Influence of Ni Doping on CuO Nanoparticles Synthesized by Rapid Solid Reaction Method

Author(s): A.E.A. Morsy , M. Rashad* , N.M. Shaalan , M.A. Abdel-Rahim .

Journal Name: Micro and Nanosystems

Volume 11 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Object: Copper oxide (CuO) nanoparticles (NPs) and copper oxide doped with various percentage of nickel (Ni) have been successfully prepared using the solid-solid reaction method.

Methods: The obtained powders of these CuO NPs have been calcined at various temperatures of 350°C, 450°C, 550°C and 650°C. These NPs have been characterized by Differential Thermal Analysis (DTA), X-Ray diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM) and Fourier Transformation Infrared Spectroscopy (FTIR).

Results: XRD results obtained a pure phase of the as-prepared CuO NPs. The average crystallite size determined from XRD increases with certain calcination temperature. Doping of Ni in CuO NPs is extensively studied. The increase of Ni from 0.5% to 10% causes a decrease in the average crystallite size observed in FESEM studies. Moreover, magnetic properties are investigated for as-prepared CuO, CuO calcined at 650°C, and CuO doped 10% Ni.

Conclusion: The magnetic observations illustrated that, at the maximum applied field of 1.5 kOe, the magnetic response with a maximum moment M ≤ 0.01 emu/g for CuO NPs is achieved. This could be related to the uncompensated surface spins. Moreover, the magnetic response with a maximum moment is doubled in CuO NPs doped with 10% Ni.

Keywords: CuO, Ni, X-ray diffraction, FESEM, magnetic hysteresis loop, nanoparticles.

