Deltamethrin-Induced Immunotoxicity and its Protection by Quercetin: An Experimental Study

Author(s): Anoop Kumar*, Meenakshi Gupta, Ruchika Sharma, Neelima Sharma*.

Journal Name: Endocrine, Metabolic & Immune Disorders - Drug Targets
(Formerly Current Drug Targets - Immune, Endocrine & Metabolic Disorders)

Volume 20 , Issue 1 , 2020

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Deltamethrin (DLM) is a type 2 pyrethroid insecticide used in agriculture and home to control pests. However, emerging reports have indicated the immunotoxicity of DLM.

Objective: Thus, in the current investigation, we have checked the immune-protective role of quercetin in DLM-induced immunotoxicity by using in silico and in vitro techniques.

Results: In silico results have shown good interaction of quercetin towards immune cell receptors (T & B cell receptors). The findings of in vitro studies indicated the decrease in oxidative stress which is elevated by DLM in concentration & time-dependent manner. The increased caspases-3 activity was decreased by treatment of quercetin. The apoptosis induced by DLM in thymus and spleen was suppressed only at higher concentration (50μg/ml) of quercetin. Finally, the phenotypic changes due to DLM were restored by quercetin.

Conclusion: Quercetin has strong binding affinity towards CD4, CD8 and CD28, CD45 receptors and protects the thymocytes and splenocytes against DLM-induced apoptotic signaling pathways.

Keywords: Pyrethroid insecticide, deltamethrin, oxidative stress, apoptosis, phenotyping, quercetin.

