Green Bio-Based Solvents in C-C Cross-Coupling Reactions

Author(s): Magne O. Sydnes*.

Journal Name: Current Green Chemistry

Volume 6 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Solvent accounts for majority of the waste derived from synthetic transformations. This implies that by making changes to the solvent used by either switching to greener options, reducing the volume of solvent used, or even better avoiding the use of solvent totally will have a positive impact on the environment. Herein, the focus will be on the use of bio-based-green-solvents in C-C crosscoupling reactions highlighting the recent developments in this field of research. Emphasis in this review will be placed on developments obtained for Mizoroki-Heck, Hiyama, Stille, and Suzuki- Miyaura cross-couplings. For these cross-coupling reactions, good reaction conditions utilizing green solvents are now available.

Keywords: Green solvents, palladium catalysts, Mizoroki-Heck cross-coupling, Hiyama cross-coupling, Stille cross-coupling, Suzuki-Miyaura cross-coupling.

[1]
Henderson, R.K.; Jiménez-González, C.; Constable, D.J.C.; Alston, S.R.; Inglis, G.G.A.; Fisher, G.; Sherwood, J.; Binks, S.P.; Curzons, A.D. Expanding GSK’s solvent selection guide - embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem., 2011, 13, 854-862.
[2]
Shaughnessy, K.H.; DeVasher, R.B. Palladium-catalyzed cross-coupling in aqueous media: Recent progress and current applications. Curr. Org. Chem., 2005, 9, 585-604.
[3]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and practice; Oxford University Press: Oxford, 2000.
[4]
Capello, C.; Fischer, U.; Hungerbühler, K. What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem., 2007, 9, 927-934.
[5]
Häckl, K.; Kunz, W. Some aspects of green solvents. C. R. Chim., 2018, 21, 572-580.
[6]
Erythropel, H.C.; Zimmerman, J.B.; de Winter, T.M.; Petitjean, L.; Melnikov, F.; Lam, C.H.; Lounsbury, A.W.; Mellor, K.E.; Janković, N.Z.; Tu, Q.; Pincus, L.N.; Falinski, M.M.; Shi, W.; Coish, P.; Plata, D.L.; Anastas, P.T. The green chemis TREE: 20 years after taking root with the 12 principles. Green Chem., 2018, 20, 1929-1961.
[7]
Tanaka, K.; Toda, F. Solvent-free organic syntheses. Chem. Rev., 2000, 100, 1025-1074.
[8]
Varma, R.S. Solvent-free organic syntheses. Green Chem., 1999, 1, 43-55.
[9]
El-Sayed, T.H.; Aboelnaga, A.; El-Atawy, M.; Hagar, M. Ball milling promoted N-heterocycles synthesis. Molecules, 2018, 23, 1348.
[10]
Hernández, J.G.; Bolm, C. Altering product selectivity by mechanochemistry. J. Org. Chem., 2017, 82, 4007-4019.
[11]
Stolle, A.; Ranu, B., Eds.; Ball milling towards green synthesis: Applications, projects, challenges: Green chemistry series; Royal Society of Chemistry, 2015.
[12]
Claramunt, R.M.; Lopez, C.; Sanz, D.; Elguero, J. Mechano heterocyclic chemistry: Grinding and ball mills. Adv. Heterocycl. Chem., 2014, 112, 117-143.
[13]
Fahimi, N.; Sardarian, A.R. Aminoclay decorated with nano-Pd(0) picolinic acid complex as a novel efficient, heterogeneous, and phosphine ligand-free catalyst in Heck reaction under solvent-free conditions. Res. Chem. Intermed., 2017, 43, 4923-4941.
[14]
Chanda, K. The role of ionic liquid in preserving a sustainable environment. Curr. Green Chem., 2018, 5, 129-130.
[15]
Szánti-Pintér, E.; Skoda-Földes, R. Application of ionic liquids in synthetic procedures leading to pharmaceutically active organic compounds. Curr. Green Chem., 2018, 5, 4-21.
[16]
Melo, L.R.; Silva, W.A. Ionic liquid in multicomponent reactions: A brief review. Curr. Green Chem., 2016, 3, 120-132.
[17]
Liu, S.; Xiao, J. Toward green catalytic synthesis - Transition metal-catalyzed reaction in non-conventional media. J. Mol. Catal. A: Chem., 2007, 270, 1-43.
