmely, S.; Roll, M.; Loya, Y.; Kashman, Y. The structure of eryloside A, a new antitumor and antifungal 4-methylated steroidal glycoside from the sponge Erylus lendenfeldi. J. Nat. Prod., 1989, 52(1), 167-170.
[http://dx.doi.org/10.1021/np50061a022] [PMID: 2723665]
[116]
Khan, I.A.; Clark, A.M.; McChesney, J.D. Antifungal activity of a new triterpenoid glycoside from Pithecellobium racemosum (M.). Pharm. Res., 1997, 14(3), 358-361.
[http://dx.doi.org/10.1023/A:1012010407824] [PMID: 9098881]
[117]
Lee, M.W.; Kim, S.U.; Hahn, D.R. Antifungal activity of modified hederagenin glycosides from the leaves of Kalopanax pictum var. chinense. Biol. Pharm. Bull., 2001, 24(6), 718-719.
[http://dx.doi.org/10.1248/bpb.24.718] [PMID: 11411568]
[118]
Kyriakopoulou, I.; Magiatis, P.; Skaltsounis, A.L.; Aligiannis, N.; Harvala, C. Samioside, a new phenylethanoid glycoside with free-radical scavenging and antimicrobial activities from Phlomis samia. J. Nat. Prod., 2001, 64(8), 1095-1097.
[http://dx.doi.org/10.1021/np010128+] [PMID: 11520237]
[119]
Woldemichael, G.M.; Wink, M. Identification and biological activities of triterpenoid saponins from Chenopodium quinoa. J. Agric. Food Chem., 2001, 49(5), 2327-2332.
[http://dx.doi.org/10.1021/jf0013499] [PMID: 11368598]
[120]
Favel, A.; Kemertelidze, E.; Benidze, M.; Fallague, K.; Regli, P. Antifungal activity of steroidal glycosides from Yucca gloriosa L. Phytother. Res., 2005, 19(2), 158-161.
[http://dx.doi.org/10.1002/ptr.1644] [PMID: 15852482]
[121]
Rao, K.S.; Babu, G.V.; Ramnareddy, Y.V. Acylated flavone glycosides from the roots of Saussurea lappa and their antifungal activity. Molecules, 2007, 12(3), 328-344.
[http://dx.doi.org/10.3390/12030328] [PMID: 17851392]
[122]
Tsuzuki, J.K.; Svidzinski, T.I.; Shinobu, C.S.; Silva, L.F.; Rodrigues-Filho, E.; Cortez, D.A.; Ferreira, I.C. Antifungal activity of the extracts and saponins from Sapindus saponaria L. An. Acad. Bras. Cienc., 2007, 79(4), 577-583.
[http://dx.doi.org/10.1590/S0001-37652007000400002] [PMID: 18066429]
[123]
Sathiamoorthy, B.; Gupta, P.; Kumar, M.; Chaturvedi, A.K.; Shukla, P.K.; Maurya, R. New antifungal flavonoid glycoside from Vitex negundo. Bioorg. Med. Chem. Lett., 2007, 17(1), 239-242.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.051] [PMID: 17027268]
[124]
Lee, W.J.; Moon, J.S.; Kim, S.I.; Bahn, Y.S.; Lee, H.; Kang, T.H.; Shin, H.M.; Kim, S.U. A phenylpropanoid glycoside as a calcineurin inhibitor isolated from Magnolia obovata Thunb. J. Microbiol. Biotechnol., 2015, 25(9), 1429-1432.
[http://dx.doi.org/10.4014/jmb.1506.06031] [PMID: 26174771]
[125]
Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T.; Iinuma, M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 1996, 50(1), 27-34.
[http://dx.doi.org/10.1016/0378-8741(96)85514-0] [PMID: 8778504]
[126]
Vijayarathna, S.; Zakaria, Z.; Chen, Y.; Latha, L.Y.; Kanwar, J.R.; Sasidharan, S. The Antimicrobial efficacy of Elaeis guineensis: characterization, in vitro and in vivo studies. Molecules, 2012, 17(5), 4860-4877.
[http://dx.doi.org/10.3390/molecules17054860] [PMID: 22538489]
[127]
Kumar, R.S.; Sivakumar, T.; Sunderam, R.S.; Gupta, M.; Mazumdar, U.K.; Gomathi, P.; Rajeshwar, Y.; Saravanan, S.; Kumar, M.S.; Murugesh, K.; Kumar, K.A. Antioxidant and antimicrobial activities of Bauhinia racemosa L. stem bark. Braz. J. Med. Biol. Res., 2005, 38(7), 1015-1024.
[http://dx.doi.org/10.1590/S0100-879X2005000700004] [PMID: 16007272]
[128]
ElSohly, H.N.; Joshi, A.S.; Nimrod, A.C.; Walker, L.A.; Clark, A.M. Antifungal chalcones from Maclura tinctoria. Planta Med., 2001, 67(1), 87-89.
[http://dx.doi.org/10.1055/s-2001-10621] [PMID: 11270732]
[129]
Sathiamoorthy, B.; Gupta, P.; Kumar, M.; Chaturvedi, A.K.; Shukla, P.K.; Maurya, R. New antifungal flavonoid glycoside from Vitex negundo. Bioorg. Med. Chem. Lett., 2007, 17(1), 239-242.
[http://dx.doi.org/10.1016/j.bmcl.2006.09.051] [PMID: 17027268]
[130]
Martins, C.V.B.; da Silva, D.L.; Neres, A.T.M.; Magalhães, T.F.F.; Watanabe, G.A.; Modolo, L.V.; Sabino, A.A.; de Fátima, A.; de Resende, M.A. Curcumin as a promising antifungal of clinical interest. J. Antimicrob. Chemother., 2009, 63(2), 337-339.