[1]
Kumar, A.; Sasmal, D.; Sharma, N. Understanding of Complex Signaling Pathways of Immune System: A Review. World J. Pharm. Pharm. Sci., 2014, 3, 241-255.
[2]
Kumar, A.; Sharma, N.; Singh, S. Oral vaccine antigen induced immune response signalling pathways: Current and future Perspectives. J. Vaccines Vaccin., 2014, 5, 2-6.
[3]
Krzystyniak, K.; Tryphonas, H.; Fournier, M. Approaches to the evaluation of chemical-induced immunotoxicity. Environ. Health Perspect., 1995, 103(Suppl. 9), 17-22.
[PMID: 8635435]
[4]
Kumar, A.; Sharma, R.; Rana, D.; Sharma, N. Protective Effect of Alpha-Tocopherol in Deltamethrin Induced Immunotoxicity. Endocr. Metab. Immune Disord. Drug Targets, 2019, 19(2), 171-184.
[http://dx.doi.org/10.2174/1871530318666180801144822] [PMID: 30068286]
[5]
Bonefeld, C.M.; Larsen, J.M.; Dabelsteen, S.; Geisler, C.; White, I.R.; Menné, T.; Johansen, J.D. Consumer available permanent hair dye products cause major allergic immune activation in an animal model. Br. J. Dermatol., 2010, 162(1), 102-107.
[http://dx.doi.org/10.1111/j.1365-2133.2009.09417.x] [PMID: 19785606]
[6]
Kumar, A.; Sasmal, D.; Sharma, N. An insight into deltamethrin induced apoptotic calcium, p53 and oxidative stress signalling pathways. Toxicol. Environ. Health Sci, 2015, 7, 25-34.
[http://dx.doi.org/10.1007/s13530-015-0217-1]
[7]
Navarro, S.; Vela, N.; Navarro, G. An overview on the environmental behaviour of pesticide residues in soils. SJAR, 2007, 3, 357-375.
[http://dx.doi.org/10.5424/sjar/2007053-5344]
[8]
Narendra, M.; Kavitha, G.; Helah Kiranmai, A.; Raghava Rao, N.; Varadacharyulu, N.C. Chronic exposure to pyrethroid-based allethrin and prallethrin mosquito repellents alters plasma biochemical profile. Chemosphere, 2008, 73(3), 360-364.
[http://dx.doi.org/10.1016/j.chemosphere.2008.05.070] [PMID: 18657844]
[9]
Kolaczinski, J.H.; Curtis, C.F. Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides: a review of the debate. Food Chem. Toxicol., 2004, 42(5), 697-706.
[http://dx.doi.org/10.1016/j.fct.2003.12.008] [PMID: 15046814]
[10]
Toumi, H.; Boumaiza, M.; Millet, M.; Radetski, C.M.; Felten, V.; Fouque, C.; Férard, J.F. Effects of deltamethrin (pyrethroid insecticide) on growth, reproduction, embryonic development and sex differentiation in two strains of Daphnia magna (Crustacea, Cladocera). Sci. Total Environ., 2013, 458-460, 47-53.
[http://dx.doi.org/10.1016/j.scitotenv.2013.03.085] [PMID: 23639911]
[11]
Enan, E.; Pinkerton, K.E.; Peake, J.; Matsumura, F. Deltamethrin-induced thymus atrophy in male Balb/c mice. Biochem. Pharmacol., 1996, 51(4), 447-454.
[http://dx.doi.org/10.1016/0006-2952(95)02200-7] [PMID: 8619889]
[12]
El-Gohary, M.; Awara, W.M.; Nassar, S.; Hawas, S. Deltamethrin-induced testicular apoptosis in rats: the protective effect of nitric oxide synthase inhibitor. Toxicology, 1999, 132(1), 1-8.
[http://dx.doi.org/10.1016/S0300-483X(98)00114-0] [PMID: 10199576]
[13]
Kumar, A.; Sasmal, D.; Sharma, N. Deltamethrin induced an apoptogenic signalling pathway in murine thymocytes: exploring the molecular mechanism. J. Appl. Toxicol., 2014, 34(12), 1303-1310.
[http://dx.doi.org/10.1002/jat.2948] [PMID: 24217896]
[14]
Kumar, A.; Sasmal, D.; Bhaskar, A.; Mukhopadhyay, K.; Thakur, A.; Sharma, N. Deltamethrin-induced oxidative stress and mitochondrial caspase-dependent signaling pathways in murine splenocytes. Environ. Toxicol., 2016, 31(7), 808-819.
[http://dx.doi.org/10.1002/tox.22091] [PMID: 25534813]
[15]
Ali, F.E.; Abo-Youssef, A.M.; Messiha, B.A.; Hemeda, R.A. Protective Effects of quercetin and ursodeoxycholic acid on hepatic ischemia-reperfusion injury in rats. Clin. Pharmacol. Biopharm., 2015, 4, 2.
[16]
Tang, Y.; Gao, C.; Shi, Y.; Zhu, L.; Hu, X.; Wang, D.; Lv, Y.; Yang, X.; Liu, L.; Yao, P. Quercetin attenuates ethanol-derived microsomal oxidative stress: implication of haem oxygenase-1 induction. Food Chem., 2012, 132, 1769-1774.