[1]
Mallick, P.; Sahu, S. Structure, microstructure and optical absorption analysis of CuO nanoparticles synthesized by sol-gel route. Nanosci. Nanotechnol., 2012, 2, 71-74.
[2]
Rashad, M.; Hamdalla, T.A.; Al Garni, S.E.; Darwish, A.A.; Seleim, S.M. Optical and electrical behaviors in NiO/xFe2O3 nanoparticles synthesized by microwave irradiation method. Opt. Mater., 2018, 75, 869-874.
[3]
Rashad, M.; Al-Aoh, H.A. Promising adsorption studies of bromophenol blue using copper oxide nanoparticles. Desalination Water Treat., 2019, 139, 360-368.
[4]
Shaalan, N.M.; Rashad, M.; Abdel-Rahim, M.A. CuO nanoparticles synthesized by microwave-assisted method for methane sensing. Opt. Quantum Electron., 2016, 48, 531.
[5]
Kampmeier, J.; Rashad, M.; Woggon, U.; Ruth, M.; Meier, C.; Schikora, D. Enhanced photoluminescence of colloidal nanocrystals embedded in epitaxially grown semiconductor microstructures. Phys. Rev. B Condens. Matter, 2012, 85(15)155405
[6]
Hendi, A.A.; Rashad, M. Photo-induced changes in nano-copper oxide for optoelectronic applications. Physica B, 2018, 538, 185-190.
[7]
El-Kemary, M.; Nagy, N.; El-Mehasse, I. Nickel oxide nanoparticles: Synthesis and spectral studies of interactions with glucose. Mater. Sci. Semicond. Process., 2013, 16, 1747-1752.
[8]
Singh, D.P.; Ali, N. Synthesis of TiO2 and CuO nanotubes and nanowires. Adv. Mater. Sci., 2010, 2, 295-335.
[9]
Gao, X.P.; Bao, J.L.; Pan, G.L.; Zhu, H.Y.; Huang, P.Y.; Wu, F.; Song, D.Y. Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J. Phys. Chem. B, 2004, 108, 5547-5551.
[10]
Rao, G.N.; Yao, Y.D.; Chen, J.W. Superparamagnetic behavior of antiferromagnetic CuO nanoparticles. IEEE Trans. Magn., 2005, 41, 3409-3411.
[11]
Song, M.K.; Park, S. Nanostructured electrodes for lithium-ion and lithium-air batteries: The latest developments, challenges, and perspectives. Mater. Sci. Eng. R. Rep., 2011, 72, 203-252.
[12]
Han, K.; Tao, M. Electrochemically deposited p-n homojunction cuprous oxide solar cells. Sol. Energy Mater. Sol. Cells, 2009, 93, 153-157.
[13]
Tokura, Y.; Takagi, H.; Uchida, S. A superconducting copper oxide compound with electrons as the charge carriers. Nature, 1998, 337, 345-347.
[14]
Steinhauer, S.; Brunet, E.; Maier, T.; Mutinati, G.; Kock, A.; Freudenberg, U.; Gspan, C.; Grogger, W.; Neuhold, A.; Resel, R. Gas sensing properties of novel CuO nanowire devices. Sens. Actuator Chem., 2013, 187, 50-57.
[15]
Liao, L.; Zhang, Z.; Yan, B.; Zheng, Z.; Bao, Q.L.; Wu, T.; Li, C.M.; Shen, Z.X.; Zhang, J.X.; Gong, H. Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors. Nanotechnology, 2009, 20085203
[16]
Fan, H.; Yang, L.; Hua, W.; Wu, X.; Wu, Z.; Xie, S.; Zou, B. Controlled synthesis of monodispersed CuO nanocrystals. Nanotechnology, 2004, 15, 37-42.
[17]
Bayansal, F.; Gulen, Y.; Sahin, B.; Kahrman, S.; Cetinkara, H.A. CuO nanostructures grown by the SILAR method: Influence of Pb-doping on the morphological, structural and optical properties. J. Alloys Compd., 2015, 619, 378-382.
[18]
Pei, L.; Zhang, X.; Zhang, L.; Zhang, Y.; Xu, Y. Solvent influence on the morphology and supercapacitor performance of the nickel oxide. Mater. Lett., 2016, 162, 238-241.
[19]
Rahdar, A.; Aliahmad, M.; Azizi, Y.; Keikha, N.; Moudi, M.; Keshavarzi, F. CuO-NiO nano composites: Synthesis, characterization, and cytotoxicity evaluation. Nanomed. Res. J., 2017, 2, 78-86.
[20]
Gajendiran, J.; Rajendran, V. Synthesis and characterization of coupled semiconductor metal oxide (ZnO/CuO) nanocomposite. Mater. Lett., 2014, 116, 311-313.
[21]
Li, B.; Wang, Y. Facile synthesis and photocatalytic activity of ZnO–CuO nanocomposite. Superlattices Microstruct., 2010, 47, 615-623.
[22]
Baya, N.; Jeevanandam, P. Synthesis of CuO@NiO core-shell nanoparticles by homogeneous precipitation method. J. Alloys Compd., 2012, 537, 232-241.
[23]
Li, M.H.F.; Zhnag, Y.X. GaO, L.X. Hierarchical NiO nanoflake coated CuO flower core-shell nanostructures for supercapacitor. Ceram. Int., 2014, 40, 5533-5538.
[24]
Kersen, U.; Sundberg, M. The reactive surface sites and the H2S sensing potential for the SnO2 produced by a mechanochemical milling. J. Electrochem. Soc., 2003, 150, 129.
[25]
Abdel-Rahim, M.A.; Abdel-Latief, A.Y.; Rashad, M.; Abdelazim, N.M. Annealing effect on structural and optical properties of Se87.5Te10Sn2.5 thin films. Mater. Sci. Semicond. Process., 2014, 20, 27-34.
[26]
Darwish, A.A.A.; Rashad, M.; Alharbi, S.R. Structural investigations and mobility enhanced of Vanadyl 2,3-naphthalocyanine (VONc) nanostructured films under thermal effect. Appl. Phys., A., 2018, 124, 447.
[27]
Trazzi, S.; Tadeu, E.; Orivaldo, G. Correlation between ionic radius and thermal decomposition of Fe(II), Co(II), Ni(II), Cu(II) and Zn(II) diethanoldithiocarbamates. Thermochim. Acta, 2000, 356, 79-84.
[28]
Ali Ahmad, M.; Rahdar, A.; Sadeghfar, F.; Bagheri, S.; Hajinezhad, M.R. Synthesis and biochemical effects of magnetite nanoparticle by surfactant-free electrochemical method in an aqueous system: The current density effect. Nanomed. Res. J., 2016, 1, 39-46.
[29]
Rashad, M.; Darwish, A.A.A. Blue shift of band gap for vanadyl-naphthalocyanine (VONc) thin films monitored at thermal effect. Mater. Res. Express, 2018, 5026402
[30]
Khoshnevisan, K.; Barkhi, M.; Ghasemzadeh, A.; Tahami, H.V.; Pourmand, S. Fabrication of coated/uncoated magnetic nanoparticles to determine their surface properties. Mater. Manuf. Process, 2016, 31-15 1206-1215
[31]
Rashad, M.; Ali, A.M.; Sayyed, M.I.; Kityk, I.V. Photoluminescence features of magnetic nano-metric metal oxides. J. Mater. Sci. Mater. Electron., 2018, 29, 10123-10128.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 11
ISSUE: 2
Year: 2019
Page: [109 - 114]
Pages: 6
DOI: 10.2174/1876402911666190408145839

Article Metrics

PDF: 11
HTML: 2