[18]
Li, J.; Yang, S.; Wu, W.; Jiang, H. Recent advances in Pd-catalyzed cross-coupling reaction in ionic liquids. Eur. J. Org. Chem., 2018, 1284-1306.
[19]
Wei, J-F.; Jiao, J.; Feng, J-J.; Lv, J.; Zhang, X-R.; Shi, X-Y.; Chen, Z-G. PdEDTA held in an ionic liquid brush as a highly efficient and reusable catalyst for Suzuki reactions in water. J. Org. Chem., 2009, 74, 6283-6286.
[20]
Lozano, P.; Alvarez, E.; Bernal, J.M.; Nieto, S.; Gomez, C.; Sanchez-Gomez, G. Ionic liquids for clean biocatalytic processes. Curr. Green Chem., 2017, 4, 116-129.
[21]
Oakes, R.S.; Clifford, A.A.; Rayner, C.M. The use of supercritical fluids in synthetic organic chemistry. J. Chem. Soc., Perkin Trans. 1, 2001, 917-941.
[22]
Noyori, R. Supercritical fluids: Introduction. Chem. Rev., 1999, 99, 353-354.
[23]
Olmos, A.; Asensio, G.; Perez, P.J. Homogeneous metal-based catalysis in supercritical carbon dioxide as reaction medium. ACS Catal., 2016, 6, 4265-4280.
[24]
Rayner, C.M. The potential of carbon dioxide in synthetic organic chemistry. Org. Process Res. Dev., 2007, 11, 121-132.
[25]
Deep eutectic solvent compatible metallic catalysts: Cationic pyridiniophosphine ligands in palladium catalyzed cross-coupling reactions. ChemCatChem, 2017, 9, 1269-1275.
[26]
García-Álvarez, J. Deep eutectic mixtures: Promising sustainable solvents for metal-catalysed and metal-mediated organic reactions. Eur. J. Inorg. Chem., 2015, 5147-5157.
[27]
Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic organic reaction in water toward sustainable society. Chem. Rev., 2018, 118, 679-746.
[28]
Li, C-J.; Chen, L. Organic chemistry in water. Chem. Soc. Rev., 2006, 35, 68-82.
[29]
Nasrollahzadeh, M.; Sajadi, S.M.; Honarmand, E.; Maham, M. Preparation of palladium nanoparticles using Euphorbia thymifolia L. leaf extracts and evaluation of catalytic activity in the ligang-free Stille and Hiyama cross-coupling reaction in water. New J. Chem., 2015, 39, 4745-4752.
[30]
Hajipour, A.R.; Sadeghi, A.R.; Khorsandi, Z. Pd nanoparticles immobilized on magnetic chitosan as a novel reusable catalyst for green Heck and Suzuki cross-coupling reaction: In water at room temperature. Appl. Organometal. Chem., 2018, 32e4112
[31]
Moghaddam, F.M.; Eslami, M. Immobilized palladium nanoparticle on MNPs@A-N-AEB as an efficient catalyst for C-O bond formation in water as a green solvent. Appl. Organometal. Chem., 2018, 32e4463
[32]
Mohammadinezhad, A.; Akhlaghinia, B. Fe3O4@Boehmite-NH2-CoII NPs: An inexpensive and highly efficient heterogeneous magnetic nanocatalyst for the Suzuki-Miyaura and Heck-Mizoroki cross-coupling. Green Chem., 2017, 19, 5625-5641.
[33]
Dumonteil, G.; Hiebel, M-A.; Berteina-Raboin, S. Solvent-free Mizoroki-Heck reaction applied to the synthesis of abscisic acid and some derivatives. Catalysts, 2018, 8, 115.
[34]
Kitanosono, T.; Masuda, K.; Xu, P.; Kobayashi, S. Catalytic organic reactions in water toward sustainable society. Chem. Rev., 2018, 118, 679-746.
[35]
Sydnes, M.O. The use of microwave for one-pot reductive amination. Curr. Green Chem., 2016, 3, 101-110.
[36]
Sydnes, M.O. One-pot reactions: A step towards greener chemistry. Curr. Green Chem., 2014, 1, 216-226.
[37]
Clarke, C.J.; Tu, W-C.; Levers, O.; Bröhl, A.; Hallett, J.P. Green and sustainable solvents in chemical processes. Chem. Rev., 2018, 118, 747-800.
