Dual Anti-cancer and Anti-Itch Activity of PD176252 Analogues: Design, Synthesis and Biological Evaluation

Author(s): Ming-Jun Yu, Sen Yao, Ting-Ting Li, Rui Yang, Ri-Sheng Yao*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Cancer patients treated with targeted anti-cancer drug suffer from itch or pruritus. Itch or pruritus is an unpleasant sensation that brings about a negative impact on quality of life, and serious itch may lead to dose reduction and even discontinuation. Gastrin releasing peptide receptor (GRPR) plays a critical role in itch, inflammation and cancer, and GRPR antagonist has obvious effect on cancer, inflammation and itch. The aim of this paper is to develop a new agent with anti-cancer and anti-itch activity.

Methods: A series of GRPR antagonist PD176252 analogues (3a-3l) were designed and synthesized. Both anticancer and anti-itch activities were evaluated. Anti-cancer activity was evaluated in three human cancer cell lines in vitro, the anti-itch activity in evaluated with Kunming mice by intrathecal injection of chloroquine phosphate as a modeling medium. And the cytotoxicity on normal cells was evaluated.

Results: Of the tested compounds, compound 3i showed potently anti-cancer activity to all cancer cell lines tested with IC50 values of 10.5µM (lung), 11.6µM (breast) and 12.8µM (liver) respectively and it also showed significant inhibition of the scratching behavior. Comparing with PD17625, compound 3i and 3g gave better inhibition activities against all cancer cell lines, compound 3b, 3c and 3i showed better anti-itch activity. The compound 3i is safe for normal breast and liver normal cells, but it has high cytotoxicity on normal lung cell.

Conclusion: The synthesized compounds have dual anti-cancer and anti-itch activity, so the development of drug with dual anti-tumor and anti-itch property is possible.

Keywords: Analogues, PD176252, anti-cancer, anti-itch, GRPR, NCI-H1299 cells, MHCC97H cells.