[http://dx.doi.org/10.1093/jac/dkn488] [PMID: 19038979]
[131]
Mbaveng, A.T.; Kuete, V.; Ngameni, B.; Beng, V.P.; Ngadjui, B.T.; Meyer, J.J.M.; Lall, N. Antimicrobial activities of the methanol extract and compounds from the twigs of Dorstenia mannii (Moraceae). BMC Complement. Altern. Med., 2012, 12, 83-88.
[http://dx.doi.org/10.1186/1472-6882-12-83] [PMID: 22747736]
[132]
Nerilson, M. Lima, Lorena M. Cursino-Hron, Alita M. Lima,João V. B. Souza, André C.de Oliveira, Jane V.N.Marinho, Cecilia V. Nunez.Antifungal activity of extracts and phenolic compounds from Deguelia duckeana. Rev. Bras. Farmacogn., 2018, 28(6), 697-702.
[133]
Mgbeahuruike, E.E.; Holm, Y.; Vuorela, H.; Amandikwa, C.; Fyhrquist, P. An ethnobotanical survey and antifungal activity of Piper guineense used for the treatment of fungal infections in West-African traditional medicine. J. Ethnopharmacol., 2019, 229, 157-166.
[http://dx.doi.org/10.1016/j.jep.2018.10.005] [PMID: 30336302]
[134]
Mollataghi, A.; Coudiere, E.; Hadi, A.H.A.; Mukhtar, M.R.; Awang, K.; Litaudon, M.; Ata, A. Anti-acetylcholinesterase, anti-α-glucosidase, anti-leishmanial and anti-fungal activities of chemical constituents of Beilschmiedia species. Fitoterapia, 2012, 83(2), 298-302.
[http://dx.doi.org/10.1016/j.fitote.2011.11.009] [PMID: 22119096]
[135]
Meng, F.; Zuo, G.; Hao, X.; Wang, G.; Xiao, H.; Zhang, J.; Xu, G. Antifungal activity of the benzo[c]phenanthridine alkaloids from Chelidonium majus Linn against resistant clinical yeast isolates. J. Ethnopharmacol., 2009, 125(3), 494-496.
[http://dx.doi.org/10.1016/j.jep.2009.07.029] [PMID: 19647059]
[136]
Fyhrquist, P.; Virjamo, V.; Hiltunen, E.; Julkunen-Tiitto, R. Epidihydropinidine, the main piperidine alkaloid compound of Norway spruce (Picea abies) shows promising antibacterial and anti-Candida activity. Fitoterapia, 2017, 117, 138-146.
[http://dx.doi.org/10.1016/j.fitote.2017.01.011] [PMID: 28163074]
[137]
Yang, C-R.; Zhang, Y.; Jacob, M.R.; Khan, S.I.; Zhang, Y.J.; Li, X.C. Antifungal activity of C-27 steroidal saponins. Antimicrob. Agents Chemother., 2006, 50(5), 1710-1714.
[http://dx.doi.org/10.1128/AAC.50.5.1710-1714.2006] [PMID: 16641439]
[138]
Escalante, A.M.; Santecchia, C.B.; López, S.N.; Gattuso, M.A.; Gutiérrez Ravelo, A.; Delle Monache, F.; Gonzalez Sierra, M.; Zacchino, S.A. Isolation of antifungal saponins from Phytolacca tetramera, an Argentinean species in critic risk. J. Ethnopharmacol., 2002, 82(1), 29-34.
[http://dx.doi.org/10.1016/S0378-8741(02)00145-9] [PMID: 12169402]
[139]
Tsuzuki, J.K.; Svidzinski, T.I.E.; Shinobu, C.S.; Silva, L.F.A.; Rodrigues-Filho, E.; Cortez, D.A.G.; Ferreira, I.C.P. Antifungal activity of the extracts and saponins from Sapindus saponaria L. An. Acad. Bras. Cienc., 2007, 79(4), 577-583.
[http://dx.doi.org/10.1590/S0001-37652007000400002] [PMID: 18066429]
[140]
Damke, E.; Tsuzuki, J.K.; Cortez, D.A.; Ferreira, I.C.; Bertoni, T.A.; Batista, M.R.; Donati, L.; Svidzinski, T.I.; Consolaro, M.E. In vivo activity of Sapindus saponaria against azole-susceptible and -resistant human vaginal Candida species. BMC Complement. Altern. Med., 2011, 11, 35.
[http://dx.doi.org/10.1186/1472-6882-11-35] [PMID: 21542936]
[141]
José, R. Soberón, Melina A. Sgariglia, Ana C.Pastoriza, Estela M.Soruco, Sebastián N.Jäger, Guillermo R.Labadie, Diego A.Sampietro, Marta A.Vattuone. Antifungal activity and cytotoxicity of extracts and triterpenoid saponins obtained from the aerial parts of Anagallis arvensis L. J. Ethnopharmacol., 2017, 203, 233-240.
[http://dx.doi.org/10.1016/j.jep.2017.03.056]
[142]
Harvey, A.L.; Edrada-Ebel, R.; Quinn, R.J. The re-emergence of natural products for drug discovery in the genomics era. Nat. Rev. Drug Discov., 2015, 14(2), 111-129.
[http://dx.doi.org/10.1038/nrd4510] [PMID: 25614221]
[143]
Nair, D.G.; Weiskirchen, R.; Al-Musharafi, S.K. The use of marine-derived bioactive compounds as potential hepatoprotective agents. Acta Pharmacol. Sin., 2015, 36(2), 158-170.
[http://dx.doi.org/10.1038/aps.2014.114] [PMID: 25500871]
[144]
Marris, E. Marine natural products: drugs from the deep. Nature, 2006, 443(7114), 904-905.
