Using Genetic Algorithms to study the Effect of Cellulose Fibers Ratio on the Fiber-Matrix Interface Damage of Biocomposite Materials

Author(s): Khadidja Atig , Allel Mokaddem* , Mohamed Meskine , Bendouma Doumi* , Mohammed Belkheir , Mohammed El Keurti .

Journal Name: Current Materials Science

Volume 12 , Issue 1 , 2019

Become EABM
Become Reviewer

Abstract:

Background: In this article, we have studied the effect of cellulose fibers ratio on the fiber matrix interface damage of biocomposite materials based on a Polypropylene (PP) matrix.

Methods: Few patents on the effect of cellulose fibers ratio on the fiber-matrix interface damage of biocomposite materials were published. We have investigated this damage, using a metaheuristic simulation based on the two Weibull probabilistic models which successively described the damage of the fiber and the matrix, our objective function is presented by the Cox model.

Results: The results of our genetic modeling confirm that the level of damage is related to the mechanical stresses applied to the five studied materials Cotton-Polypropylene, Jute-Polypropylene, Flax- Polypropylene, Ramie-Polypropylene and Aramid-Polypropylene. Our genetic modeling indicates that the rate of cellulose in each fiber has a significant influence on the progressive degradation of the interface. The numerical simulation compared to the result obtained by genetic algorithm for the Aramid- Polypropylene composite shows that the level of degradation of the interface is greater compared to other biocomposite materials and that Cotton-Polypropylene has a very low interface damage compared to other biocomposites (82.5% cellulose).

Conclusion: It can thus be said that the model correctly took into account the degradation phenomenon of a unidirectional composite and biocomposite and our calculations coincide perfectly with the conclusions of Antoine et al. who determined that the rate of cellulose in each fiber participates in the improvement of the mechanical properties of biocomposite materials.

Keywords: Biocomposites, damage, cellulose, polypropylene, fiber, matrix.