[1]
Ashwood, V.; Brownhill, V.; Higginbottom, M.; Horwell, D.C.; Hughes, J.; Lewthwaite, R.A. Pd 176252--the first high affinity non-peptide gastrin-releasing peptide (bb2) receptor antagonist. Bioorg. Med. Chem. Lett., 1998, 8(18), 2589-2594.
[2]
Moody, T.W.; Nakagawa, T.; Kang, Y.; Jakowlew, S.; Chan, D.; Jensen, R.T. Bombesin/gastrin-releasing peptide receptor antagonists increase the ability of histone deacetylase inhibitors to reduce lung cancer proliferation. J. Mol. Neurosci., 2006, 28(3), 231-238.
[3]
Moody, T.W.; Leyton, J.; Garcia-Marin, L.; Jensen, R.T. Nonpeptide gastrin releasing peptide receptor antagonists inhibit the proliferation of lung cancer cells. Eur. J. Pharmacol., 2003, 474(1), 21-29.
[4]
Li, X.; Lv, Y.; Yuan, A.; Yi, S.; Ma, Y.; Li, Z. Gastrin-releasing peptide promotes the growth of HEPG2 cells via EGFR-independent ERK1/2 activation. Oncol. Rep., 2010, 24(2), 441-448.
[5]
Zhang, Q.; Bhola, N.E.; Lui, V.W.; Siwak, D.R.; Thomas, S.M.; Gubish, C.T. Antitumor mechanisms of combined gastrin-releasing peptide receptor and epidermal growth factor receptor targeting in head and neck cancer. Mol. Cancer Ther., 2007, 6(4), 1414-1424.
[6]
Thomas, S.M.; Grandis, J.R.; Wentzel, A.L.; Gooding, W.E.; Lui, V.W.; Siegfried, J.M. Gastrin-releasing peptide receptor mediates activation of the epidermal growth factor receptor in lung cancer cells. Neoplasia, 2005, 7(4), 426-431.
[7]
Saito, A.; Yamashita, T.; Mariko, Y.; Nosaka, Y.; Tsuchiya, K.; Ando, T. A synthetic inhibitor of histone deacetylase, ms-27-275, with marked in vivo antitumor activity against human tumors. Proc. Natl. Acad. Sci. USA, 1999, 96(8), 4592-4597.
[8]
Rakesh, K.P.; Wang, S.M.; Jing, L.; Ravindar, L.; Asiri, A.M.; Marwani, H.M. Recent development of sulfonyl or sulfonamide hybrids as potential anticancer agents: A key review. Anticancer. Agents Med. Chem., 2017, 18(4), 488-505.
[9]
Belum, V.R.; Fontanilla, P.H.; Lacouture, M.E.; Rodeck, U. Skin toxicity of targeted cancer agents: mechanisms and intervention. Future Oncol., 2013, 9(8), 1161-1170.
[10]
Belum, V.R.; Washington, C.; Pratilas, C.A.; Sibaud, V.; Boralevi, F.; Lacouture, M.E. Dermatologic adverse events in pediatric patients receiving targeted anticancer therapies: A pooled analysis. Pediatr. Blood Cancer, 2015, 62(5), 798-806.
[11]
Brannon-Peppas, L.; Blanchette, J.O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev., 2012, 56(11), 1649-1659.
[12]
Magalhaes, L.G.; Ferreira, L.; Andricopulo, A.D. Recent advances and perspectives in cancer drug design. Anais Acad. Brasil. . Ciencias, 2018, 1233-1250.
[13]
Rosen, A.C.; Case, E.C.; Dusza, S.W.; Balagula, Y.; Gordon, J.; West, D.P. Impact of dermatologic adverse events on quality of life in 283 cancer patients: A questionnaire study in a dermatology referral clinic. Am. J. Clin. Dermatol., 2013, 14(4), 327-333.
[14]
Gandhi, M.; Oishi, K.; Zubal, B.; Lacouture, M.E. Unanticipated toxicities from anticancer therapies: Survivors’ perspectives. Support. Care Cancer, 2010, 18(11), 1461-1468.
[15]
Tischer, B.; Huber, R.; Kraemer, M.; Lacouture, M.E. Dermatologic events from EGFR inhibitors: The issue of the missing patient voice. Support. Care Cancer, 2017, 25(2), 651-660.
[16]
Wu, J.; Lacouture, M.E. Pruritus associated with targeted anticancer therapies and their management. Dermatol. Clin., 2018, 36(3), 315-324.
[17]
Ensslin, C.J.; Rosen, A.C.; Wu, S.; Lacouture, M.E. Pruritus in patients treated with targeted cancer therapies: Systematic review and meta-analysis. J. Am. Acad. Dermatol., 2013, 69(5), 708-729.
[18]
Moody, T.W. GRPR (gastrin-releasing peptide receptor). Atlas Genet. Cytogenet. Oncol. Haematol., 2014, 18(10), 711-714.
[19]
Zhou, J.; Chen, J.; Mokotoff, M.; Ball, E.D. Targeting gastrin-releasing peptide receptors for cancer treatment. Anticancer Drugs, 2004, 15(10), 921-927.
[20]
Laukkanen, M.O.; Castellone, M.D. Gastrin-releasing peptide receptor targeting in cancer treatment: Emerging signaling networks and therapeutic applications. Curr. Drug Targets, 2015, 16(14), 1-7.
[21]