[http://dx.doi.org/10.1038/443904a] [PMID: 17066005]
[145]
Molinski, T.F.; Dalisay, D.S.; Lievens, S.L.; Saludes, J.P. Drug development from marine natural products. Nat. Rev. Drug Discov., 2009, 8(1), 69-85.
[http://dx.doi.org/10.1038/nrd2487] [PMID: 19096380]
[146]
Blunt, J.W.; Copp, B.R.; Keyzers, R.A.; Munro, M.H.G.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep., 2016, 33(3), 382-431.
[http://dx.doi.org/10.1039/C5NP00156K] [PMID: 26837534]
[147]
Hu, Y.; Chen, J.; Hu, G.; Yu, J.; Zhu, X.; Lin, Y.; Chen, S.; Yuan, J. Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Mar. Drugs, 2015, 13(1), 202-221.
[http://dx.doi.org/10.3390/md13010202] [PMID: 25574736]
[148]
Sakai, R.; Swanson, G.T. Recent progress in neuroactive marine natural products. Nat. Prod. Rep., 2014, 31(2), 273-309.
[http://dx.doi.org/10.1039/c3np70083f] [PMID: 24430532]
[149]
Prasanna, H.; Vijayanand, W.; Rajesh, S.; Smita, M.; Venkatrao, H.K. Antimi-crobial metabolites from marine microorganisms. Chinese J. Nat. Med., 2016, 14(2), 0101-0116.
[150]
Chang, Y.L.; Yu, S.J.; Heitman, J.; Wellington, M.; Chen, Y.L. New facets of antifungal therapy. Virulence, 2017, 8(2), 222-236.
[http://dx.doi.org/10.1080/21505594.2016.1257457] [PMID: 27820668]
[151]
Friedrich, A.B.; Merkert, H.; Fendert, T.; Hacker, J.; Proksch, P.; Hentschel, U. Microbial diversity in the marine sponge Aplysina caverniucola (formerly Verongia cavernicola) analyzed by fluorescence in situhybridization (FISH). Mar. Biol., 1999, 134, 461-470. [J]
[http://dx.doi.org/10.1007/s002270050562]
[152]
Sepe, V.; D’Orsi, R.; Borbone, N.; Valeria D’Auria, M.; Bifulco, G.; Monti, M.C.; Catania, A.; Zampella, A.; Callipeltins, F. I: new antifungal peptides from themarine sponge Latrunculia sp. Tetrahedron, 2006, 62, 833-840.
[http://dx.doi.org/10.1016/j.tet.2005.10.058]
[153]
Jamison, M.T.; Molinski, T.F. Antipodal crambescin A2 homologues from the marine sponge Pseudaxinella reticulata. Antifungal structure-activity relationships. J. Nat. Prod., 2015, 78(3), 557-561.
[http://dx.doi.org/10.1021/np501052a] [PMID: 25738226]
[154]
Youssef, D.T.; Shaala, L.A.; Mohamed, G.A.; Badr, J.M.; Bamanie, F.H.; Ibrahim, S.R. Theonellamide G, a potent antifungal and cytotoxic bicyclic glycopeptide from the Red Sea marine sponge Theonella swinhoei. Mar. Drugs, 2014, 12(4), 1911-1923.
[http://dx.doi.org/10.3390/md12041911] [PMID: 24694570]
[155]
Kumar, R.; Subramani, R.; Feussner, K.D.; Aalbersberg, W. Aurantoside K, a new antifungal tetramic acid glycoside from a Fijian marine sponge of the genus Melophlus. Mar. Drugs, 2012, 10(1), 200-208.
[http://dx.doi.org/10.3390/md10010200] [PMID: 22363230]
[156]
Rudi, A.; Kashman, Y. Three new cytotoxic metabolites from the marine sponge Plakortis halichondrioides. J. Nat. Prod., 1993, 56(10), 1827-1830.
[http://dx.doi.org/10.1021/np50100a027] [PMID: 8277322]
[157]
Xu, T.; Feng, Q.; Jacob, M.R.; Avula, B.; Mask, M.M.; Baerson, S.R.; Tripathi, S.K.; Mohammed, R.; Hamann, M.T.; Khan, I.A.; Walker, L.A.; Clark, A.M.; Agarwal, A.K. The marine sponge-derived polyketide endoperoxide plakortide F acid mediates its antifungal activity by interfering with calcium homeostasis. Antimicrob. Agents Chemother., 2011, 55(4), 1611-1621.
[http://dx.doi.org/10.1128/AAC.01022-10] [PMID: 21300833]
[158]
El-Amraoui, B.; Biard, J.F.; Fassouane, A. Haliscosamine: a new antifungal sphingosine derivative from the Moroccan marine sponge Haliclona viscosa. Springerplus, 2013, 2, 252.
[http://dx.doi.org/10.1186/2193-1801-2-252] [PMID: 23961377]
[159]
Zhang, X.; Jacob, M.R.; Rao, R.R.; Wang, Y.H.; Agarwal, A.K.; Newman, D.J.; Khan, I.A.; Clark, A.M.; Li, X.C. Antifungal cyclic peptides from the marine sponge Microscleroderma herdmani. Res. Rep. Med. Chem., 2012, 2, 7-14.
[PMID: 23936761]
[160]
Edrada, R.A.; Ebel, R.; Supriyono, A.; Wray, V.; Schupp, P.; Steube, K.; van Soest, R.; Proksch, P. Swinhoeiamide A, a new highly active calyculin derivative from the marine sponge Theonella swinhoei. J. Nat. Prod., 2002, 65(8), 1168-1172.