[38]
Vaccaro, L.; Curini, M.; Ferlin, F.; Lanari, D.; Marrocchi, A.; Piermatti, O.; Trombettoni, V. Definition of green synthetic tools based on safer reaction media, heterogeneous catalysis, and flow technology. Pure Appl. Chem., 2018, 90, 21-33.
[39]
Sarmah, M.; Mondal, M.; Bora, U. Agro-waste extract based solvents: Emergence of novel green solvent for the design of sustainable processes in catalysis and organic chemistry. ChemistrySelect, 2017, 2, 5180-5188.
[40]
DeSimone, J.M. Practical approaches to green solvents. Science, 2002, 297, 799-803.
[41]
Díaz-Álvarez, A.E.; Francos, J.; Crochet, P.; Cadierno, V. Recent advances in the use of glycerol as green solvent for synthetic organic chemistry. Curr. Green Chem., 2014, 1, 51-65.
[42]
Mäki-Arvela, P.; Simakova, I.L.; Salmi, T.; Murzin, D.Y. Production of lactic acid/lactates from biomass and their catalytic transformations to commodities. Chem. Rev., 2014, 114, 1909-1971.
[43]
Asthana, N.; Kolah, A.; Vu, D.T.; Lira, C.T.; Miller, D.J. A continuous reactive separation process for ethyl lactate formation. Org. Process Res. Dev., 2005, 9, 599-607.
[44]
Paul, S.; Pradhan, K.; Das, A.R. Etyl Lactate as a green solvent: A promising bio-compatible media for organic synthesis. Curr. Green Chem., 2016, 3, 111-118.
[45]
Solas, M. Suárez-Pantiga, Sanz, R. Ethyl lactate as a renewable carbonyl source for the synthesis of diynones. Green Chem., 2019, 21
[http://dx.doi.org/10.1039/c8gc03275k]
[46]
Alcantara, A.R.; de Maria, P.D. Recent advances on the use of 2-methyltetrahydrofuran (2-MeTHF) in biotransformations. Curr. Green Chem., 2018, 5, 86-103.
[47]
Ferlin, F.; Luciani, L.; Santoro, S.; Marrocchi, A.; Lanari, D.; Bechtoldt, A.; Ackermann, L.; Vaccaro, L. A continuous flow approach for the C-H functionalization of 1,2,3-triazoles in γ-valerolactone as a biomass-derived medium. Green Chem., 2018, 20, 2888-2893.
[48]
Camp, J.E. Bio-available solvent Cyrene: Synthesis, derivatization, and application. ChemSusChem, 2018, 11, 3048-3055.
[49]
Braun, M-G.; Díaz-Rodríguez, A.; Diorazio, L.; Fei, Z.; Fraunhoffer, K.; Hayler, J.; Hickey, M.; Hughes, S.; McLaws, M.; Richardson, P.; Schober, M.; Smith, A.G.; Steven, A.; Terrett, J.; White, T.; Yin, J. Green chemistry articles of interest to the pharmaceutical industry. Org. Process Res. Dev., 2018, 22, 1699-1711.
[50]
Byrne, F.; Forier, B.; Bossaert, G.; Hoebers, C.; Farmer, T.J.; Clark, J.H.; Hunt, A.J. 2,2,5,5-tetramethyltetrahydrofuran (TMTHF): Anon-polar, non-peroxide forming ether replacement for hazardous hydrocarbon solvents. Green Chem., 2017, 19, 3671-3678.
[51]
Mao, S.; Li, H.; Shi, X.; Soulé, J-F.; Doucet, H. Environmentally Benign arylations of 5-membered ring heteroarenes by Pd-catalyzed C-H bonds activations. ChemCatChem, 2019, 11, 269-286.
[52]
Santoro, S.; Marrocchi, A.; Lanari, D.; Ackermann, L.; Vaccaro, L. Towards sustainable C-H functionalization reactions: The emerging role of bio-based reaction media. Chem. Eur. J., 2018, 24, 13383-13390.
[53]
Rasina, D.; Lombi, A.; Santoro, S.; Ferlin, F.; Vaccaro, L. Searching for novel reusable biomass-derived solvents: Furfuryl alcohol/water azeotrope as a medium for waste-minimised copper-catalysed azide-alkyne cycladdition. Green Chem., 2016, 18, 6380-6386.
