Protein Kinases and Their Inhibitors

Author(s): Satya P. Gupta.

Journal Name: Current Enzyme Inhibition

Volume 15 , Issue 1 , 2019

Become EABM
Become Reviewer

[1]
Sakkiah, S.; Cao, G.P.; Gupta, S.P.; Seok Ju Park, S.J.; Keun, Woo Lee K.W. Overview of the structure and function of protein kinases. Curr. Enzym. Inhib., 2017, 13, 81-88.
[2]
Gupta, S.P.; Shaik, B.; Vijay, K.; Agrawal, V.K. Specificity of binding in protein kinases. Curr. Enz. Inhib., 2017, 13, 89-98.
[3]
Kini, S.G.; Garg, V.; Prasanna, S.; Rajappan, R.; Muhammad Mubeen, M. Protein kinases as drug targets in human and animal diseases. Curr. Enz. Inhib., 2017, 13, 99-106.
[4]
Shah, D.B.; Ramanathan, M. Glycogen synthase kinase-3: A potential target for drug discovery in the treatment of neurodegenerative disorders. Curr. Enz. Inhib., 2017, 13, 107-128.
[5]
Lupino, E.; Piccinini, M. The polyhedric Abl kinases and their pharmacologic inhibitors. Curr. Enz. Inhib., 2017, 13, 129-138.
[6]
Patil, V.M.; Gupta, S.P.; Masand, N. Quantitative structure-activity relationship studies on tyrosine kinase inhibitors. Curr. Enz. Inhib., 2017, 13, 139-159.
[7]
Knighton, D.R.; Zheng, J.H.; Ten Eyck, L.F.; Ashford, V.A.; Xuong, N.H.; Taylor, S.S.; Sowadski, J.M. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate-dependent protein kinase. Science, 1991, 253, 407-414.
[8]
Shchemelinin, I.; Sefc, L.; Necas, E. Protein kinases, their function and implication in cancer and other diseases. Folia Biologica, 2006, 52, 81-100.
[9]
Nolen, B.; Taylor, S.; Ghosh, G. Regulation of protein kinases; controlling activity through activation segment conformation. Mol. Cell, 2004, 15, 661-675.
[10]
Cowan-Jacob, S.W.; Moebitz, H.; Fabbro, D. Structural biology contributions to tyrosine kinase drug discovery. Curr. Opin. Cell Biol., 2009, 21, 280-287.
[11]
Ferrer, I.; Barrachina, M.; Puig, B. Glycogen synthase kinase-3 is associated with neuronal and glial hyperphosphorylated tau deposits in Alzheimer’s disease, Pick’s disease, progressive supranuclear palsy and corticobasal degeneration. Acta Neuropathol., 2002, 104, 583-591.
[12]
Eldar-Finkelman, H. Glycogen synthase kinase 3: an emerging therapeutic target. Trends Mol. Med., 2002, 8, 126-132.
[13]
Silberman, I.; Sionov, R.V.; Zuckerman, V.; Haupt, S.; Goldberg, Z.; Strasser, A.; Ben-Sasson, Z.S.; Baniyash, M.; Koleske, A.J.; Haupt, Y. T cell survival and function requires the c-Abl tyrosine kinase. Cell Cycle, 2008, 7, 3847-3857.
[14]
Huang, Y.; Comiskey, E.O.; Dupree, R.S.; Li, S.; Koleske, A.J.; Burkhardt, J.K. 2008. The c-Abl tyrosine kinase regulates actin remodeling at the immune synapse. Blood, 2008, 112, 111-119.
[15]
Gu, J.J.; Ryu, J.R.; Pendergast, A.M. Abl tyrosine kinases in T-cell signaling. Immunol. Rev., 2009, 228, 170-183.
[16]
Krause, D.S.; Van Etten, R.A. Tyrosine kinases as targets for cancer therapy. The New. Engl. J. Med., 2005, 353, 172-187.
[17]
Krug, M.; Hilgeroth, A. Recent advances in the development of multi-kinase inhibitors. Mini Rev. Med. Chem., 2008, 8, 1312-1327.
[18]
Petrelli, A.; Giordano, S. From single- to multi-target drugs in cancer therapy: When a specificity becomes an advantage. Curr. Med. Chem., 2008, 15, 422-432.


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 15
ISSUE: 1
Year: 2019
Page: [6 - 7]
Pages: 2
DOI: 10.2174/157340801501190411125217

Article Metrics

PDF: 33
HTML: 2