[1]
Fahmy Y, Fahmy TYA, Mobarak F, El-Sakhawy M, Fadl MH. Agricultural residues (wastes) for manufacture of paper, board, and miscellaneous products: background overview and future prospects. Int J Chemtech Res 2017; 10(2): 424-48.
[2]
Fahmy Y, Ibrahim H. Rice straw for paper making. Cellul Chem Technol 1970; 4(3): 339-48.
[3]
Fahmy TYA, Fahmy Y, Mobarak F, El-Sakhawy M, Abou-Zeid RE. Biomass pyrolysis: Past, present, and future. Environ Dev Sustain 2018 Jun; (1): 1-16.
[4]
Mobarak F, Fahmy Y, Augustin H. Binderless lignocellulose composite from bagasse and mechanism of self-bonding. Holzforschung 1982; 36(3): 131-5.
[5]
Fahmy TYA, Mobarak F, Fahmy Y. Incorporation of never-dried cotton fibers with methylmethacrylate: A gateway to unique transparent board-like nanocomposites. Int J Chemtech Res 2016; 9(12): 191-200.
[6]
Borbely E. Lyocell, the new generation of regenerated cellulose. Acta Polytech Hung 2008; 5(3): 11-8.
[7]
Fahmy TYA, Mobarak F, Kassem N, Abdel-Kader AH. New approach for upgrading pulp & paper quality: Mild potassium permanganate treatment of already bleached pulps. Carbohydr Polym 2008; 74(4): 892-4.
[8]
Fahmy Y, Fadl NA. A study of the production of hardboard from some indigenous agricultural residues. Egypt J Chem 1974; 17(3): 293-301.
[9]
Fahmy Y, Fadl NA. Acetylation in particle board making. Egypt J Chem 1979; 20(4): 397-403.
[10]
Mobarak F, Nada AM, Fahmy Y. Fibreboard from exotic raw materials. I. Hardboard from rice straw pulps. J Appl Chem Biotechnol 1975; 25(9): 653-8.
[11]
Fahmy TYA, Mobarak F. Advanced binderless board-like green nanocomposites from undebarked cotton stalks and mechanism of self-bonding. Cellulose 2013; 20(3): 1453.
[12]
Fahmy TYA, Mobarak F, Fahmy Y. Incorporation of never-dried cotton fibers with methylmethacrylate: a gateway to unique transparent board-like nanocomposites. Int J Chemtech Res 2016; 9(12): 191-200.
[13]
Kennedy JF, Phillips GO, Williams PA. Cellulose sources and exploitation: industrial utilization, biotechnology and physico-chemical properties. New York: Ellis Hordwood 1990.
[14]
Reguant J, Rinaudo M. Étude bibliographique sur les matériaux issus de la biomasse végétale. 01/09/1998 - 31/05/1999. Available at: http://www.cermav.cnrs.fr/etat_art/revue_mater_issus_biomasse.pdf
[15]
Zhang X. Fundamentals in fiber science. Lancaster, DEStech publications 2014.
[16]
Gay D. Matériaux composites New Castle: Hermes Publication 1997.
[17]
Xue LG, Tabil L, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 2007; 15(1): 25-33.
[18]
Wu Z, Sun T. Epoxy resin nanocomposite and preparation method thereof. CN104194277 2014.
[19]
Buketov AV, Sapronov OO, Yarema IT. Method for curing epoxy nanocomposite with enhanced mechanical and physical properties. UA89897 2014.
[20]
Atar N, Grossman E, Guzman I, Sfez B. Thermal interface Nanocomposite. WO2014204828 (2014)
[21]
Yazami R, Teng YT. Nanocomposite, electrode containing the nanocomposite, and method of making the nanocomposite. WO2015108486 (2015)
[22]
Mader A, Volkmann E, Einsiedel R, Mussig J. Impact and flexural properties of unidirectional man-made cellulose reinforced thermoset composites. J Biobased Mater Bioenergy 2012; 6: 481-92.
[23]
Mader A, Kondor A, Schmid T, Einsiedel R, Mussig J. Surface properties and fiber-matrix adhesion of man-made cellulose epoxy composites influence on impact properties. Compos Sci Technol 2016; 123: 163-70.
[24]
Mussig J, Graupner N. Characterisation of fibre/matrix adhesion in biobased fibre-reinforced thermoplastic composites. In: Mittal KL, Bahners T, Ed. Textile finishing: recent developments and future trends. Beverly: Scrivener Publishing 2017; pp. 485-56.
[25]
Bledzki AK, Gassan J. Composite reinforced with cellulose based fibers. Prog Polym Sci 1999; 24: 221-74.
[26]
Ly EHB. Nouveaux matériaux composites thermoformables à base de fibres de cellulose Matériaux Thèse de Doctorat, Institut National Polytechnique de Grenoble, Grenoble, France 2008.
[27]
Baley C, Grohens Y, Pillin I. State of the art regarding biodegradable composites. Rev Comp Adv Mater 2004; 14(2): 135-66.
[28]
Mohanty AK, Misra M, Hinrichsen G. Biofibers, biodegradable polymers and biocomposites: An overview. Macromol Mater Eng 2000; 276(277): 1-24.
[29]
Tripathi D. Practical guide to polypropylene Kaki Bukit: iSmithers Rapra Publishing 2001.
[30]
Porex. Polypropylene Plastic Materials & Fibers. Available at: www.porex.com.
[31]
Clive M, Calafut T. Polypropylene: the definitive user’s guide and databook. Amsterdam: Elsevier Science 1998.
[32]
Kaiser W. Kunststoffchemie für Ingenieure von der Synthese bis zur Anwendung. 3rd ed. München: Hanser 2011.
[33]
Nuyken O, Koltzenburg S, Maskos M. Polymere: Synthese, Eigenschaften und Anwendungen. Berlin: Springer 2013.
[34]
Cacciari I, Quatrini P, Zirletta G. Isotactic polypropylene biodegradation by a microbial community: physicochemical characterization of metabolites produced. Appl Environ Microbiol 1993; 59(11): 3695-700.
[35]
Lem J, Chaboche JL. Mechanics of solid materials. Cambridge: Cambridge University Press 1988.
[36]
Amédée S, Francois-Gérard R. Les algorithmes génétiques. TE de fin d’année Tutorat de Mr Philippe Audebaud. 2004; 2-9.
[37]
Ziani N, Boudali A, Mokaddem A, Doumi B, Beldjoudi N, Boutaous A. Study by genetic algorithm of the role of alfa natural fiber in enhancing the mechanical properties of composites materials based on epoxy matrix. Fibres Text East Eur 2016; 3(117): 58-62.
[38]
Temimi LH, Mokaddem A, Belkaid N, Boutaous A, Bouamrane R. Study of the effect of water intake by the matrix on the optimization of the fiber matrix interface damage for a composite material by genetic algorithms. Strength Mater 2013; 46: 543-7.
[39]
Mokaddem A, Alami M, Boutaous A. A study by a genetic algorithm for optimizing the arrangement of the fibers on the damage to the fiber-matrix interface of a composite material. J Textil Inst 2012; 103(12): 1376-82.
[40]
Alami M, Mokaddem A, Doumi B, Beldjoudi N, Boutaous A. Investigation by a genetic algorithm of the effect of moisture diffusion on the fiber matrix interface damage of graphite/epoxy nanocomposite. Recent Pat Mater Sci 2015; 8: 253-9.
[41]
Weibull W. Theory of the strength of materials. Royal Swedish Aca of Eng Sci Proc 1939; 151: 1-45.
[42]
Ladevese P, Lubineau G. Pont entre micro et méso mécaniques des composites stratifies. Comptes Rendus Mécanique 2003; 331: 537-44.
[43]
Lissart N. Damage and failure in ceramic matrix minicomposites: experimental study and model. Acta Mater 1997; 45: 1025-44.
[44]
Grange S, Prensier J-L. Annexe: Determination des paramètres de Weibull Le modèle de Weibull : un critère de rupture probabiliste. Université Paris- Saclay. Available at http://eduscol.education.fr/sti/si-ens-cachan/.
[45]
Cox HL. The elasticity and strength of paper and other fibrous materials. Br J Appl Phys 1952; 12: 72-9.
[46]
Le Digou A, Davies P, Baley C. Study of interfacial bonding of Flax fibre/Poly-L-lactide. Association for Composite Materials, JNC 16, Toulouse, France 2009-10.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 12
ISSUE: 1
Year: 2019
Page: [83 - 90]
Pages: 8
DOI: 10.2174/1874464812666190408144801
Price: $58

Article Metrics

PDF: 4
HTML: 2
EPUB: 1
PRC: 1