[http://dx.doi.org/10.1021/np020049d] [PMID: 12193024]
[161]
Wright, A.E.; Botelho, J.C.; Guzmán, E.; Harmody, D.; Linley, P.; McCarthy, P.J.; Pitts, T.P.; Pomponi, S.A.; Reed, J.K. Neopeltolide, a macrolide from a lithistid sponge of the family Neopeltidae. J. Nat. Prod., 2007, 70(3), 412-416.
[http://dx.doi.org/10.1021/np060597h] [PMID: 17309301]
[162]
Kon, Y.; Kubota, T.; Shibazaki, A.; Gonoi, T.; Kobayashi, J. Ceratinadins A-C, new bromotyrosine alkaloids from an Okinawan marine sponge Pseudoceratina sp. Bioorg. Med. Chem. Lett., 2010, 20(15), 4569-4572.
[http://dx.doi.org/10.1016/j.bmcl.2010.06.015] [PMID: 20584605]
[163]
Ratnayake, A.S.; Bugni, T.S.; Feng, X.; Harper, M.K.; Skalicky, J.J.; Mohammed, K.A.; Andjelic, C.D.; Barrows, L.R.; Ireland, C.M. Theopapuamide, a cyclic depsipeptide from a Papua New Guinea lithistid sponge Theonella swinhoei. J. Nat. Prod., 2006, 69(11), 1582-1586.
[http://dx.doi.org/10.1021/np060229d] [PMID: 17125225]
[164]
Plaza, A.; Bifulco, G.; Keffer, J.L.; Lloyd, J.R.; Baker, H.L.; Bewley, C.A.A-C. Celebesides A-C and theopapuamides B-D, depsipeptides from an Indonesian sponge that inhibit HIV-1 entry. J. Org. Chem., 2009, 74(2), 504-512.
[http://dx.doi.org/10.1021/jo802232u] [PMID: 19072692]
[165]
Liu, X.F.; Shen, Y.; Yang, F.; Hamann, M.T.; Jiao, W.H.; Zhang, H.J.; Chen, W.S.; Lin, H.W. Simplexolides A-E and plakorfuran A, six butyrate derived polyketides from the marine sponge Plakortis simplex. Tetrahedron, 2012, 68(24), 4635-4640.
[http://dx.doi.org/10.1016/j.tet.2012.04.025] [PMID: 27867228]
[166]
Morinaka, B.I.; Skepper, C.K.; Molinski, T.F. Ene-yne tetrahydrofurans from the sponge Xestospongia muta. exploiting a weak CD effect for assignment of configuration. Org. Lett., 2007, 9(10), 1975-1978.
[http://dx.doi.org/10.1021/ol0705696] [PMID: 17439137]
[167]
Rifai, S.; Fassouane, A.; Kijjoa, A.; Van Soest, R. Antimicrobial activity of untenospongin B, a metabolite from the marine sponge Hippospongia communis collected from the Atlantic coast of Morocco. Mar. Drugs, 2004, 2, 147-153.
[http://dx.doi.org/10.3390/md203147]
[168]
Piao, S.J.; Song, Y.L.; Jiao, W.H.; Yang, F.; Liu, X.F.; Chen, W.S.; Han, B.N.; Lin, H.W. Hippolachnin A, a new antifungal polyketide from the South China Sea sponge Hippospongia lachne. Org. Lett., 2013, 15(14), 3526-3529.
[http://dx.doi.org/10.1021/ol400933x] [PMID: 23829334]
[169]
Stout, E.P.; Yu, L.C.; Molinski, T.F. Antifungal diterpene alkaloids from the caribbean sponge: unified configurational assignments of agelasidines and agelasines. Eur. J. Org. Chem., 2012, 2012(27), 5131-5135.
[http://dx.doi.org/10.1002/ejoc.201200572] [PMID: 24653665]
[170]
Xu, W.H.; Ding, Y.; Jacob, M.R.; Agarwal, A.K.; Clark, A.M.; Ferreira, D.; Liang, Z.S.; Li, X.C. Puupehanol, a sesquiterpene-dihydroquinone derivative from the marine sponge Hyrtios sp. Bioorg. Med. Chem. Lett., 2009, 19(21), 6140-6143.
[http://dx.doi.org/10.1016/j.bmcl.2009.09.015] [PMID: 19783432]
[171]
Digirolamo, J.A.; Li, X.C.; Jacob, M.R.; Clark, A.M.; Ferreira, D. Reversal of fluconazole resistance by sulfated sterols from the marine sponge Topsentia sp. J. Nat. Prod., 2009, 72(8), 1524-1528.
[http://dx.doi.org/10.1021/np900177m] [PMID: 19653640]
[172]
Chen, Y.; Killday, K.B.; McCarthy, P.J.; Schimoler, R.; Chilson, K.; Selitrennikoff, C.; Pomponi, S.A.; Wright, A.E. Three new peroxides from the sponge Plakinastrella species. J. Nat. Prod., 2001, 64(2), 262-264.
[http://dx.doi.org/10.1021/np000368+] [PMID: 11430018]
[173]
Matsunaga, S.; Fusetani, N.; Hashimoto, K.; Walchli, M. Bioactive marine metabolites. 26. Theonellamide-F - a novel antifungal bicyclic peptide from a marine sponge Theonella sp. J. Am. Chem. Soc., 1989, 111, 2582-2588.
[http://dx.doi.org/10.1021/ja00189a035]
[174]
Arevabini, C.; Crivelenti, Y.D.; de Abreu, M.H.; Bitencourt, T.A.; Santos, M.F.; Berlinck, R.G.; Hajdu, E.; Beleboni, R.O.; Fachin, A.L.; Marins, M. Antifungal activity of metabolites from the marine sponges Amphimedon sp. and Monanchora arbuscula against Aspergillus flavus strains isolated from peanuts (Arachis hypogaea). Nat. Prod. Commun., 2014, 9(1), 33-36.