[54]
Santoro, S.; Ferlin, F.; Luciani, L.; Ackermann, L.; Vaccaro, L. Biomass-derived solvents as effective media for cross-coupling reactions and C-H functionalization processes. Green Chem., 2017, 19, 1601-1612.
[55]
Seechurn, C.C.C.J.; Kitching, M.O.; Colacot, T.J.; Snieckus, V. Palladium-catalyzed cross-coupling: A historical contextual perspective to the 2010 Nobel Prize. Angew. Chem. Int. Ed., 2012, 51, 5062-5085.
[56]
Suzuki, A. Cross-coupling reactions of organoboranes: An easy way to construct C-C bonds (Nobel Lecture). Angew. Chem. Int. Ed., 2011, 50, 6722-6737.
[57]
Jagtap, S. Heck reaction – State of the art. Catalysts, 2017, 7, 267.
[58]
Negishi, E. Magical power of transition metals: Past, present, and future (Nobel Lecture). Angew. Chem. Int. Ed., 2011, 50, 6738-6764.
[59]
Suzuki, A. Cross-coupling reactions of organoboranes: An easy way to construct C-C bonds (Nobel Lecture). Angew. Chem. Int. Ed., 2011, 50, 6722-6737.
[60]
Marset, X.; De Gea, S.; Guillena, G.; Ramón, D. NCH-Rincer-Pd complex as catalyst for the Hiyama reaction in biomass-derived solvents. ACS Sustainable. Chem.& Eng., 2018, 6, 5743-5748.
[61]
Corrêa, A.G.; Paixão, M.W.; Schwab, R.S. Application of bio-based solvents in catalysis. Curr. Org. Synth., 2015, 12, 675-695.
[62]
Vafaeezadeh, M.; Hashemi, M.M. Polyethylene glycol (PEG) as a green solvent for carbon-carbon bond formation reactions. J. Mol. Liq., 2015, 207, 73-79.
[63]
Wilson, K.L.; Murray, J.; Sneddon, H.F.; Jamieson, C.; Watson, A.J.B. Dimethylisosorbide (DMI) as a bio-derived solvent for Pd-catalyzed cross-coupling reactions. Synlett, 2018, 29, 2293-2297.
[64]
Mizoroki, T.; Mori, K.; Ozaki, A. Arylation of olefin with aryl iodide catalyzed by palladium. Bull. Chem. Soc. Jpn., 1971, 44, 581.
[65]
Heck, R.F.; Nolley, J.P., Jr Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl, and styryl halides. J. Org. Chem., 1972, 37, 2320-2322.
[66]
Mori, K.; Mizoroki, T.; Ozaki, A. Arylation of olefin with iodobenzene catalyzed by palladium. Bull. Chem. Soc. Jpn., 1973, 46, 1505-1508.
[67]
Balasubramanian, M. Industrial scale palladium chemistry. In Li, J. J.; Gribble, G.W (eds.)Palladium in heterocyclic chemistry: A guide for the synthetic chemist; Tetrahedron Organic Chemistry Series, Vol 26, Elsevier, Amsterdam, 2007, pp. 587-620.
[68]
Sydnes, M.O. The Use of Palladium on magnetic support as catalyst for Suzuki-Miyaura cross-coupling reactions. Catalysts, 2017, 7, 35.
[69]
Nikoorazm, M.; Ghorbani, F.; Ghorbani-Choghamarani, A.; Erfani, Z. Pd(0)-S-propyl-2-aminobenzothioate immobilized onto functionalized magnetic nanoporous MCM-41 as efficient and recyclable nanocatalyst for the Suzuki, Stille and Heck cross coupling reactions. Appl. Organomet. Chem., 2018, 32e4282
[70]
Hatanaka, Y.; Hiyama, T. Cross-coupling of organosilanes with organic halides mediated by a palladium catalyst and tris(diethylamino)sulfonium difluorotrimethylsilicate. J. Org. Chem., 1988, 53, 918-920.
[71]
Reina, A.; Serrano-Maldonado, A.; Teuma, E.; Martin, E.; Gómez, M. Palladium nanocatalysts in glycerol: Tuning the reactivity by effect of the stabilizer. Catal. Commun., 2018, 104, 22-27.