[http://dx.doi.org/10.1016/j.foodchem.2011.12.005]
[17]
Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 1983, 65(1-2), 55-63.
[http://dx.doi.org/10.1016/0022-1759(83)90303-4] [PMID: 6606682]
[18]
Hissin, P.J.; Hilf, R. A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal. Biochem., 1976, 74(1), 214-226.
[http://dx.doi.org/10.1016/0003-2697(76)90326-2] [PMID: 962076]
[19]
Gurtu, V.; Kain, S.R.; Zhang, G. Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal. Biochem., 1997, 251(1), 98-102.
[http://dx.doi.org/10.1006/abio.1997.2220] [PMID: 9300088]
[20]
Riccardi, C.; Nicoletti, I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat. Protoc., 2006, 1(3), 1458-1461.
[http://dx.doi.org/10.1038/nprot.2006.238] [PMID: 17406435]
[21]
Darzynkiewicz, Z.; Bruno, S.; Del Bino, G.; Gorczyca, W.; Hotz, M.A.; Lassota, P.; Traganos, F. Features of apoptotic cells measured by flow cytometry. Cytometry, 1992, 13(8), 795-808.
[http://dx.doi.org/10.1002/cyto.990130802] [PMID: 1333943]
[22]
Brenchley, J.M.; Karandikar, N.J.; Betts, M.R.; Ambrozak, D.R.; Hill, B.J.; Crotty, L.E.; Casazza, J.P.; Kuruppu, J.; Migueles, S.A.; Connors, M.; Roederer, M.; Douek, D.C.; Koup, R.A. Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood, 2003, 101(7), 2711-2720.
[http://dx.doi.org/10.1182/blood-2002-07-2103] [PMID: 12433688]
[23]
Gupta, M.; Sharma, R.; Kumar, A. Docking techniques in pharmacology: How much promising? Comput. Biol. Chem., 2018, 76, 210-217.
[http://dx.doi.org/10.1016/j.compbiolchem.2018.06.005] [PMID: 30067954]
[24]
Gupta, M.; Kant, K.; Sharma, R.; Kumar, A. Evaluation of In Silico Anti-parkinson Potential of β-asarone. Cent. Nerv. Syst. Agents Med. Chem., 2018, 18(2), 128-135.
[http://dx.doi.org/10.2174/1871524918666180416153742] [PMID: 29658442]
[25]
Kumar, A.; Sasmal, D.; Sharma, N. Immunomodulatory role of piperine in deltamethrin induced thymic apoptosis and altered immune functions. Environ. Toxicol. Pharmacol., 2015, 39(2), 504-514.
[http://dx.doi.org/10.1016/j.etap.2014.12.021] [PMID: 25682002]
[26]
Kumar, A.; Sharma, N. Comparative efficacy of piperine and curcumin in deltamethrin induced splenic apoptosis and altered immune functions. Pestic. Biochem. Physiol., 2015, 119, 16-27.
[http://dx.doi.org/10.1016/j.pestbp.2015.03.003] [PMID: 25868812]
[27]
Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods, 2018, 40, 68-75.
[http://dx.doi.org/10.1016/j.jff.2017.10.047]
[28]
Gupta, R.; Shukla, R.K.; Pandey, A.; Sharma, T.; Dhuriya, Y.K.; Srivastava, P.; Singh, M.P.; Siddiqi, M.I.; Pant, A.B.; Khanna, V.K. Involvement of PKA/DARPP-32/PP1α and β- arrestin/Akt/GSK-3β Signaling in Cadmium-Induced DA-D2 Receptor-Mediated Motor Dysfunctions: Protective Role of Quercetin. Sci. Rep., 2018, 8(1), 2528.
[http://dx.doi.org/10.1038/s41598-018-20342-z] [PMID: 29410441]
[29]
Fernandes-Alnemri, T.; Litwack, G.; Alnemri, E.S. CPP32, a novel human apoptotic protein with homology to Caenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J. Biol. Chem., 1994, 269(49), 30761-30764.
[PMID: 7983002]
[30]
Pei, B.; Yang, M.; Qi, X.; Shen, X.; Chen, X.; Zhang, F. Quercetin ameliorates ischemia/reperfusion-induced cognitive deficits by inhibiting ASK1/JNK3/caspase-3 by enhancing the Akt signaling pathway. Biochem. Biophys. Res. Commun., 2016, 478(1), 199-205.
[http://dx.doi.org/10.1016/j.bbrc.2016.07.068] [PMID: 27450812]
[31]
Ramanathan, K.; Anusuyadevi, M.; Shila, S.; Panneerselvam, C. Ascorbic acid and α-tocopherol as potent modulators of apoptosis on arsenic induced toxicity in rats. Toxicol. Lett., 2005, 156(2), 297-306.
[http://dx.doi.org/10.1016/j.toxlet.2004.12.003] [PMID: 15737492]


Rights & PermissionsPrintExport Cite as


Article Details

VOLUME: 20
ISSUE: 1
Year: 2020
Page: [67 - 76]
Pages: 10
DOI: 10.2174/1871530319666190410144540
Price: $65

Article Metrics

PDF: 14
HTML: 2

Special-new-year-discount