[http://dx.doi.org/10.1177/1934578X1400900111] [PMID: 24660456]
[175]
Nishimura, S.; Matsunaga, S.; Shibazaki, M.; Suzuki, K.; Furihata, K.; van Soest, R.W.N.; Fusetani, N. Massadine, a novel geranylgeranyltransferase type I inhibitor from the marine sponge Stylissa aff. massa. Org. Lett., 2003, 5(13), 2255-2257.
[http://dx.doi.org/10.1021/ol034564u] [PMID: 12816422]
[176]
Touati, I.; Ruiz, N.; Thomas, O.; Druzhinina, I.S.; Atanasova, L.; Tabbene, O.; Elkahoui, S.; Benzekri, R.; Bouslama, L.; Pouchus, Y.F.; Limam, F. Hyporientalin A, an anti-Candida peptaibol from a marine Trichoderma orientale. World J. Microbiol. Biotechnol., 2018, 34(7), 98.
[http://dx.doi.org/10.1007/s11274-018-2482-z] [PMID: 29922855]
[177]
Tareq, F.S.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Shin, H.J. Ieodoglucomide C and Ieodoglycolipid, New Glycolipids from a Marine-Derived Bacterium Bacillus licheniformis 09IDYM23. Lipids, 2015, 50(5), 513-519.
[http://dx.doi.org/10.1007/s11745-015-4014-z] [PMID: 25893812]
[178]
Tareq, F.S.; Lee, M.A.; Lee, H.S.; Lee, Y.J.; Lee, J.S.; Hasan, C.M.; Islam, M.T.; Shin, H.J. Non-cytotoxic antifungal agents: isolation and structures of gageopeptides A-D from a Bacillus strain 109GGC020. J. Agric. Food Chem., 2014, 62(24), 5565-5572.
[http://dx.doi.org/10.1021/jf502436r] [PMID: 24857413]
[179]
Subramenium, G.A.; Swetha, T.K.; Iyer, P.M.; Balamurugan, K.; Pandian, S.K. 5-hydroxymethyl-2-furaldehyde from marine bacterium Bacillus subtilis inhibits biofilm and virulence of Candida albicans. Microbiol. Res., 2018, 207, 19-32.
[http://dx.doi.org/10.1016/j.micres.2017.11.002] [PMID: 29458854]
[180]
Zhang, L.; Sun, C. Fengycins, Cyclic Lipopeptides from Marine Bacillus subtilis Strains, Kill the Plant-Pathogenic Fungus Magnaporthe grisea by Inducing Reactive Oxygen Species Production and Chromatin Condensation. Appl. Environ. Microbiol., 2018, 84(18), 1-17.
[http://dx.doi.org/10.1128/AEM.00445-18] [PMID: 29980550]
[181]
Barsby, T.; Kelly, M.T.; Andersen, R.J. Tupuseleiamides and basiliskamides, new acyldipeptides and antifungal polyketides produced in culture by a Bacillus laterosporus isolate obtained from a tropical marine habitat. J. Nat. Prod., 2002, 65(10), 1447-1451.
[http://dx.doi.org/10.1021/np0201321] [PMID: 12398541]
[182]
Xu, Z.; Zhang, Y.; Fu, H.; Zhong, H.; Hong, K.; Zhu, W. Antifungal quinazolinones from marine-derived Bacillus cereus and their preparation. Bioorg. Med. Chem. Lett., 2011, 21(13), 4005-4007.
[http://dx.doi.org/10.1016/j.bmcl.2011.05.002] [PMID: 21612927]
[183]
El-Gendy, M.M.; Hawas, U.W.; Jaspars, M. Novel bioactive metabolites from a marine derived bacterium Nocardia sp. ALAA 2000. J. Antibiot. (Tokyo), 2008, 61(6), 379-386.
[http://dx.doi.org/10.1038/ja.2008.53] [PMID: 18667786]
[184]
Anjum, K.; Sadiq, I.; Chen, L.; Kaleem, S. Xing-CongLi, Zhizhen Zhang, Xiao-Yuan Lian. Novel antifungal janthinopolyenemycins A and B from a co-culture of marine-associated Janthinobacterium spp. ZZ145 and ZZ148. Tetrahedron Lett., 2018, 59(38), 3490-3494.
[http://dx.doi.org/10.1016/j.tetlet.2018.08.022]
[185]
Fudou, R.; Iizuka, T.; Sato, S.; Ando, T.; Shimba, N.; Yamanaka, S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 2. Isolation and structural elucidation. J. Antibiot. (Tokyo), 2001, 54(2), 153-156.
[http://dx.doi.org/10.7164/antibiotics.54.153] [PMID: 11302488]
[186]
Fudou, R.; Iizuka, T.; Yamanaka, S. Haliangicin, a novel antifungal metabolite produced by a marine myxobacterium. 1. Fermentation and biological characteristics. J. Antibiot. (Tokyo), 2001, 54(2), 149-152.
[http://dx.doi.org/10.7164/antibiotics.54.149] [PMID: 11302487]
[187]
Saurav, K.; Kannabiran, K. In vitro activity of 5-(2,4-dimethylbenzyl) pyrrolidin-2-one extracted from marine Streptomyces VITSVK5 spp. against fungal and bacterial human pathogens. Rev. Iberoam. Micol., 2012, 29(1), 29-33.
[http://dx.doi.org/10.1016/j.riam.2011.06.008] [PMID: 21782963]
[188]
Sato, S.; Iwata, F.; Yamada, S.; Katayama, M. Neomaclafungins A-I: oligomycin-class macrolides from a marine-derived actinomycete. J. Nat. Prod., 2012, 75(11), 1974-1982.