[72]
Ismalaj, E.; Strappaveccia, G.; Ballerini, E.; Elisei, F.; Piermatti, O.; Gelman, D.; Vaccaro, L. γ-Valerolactone as a renewable dipolar aprotic solvent deriving from biomass degradation for the Hiyama Reaction. ACS Sustainable. Chem.& Eng., 2014, 2, 2461-2464.
[73]
Stille, J.K. The Palladium-catalyzed cross-coupling reactions of organotin reagents with organic electrophiles. [New Synthetic Methods (58)]. Angew. Chem. Int. Ed. Engl., 1986, 25, 508-524.
[74]
Khanmoradi, M.; Nikoorazm, M.; Ghorbani-Choghamarani, A. Synthesis and characterization of Pd Schiff Base complex immobilized onto functionalized nanoporous MCM-41 and its catalytic efficacy in the Suzuki, Heck and stille coupling reactions. Catal. Lett., 2017, 147, 1114-1126.
[75]
Batmani, H.; Pesyan, N.N.; Havasi, F. Synthesis and characterization of MCM-41-Biurea-Pd as a heterogeneous nanocatalyst and using its catalytic efficacy in C-C, C-N and C-O coupling reactions. Appl. Organometal. Chem., 2018, 32e4419
[76]
Miyaura, N.; Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev., 1995, 95, 2457-2483.
[77]
Miyaura, N.; Suzuki, A. Stereoselective synthesis of arylated (E)-alkenes by the reaction of alk-1-enylboranes with aryl halides in the presence of palladium catalyst. J. Chem. Soc. Chem. Commun., 1979, 19, 135-152.
[78]
Miyaura, N.; Yamada, K.; Suzuki, A. A new stereospecific cross-coupling by the palladium-catalyzed reaction of 1-alkenylboranes with 1-alkenyl or 1-alkynyl halides. Tetrahedron Lett., 1979, 20, 3437-3440.
[79]
Hooshmand, S.E.; Heidari, B.; Sedghi, R.; Varma, R.S. Recent advances in the Suzuki-Miyaura cross-coupling reaction using efficient catalysts in eco-friendly media. Green Chem., 2019, 21, 381-405.
[80]
Dadras, A.; Naimi-Jamal, M.R.; Moghaddam, F.M.; Ayati, S.E. Suzuki-Miyaura coupling reaction in water in the presence of robust palladium immobilized on modified magnetic Fe3O4 nanoparticles as a recoverable catalyst. Appl. Organometal. Chem., 2018, 32e3993
[81]
Chen, J.; Zhang, J.; Zhu, D.; Li, T. Porphyrin-based polymer-supported palladium as an excellent and recyclable catalyst for Suzuki-Miyaura coupling reaction in water. Appl. Organometal. Chem., 2018, 32e3996
[82]
Iranpoor, N.; Rahimi, S.; Panahi, F. In situ generated and stabilized Pd nanoparticles by N2,N4,N6-tridodecyl-1,3,5-triazine-2,4,6-triamine (TDTAT) as a reactive and efficient catalyst for the Suzuki-Miyaura reaction in water. RSC Adv, 2016, 6, 3084-3090.
[83]
Edwards, G.A.; Trafford, M.A.; Hamilton, A.E.; Buxton, A.M.; Bardeaux, M.C.; Chalker, J.M. Melamine and melamine-formaldehyde polymers as ligands for palladium and application to Suzuki-Miyaura cross-coupling reactions in sustainable solvents. J. Org. Chem., 2014, 79, 2094-2104.
[84]
Ullmann, F.; Bielecki, J. Ueber Synthesen in der biphenylreihe. Ber. Dtsch. Chem. Ges., 1901, 34, 2174-2185.
[85]
Ferlin, F.; Trombettoni, V.; Luciani, L.; Fusi, S.; Piermatti, O.; Santoro, S.; Vaccaro, L. A waste-minimized protocol for copper-catalyzed Ullmann-type reaction in a biomass derived furfuryl alcohol/water azeotrope. Green Chem., 2018, 20, 1634-1639.
[86]
Shaabani, A.; Afshari, R. Magnetic Ugi-functionalized graphene oxide complexed with copper nanoparticles: Efficient catalyst toward Ullman coupling reaction in deep eutectic solvents. J. Colloid Interface Sci., 2018, 510, 384-394.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 2
Year: 2019
Page: [96 - 104]
Pages: 9
DOI: 10.2174/2213346106666190411151447

Article Metrics

PDF: 13
HTML: 1