[http://dx.doi.org/10.1021/np300719g] [PMID: 23102410]
[189]
Bae, M.; Kim, H.; Moon, K.; Nam, S.J.; Shin, J.; Oh, K.B.; Oh, D.C. Mohangamides A and B, new dilactone-tethered pseudo-dimeric peptides inhibiting Candida albicans isocitrate lyase. Org. Lett., 2015, 17(3), 712-715.
[http://dx.doi.org/10.1021/ol5037248] [PMID: 25622093]
[190]
Tareq, F.S.; Lee, M.A.; Lee, H.S.; Lee, J.S.; Lee, Y.J.; Shin, H.J. Gageostatins A-C, antimicrobial linear lipopeptides from a marine Bacillus subtilis. Mar. Drugs, 2014, 12(2), 871-885.
[http://dx.doi.org/10.3390/md12020871] [PMID: 24492520]
[191]
El-Gendy, M.M.; El-Bondkly, A.M. Production and genetic improvement of a novel antimycotic agent, saadamycin, against dermatophytes and other clinical fungi from endophytic Streptomyces sp. Hedaya48. J. Ind. Microbiol. Biotechnol., 2010, 37(8), 831-841.
[http://dx.doi.org/10.1007/s10295-010-0729-2] [PMID: 20458610]
[192]
Xue, C.; Tian, L.; Xu, M.; Deng, Z.; Lin, W. A new 24-membered lactone and a new polyene delta-lactone from the marine bacterium Bacillus marinus. J. Antibiot. (Tokyo), 2008, 61(11), 668-674.
[http://dx.doi.org/10.1038/ja.2008.94] [PMID: 19168981]
[193]
Neuhof, T.; Schmieder, P.; Preussel, K.; Dieckmann, R.; Pham, H.; Bartl, F.; von Döhren, H. Hassallidin A, a glycosylated lipopeptide with antifungal activity from the cyanobacterium Hassallia sp. J. Nat. Prod., 2005, 68(5), 695-700.
[http://dx.doi.org/10.1021/np049671r] [PMID: 15921412]
[194]
Kunze, B.; Böhlendorf, B.; Reichenbach, H.; Höfle, G. Pedein A and B: production, isolation, structure elucidation and biological properties of new antifungal cyclopeptides from Chondromyces pediculatus (Myxobacteria). J. Antibiot. (Tokyo), 2008, 61(1), 18-26.
[http://dx.doi.org/10.1038/ja.2008.104] [PMID: 18305355]
[195]
Ambavane, V.; Tokdar, P.; Parab, R.; Sreekumar, E.S.; Dutt Mishra, P.; D’Souza, L.; Ranadive, P. Caerulomycin A, an antifungal compound isolated from marine actinomycetes. Adv. Microbiol., 2014, 4, 567-578.
[http://dx.doi.org/10.4236/aim.2014.49063]
[196]
Tanabe, K.; Lamping, E.; Adachi, K.; Takano, Y.; Kawabata, K.; Shizuri, Y.; Niimi, M.; Uehara, Y. Inhibition of fungal ABC transporters by unnarmicin A and unnarmicin C, novel cyclic peptides from marine bacterium. Biochem. Biophys. Res. Commun., 2007, 364(4), 990-995.
[http://dx.doi.org/10.1016/j.bbrc.2007.10.110] [PMID: 17967417]
[197]
Haga, A.; Tamoto, H.; Ishino, M.; Kimura, E.; Sugita, T.; Kinoshita, K.; Takahashi, K.; Shiro, M.; Koyama, K. Pyridone alkaloids from a marine-derived fungus, Stagonosporopsis cucurbitacearum, and their activities against azole-resistant Candida albicans. J. Nat. Prod., 2013, 76(4), 750-754.
[http://dx.doi.org/10.1021/np300876t] [PMID: 23496341]
[198]
Wu, B.; Oesker, V.; Wiese, J.; Schmaljohann, R.; Imhoff, J.F. Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106. Mar. Drugs, 2014, 12(3), 1208-1219.
[http://dx.doi.org/10.3390/md12031208] [PMID: 24663111]
[199]
Zheng, J.; Zhu, H.; Hong, K.; Wang, Y.; Liu, P.; Wang, X.; Peng, X.; Zhu, W. Novel cyclic hexapeptides from marine-derived fungus, Aspergillus sclerotiorum PT06-1. Org. Lett., 2009, 11(22), 5262-5265.
[http://dx.doi.org/10.1021/ol902197z] [PMID: 19827766]
[200]
Zheng, J.; Xu, Z.; Wang, Y.; Hong, K.; Liu, P.; Zhu, W. Cyclic tripeptides from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J. Nat. Prod., 2010, 73(6), 1133-1137.
[http://dx.doi.org/10.1021/np100198h] [PMID: 20503985]
[201]
Nagai, K.; Kamigiri, K.; Matsumoto, H.; Kawano, Y.; Yamaoka, M.; Shimoi, H.; Watanabe, M.; Suzuki, K. YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp. J. Antibiot. (Tokyo), 2002, 55(12), 1036-1041.
[http://dx.doi.org/10.7164/antibiotics.55.1036] [PMID: 12617512]
[202]
Liu, S.Z.; Yan, X.; Tang, X.X.; Lin, J.G.; Qiu, Y.K. New Bis-Alkenoic Acid Derivatives from a Marine-Derived Fungus Fusarium solani H915. Mar. Drugs, 2018, 16(12), 483.
[http://dx.doi.org/10.3390/md16120483] [PMID: 30513984]
[203]
Kubanek, J.; Jensen, P.R.; Keifer, P.A.; Sullards, M.C.; Collins, D.O.; Fenical, W. Seaweed resistance to microbial attack: a targeted chemical defense against marine fungi. Proc. Natl. Acad. Sci. USA, 2003, 100(12), 6916-6921.
[http://dx.doi.org/10.1073/pnas.1131855100] [PMID: 12756301]
[204]
Liu, A.H.; Liu, D.Q.; Liang, T.J.; Yu, X.Q.; Feng, M.T.; Yao, L.G.; Fang, Y.; Wang, B.; Feng, L.H.; Zhang, M.X.; Mao, S.C. Caulerprenylols A and B, two rare antifungal prenylated para-xylenes from the green alga Caulerpa racemosa. Bioorg. Med. Chem. Lett., 2013, 23(9), 2491-2494.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.038] [PMID: 23548547]
[205]
Kim, K.H.; Yu, D.; Eom, S.H.; Kim, H.J.; Kim, D.H.; Song, S.H.; Kim, D.M.; Kim, Y.M. Fucofuroeckol-A from edible marine alga Eisenia bicyclis to restore antifungal activity of fluconazole against fluconazole-resistant Candida albicans. J. Appl. Phycol., 2018, 30, 605-609.
[http://dx.doi.org/10.1007/s10811-017-1232-1]
[206]
Yuan, W.H.; Yi, Y.H.; Tang, H.F.; Liu, B.S.; Wang, Z.L.; Sun, G.Q.; Zhang, W.; Li, L.; Sun, P. Antifungal triterpene glycosides from the sea cucumber Bohadschia marmorata. Planta Med., 2009, 75(2), 168-173.
[http://dx.doi.org/10.1055/s-0028-1088348] [PMID: 19096993]
[207]
Wang, X.H.; Zou, Z.R.; Yi, Y.H.; Han, H.; Li, L.; Pan, M.X. Variegatusides: new non-sulphated triterpene glycosides from the sea cucumber Stichopus variegates semper. Mar. Drugs, 2014, 12(4), 2004-2018.
[http://dx.doi.org/10.3390/md12042004] [PMID: 24699115]
[208]
Han, H.; Yi, Y.H.; Li, L.; Liu, B.S.; La, M.P.; Zhang, H.W. Antifungal active triterpene glycosides from sea cucumber Holothuria scabra. Yao Xue Xue Bao, 2009, 44(6), 620-624.
[PMID: 19806893]
[209]
Wang, Z.; Gong, W.; Sun, G.; Tang, H.; Liu, B.; Li, L.; Yi, Y.; Zhang, W. New holostan-type triterpene glycosides from the sea cucumber Apostichopus japonicus. Nat. Prod. Commun., 2012, 7(11), 1431-1434.
[http://dx.doi.org/10.1177/1934578X1200701107] [PMID: 23285801]
[210]
Murray, A.P.; Muniain, C.; Seldes, A.M.; Maier, M.S. Patagonicoside A: a novel antifungal disulfated triterpene glycoside from the sea cucumber Psolus patagonicus. Tetrahedron, 2001, 57, 9563-9568.
[http://dx.doi.org/10.1016/S0040-4020(01)00970-X]
[211]
Kossuga, M.H.; MacMillan, J.B.; Rogers, E.W.; Molinski, T.F.; Nascimento, G.G.; Rocha, R.M.; Berlinck, R.G. (2S,3R)-2-aminododecan-3-ol, a new antifungal agent from the ascidian Clavelina oblonga. J. Nat. Prod., 2004, 67(11), 1879-1881.
[http://dx.doi.org/10.1021/np049782q] [PMID: 15568780]
[212]
Zimmermann, G.R.; Lehár, J.; Keith, C.T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today, 2007, 12(1-2), 34-42.
[http://dx.doi.org/10.1016/j.drudis.2006.11.008] [PMID: 17198971]
[213]
Hill, J.A.; Cowen, L.E. Using combination therapy to thwart drug resistance. Future Microbiol., 2015, 10(11), 1719-1726.
[http://dx.doi.org/10.2217/fmb.15.68] [PMID: 26597425]
[214]
Perfect, J.R.; Bicanic, T. Cryptococcosis diagnosis and treatment: What do we know now. Fungal Genetics and Biology; Elsevier Inc., 2015, pp. 49-54.
[215]
Day, J.N.; Chau, T.T.H.; Wolbers, M.; Mai, P.P.; Dung, N.T.; Mai, N.H.; Phu, N.H.; Nghia, H.D.; Phong, N.D.; Thai, C.Q.; Thai, L.H.; Chuong, L.V.; Sinh, D.X.; Duong, V.A.; Hoang, T.N.; Diep, P.T.; Campbell, J.I.; Sieu, T.P.M.; Baker, S.G.; Chau, N.V.V.; Hien, T.T.; Lalloo, D.G.; Farrar, J.J. Combination antifungal therapy for cryptococcal meningitis. N. Engl. J. Med., 2013, 368(14), 1291-1302.
[http://dx.doi.org/10.1056/NEJMoa1110404] [PMID: 23550668]
[216]
Bennett, J.E.; Dismukes, W.E.; Duma, R.J.; Medoff, G.; Sande, M.A.; Gallis, H.; Leonard, J.; Fields, B.T.; Bradshaw, M.; Haywood, H.; McGee, Z.A.; Cate, T.R.; Cobbs, C.G.; Warner, J.F.; Alling, D.W. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N. Engl. J. Med., 1979, 301(3), 126-131.
[http://dx.doi.org/10.1056/NEJM197907193010303] [PMID: 449951]
[217]
Dismukes, W.E.; Cloud, G.; Gallis, H.A.; Kerkering, T.M.; Medoff, G.; Craven, P.C.; Kaplowitz, L.G.; Fisher, J.F.; Gregg, C.R.; Bowles, C.A.; Shadomy, S.; Stamm, A.M.; Diasio, R.B.; Kaufman, L.; Soong, S.; Blackwelder, W.C. Treatment of cryptococcal meningitis with combination amphotericin B and flucytosine for four as compared with six weeks. N. Engl. J. Med., 1987, 317(6), 334-341.
[http://dx.doi.org/10.1056/NEJM198708063170602] [PMID: 3299095]
[218]
Larsen, R.A.; Leal, M.A.; Chan, L.S. Fluconazole compared with amphotericin B plus flucytosine for cryptococcal meningitis in AIDS. A randomized trial. Ann. Intern. Med., 1990, 113(3), 183-187.
[http://dx.doi.org/10.7326/0003-4819-113-3-183] [PMID: 2197908]
[219]
van der Horst, C.M.; Saag, M.S.; Cloud, G.A.; Hamill, R.J.; Graybill, J.R.; Sobel, J.D.; Johnson, P.C.; Tuazon, C.U.; Kerkering, T.; Moskovitz, B.L.; Powderly, W.G.; Dismukes, W.E. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. N. Engl. J. Med., 1997, 337(1), 15-21.
[http://dx.doi.org/10.1056/NEJM199707033370103] [PMID: 9203426]
[220]
Brouwer, A.E.; Rajanuwong, A.; Chierakul, W.; Griffin, G.E.; Larsen, R.A.; White, N.J.; Harrison, T.S. Combination antifungal therapies for HIV-associated cryptococcal meningitis: a randomised trial. Lancet, 2004, 363(9423), 1764-1767.
[http://dx.doi.org/10.1016/S0140-6736(04)16301-0] [PMID: 15172774]
[221]
Wiederhold, N.P. The antifungal arsenal: alternative drugs and future targets. Int. J. Antimicrob. Agents, 2018, 51(3), 333-339.
[http://dx.doi.org/10.1016/j.ijantimicag.2017.09.002] [PMID: 28890395]
[222]
Oliver, J.D.; Sibley, G.E.M.; Beckmann, N.; Dobb, K.S.; Slater, M.J.; McEntee, L.; du Pré, S.; Livermore, J.; Bromley, M.J.; Wiederhold, N.P.; Hope, W.W.; Kennedy, A.J.; Law, D.; Birch, M. F901318 represents a novel class of antifungal drug that inhibits dihydroorotate dehydrogenase. Proc. Natl. Acad. Sci. USA, 2016, 113(45), 12809-12814.
[http://dx.doi.org/10.1073/pnas.1608304113] [PMID: 27791100]
[223]
Wiederhold, N.P.; Najvar, L.K.; Fothergill, A.W.; McCarthy, D.I.; Bocanegra, R.; Olivo, M.; Kirkpatrick, W.R.; Everson, M.P.; Duncanson, F.P.; Patterson, T.F. The investigational agent E1210 is effective in treatment of experimental invasive candidiasis caused by resistant Candida albicans. Antimicrob. Agents Chemother., 2015, 59(1), 690-692.
[http://dx.doi.org/10.1128/AAC.03944-14] [PMID: 25331706]
[224]
Allen, D.; Wilson, D.; Drew, R.; Perfect, J. Azole antifungals: 35 years of invasive fungal infection management. Expert Rev. Anti Infect. Ther., 2015, 13(6), 787-798.
[http://dx.doi.org/10.1586/14787210.2015.1032939] [PMID: 25843556]
[225]
Lockhart, S.R.; Fothergill, A.W.; Iqbal, N.; Bolden, C.B.; Grossman, N.T.; Garvey, E.P.; Brand, S.R.; Hoekstra, W.J.; Schotzinger, R.J.; Ottinger, E.; Patterson, T.F.; Wiederhold, N.P. The Investigational Fungal Cyp51 Inhibitor VT-1129 Demonstrates Potent In Vitro Activity against Cryptococcus neoformans and Cryptococcus gattii. Antimicrob. Agents Chemother., 2016, 60(4), 2528-2531.
[http://dx.doi.org/10.1128/AAC.02770-15] [PMID: 26787697]
[226]
Garvey, E.P.; Hoekstra, W.J.; Schotzinger, R.J.; Sobel, J.D.; Lilly, E.A.; Fidel, P.L., Jr Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis. Antimicrob. Agents Chemother., 2015, 59(9), 5567-5573.
[http://dx.doi.org/10.1128/AAC.00185-15] [PMID: 26124165]
[227]
Lamoth, F.; Alexander, B.D. Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mold isolates. Antimicrob. Agents Chemother., 2015, 59(7), 4308-4311.
[http://dx.doi.org/10.1128/AAC.00234-15] [PMID: 25896696]
[228]
Jiménez-Ortigosa, C.; Paderu, P.; Motyl, M.R.; Perlin, D.S. Enfumafungin derivative MK-3118 shows increased in vitro potency against clinical echinocandin-resistant Candida Species and Aspergillus species isolates. Antimicrob. Agents Chemother., 2014, 58(2), 1248-1251.
[http://dx.doi.org/10.1128/AAC.02145-13] [PMID: 24323472]
[229]
Pfaller, M.A.; Messer, S.A.; Rhomberg, P.R.; Jones, R.N.; Castanheira, M. Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates. J. Antimicrob. Chemother., 2016, 71(10), 2868-2873.
[http://dx.doi.org/10.1093/jac/dkw214] [PMID: 27287236]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 10
Year: 2019
Page: [812 - 830]
Pages: 19
DOI: 10.2174/1568026619666190412102037
Price: $58

Article Metrics

PDF: 16
HTML: 3
EPUB: 1