Czepielewski, R.S.; Porto, B.N.; Rizzo, L.B.; Roesler, R.; Abujamra, A.L.; Pinto, L.G. Gastrin-releasing peptide receptor (GRPR) mediates chemotaxis in neutrophils. Proc. Natl. Acad. Sci. USA, 2012, 109(2), 547-552.
[22]
Clarimundo, V.S.; Farinon, M.; Pedó, R.T.; Von, T.; Nör, C.; Gulko, P.S. Gastrin-releasing peptide and its receptor increase arthritis fibroblast-like synoviocytes invasiveness through activating the pI3k/akt pathway. Peptides, 2017, 95, 57-61.
[23]
Czepielewski, R.S.; Jaeger, N.; Marques, P.E.; Antunes, M.M.; Rigo, M.M.; Alvarenga, D.M. GRPR antagonist protects from drug-induced liver injury by impairing neutrophil chemotaxis and motility. Eur. J. Immunol., 2017, 47(4), 646-657.
[24]
Roesler, R.; Henriques, J.A.; Schwartsmann, G. Gastrin-releasing peptide receptor as a molecular target for psychiatric and neurological disorders. CNS Neurol. Disorders - Drug Targets (Formerly Curr. Drug Targets),, 2006, 5(2), 197-204.
[25]
Petronilho, F.; Roesler, R.; Schwartsmann, G.; Dal, P.F. Gastrinreleasing peptide receptor as a molecular target for inflammatory diseases. Inflamm. Allergy - Drug Targets (Formerly Curr. Drug Targets – Inflamm. Allergy), 2007, 6(4), 197-200.
[26]
Sun, Y.G.; Chen, Z.F. A gastrin-releasing peptide receptor mediates the itch sensation in the spinal cord. Nature, 2007, 448(7154), 700-703.
[27]
Nattkemper, L.A.; Zhao, Z.Q.; Nichols, A.J.; Papoiu, A.D.; Shively, C.A.; Chen, Z.F. Overexpression of the gastrin-releasing peptide in cutaneous nerve fibers and its receptor in the spinal cord in primates with chronic itch. J. Invest. Dermatol., 2013, 133(10), 2489-2492.
[28]
Su, P.Y.; Ko, M.C. The role of central gastrin-releasing peptide and neuromedin b receptors in the modulation of scratching behavior in rats. J. Pharmacol. Experim. Therapeut., 2011, 337(3), 822-829.
[29]
Sukhtankar, D.D.; Ko, M.C. Physiological function of gastrin-releasing peptide and neuromedin B receptors in regulating itch scratching behavior in the spinal cord of mice. PLoS One, 2013, 8(6), e67422.
[30]
Zhao, Z.Q.; Liu, X.Y.; Jeffry, J.; Karunarathne, W.K.; Li, J.L.; Munanairi, A.; Zhou, X.Y.; Li, H.; Sun, Y.G.; Wan, L.; Wu, Z.Y.; Kim, S.; Huo, F.Q.; Mo, P.; Barry, D.M.; Zhang, C.K.; Kim, J.Y.; Gautam, N.; Renner, K.J.; Li, Y.Q.; Chen, Z.F. Descending control of itch transmission by the serotonergic system via 5-ht1a-facilitated GRP-GRPR signaling. Neuron, 2014, 84(4), 821-834.
[31]
Morgat, C.; Macgrogan, G.; Brouste, V.; Vélasco, V.; Sevenet, N.; Bonnefoi, H. Expression of gastrin-releasing peptide receptor (GRPR) in breast cancer and its association with pathological, biological and clinical parameters: a study of 1432 primary tumors. J. Nuclear Med. Off. Publ. Soc. Nuclear Med., 2017, 58(9), 1401-1407.
[32]
Santos, J.; Mesquita, D.; Barrossilva, J.D.; Jerónimo, C.; Henrique, R.; Morais, A. Uncovering potential downstream targets of oncogenic grpr overexpression in prostate carcinomas harboring ets rearrangements. Oncoscience, 2015, 2(5), 497-507.
[33]
Schroeder, R.P.J.; Weerden, W.M.V.; Krenning, E.P.; Bangma, C.H.; Berndsen, S.; Ligt, C.H.G. Gastrin-releasing peptide receptor-based targeting using bombesin analogues is superior to metabolism-based targeting using choline for in vivo imaging of human prostate cancer xenografts. Eur. J. Nucl. Med. Mol. Imaging, 2011, 38(7), 1257-1266.
[34]
Siegfried, J.M.; Krishnamachary, N.; Gaither, D.A.; Gubish, C.; Hunt, J.D.; Shriver, S.P. Evidence for autocrine actions of neuromedin b and gastrin-releasing peptide in non-small cell lung cancer. Pulm. Pharmacol. Ther., 1999, 12(5), 291-302.
[35]
Carroll, R.E.; Ostrovskiy, D.; Lee, S.; Danilkovich, A.; Benya, R.V. Characterization of gastrin-releasing peptide and its receptor aberrantly expressed by human colon cancer cell lines. Mol. Pharmacol., 2000, 58(3), 601-607.
[36]
Pansky, A.; De, W.A.; Fasler-Kan, E.; Boulay, J.L.; Schulz, M.; Ketterer, S. Gastrin releasing peptide-preferring bombesin receptors mediate growth of human renal cell carcinoma. J. Am. Soc. Nephrol., 2000, 11(8), 1409-1418.
[37]
Reubi, J.C.; Wenger, S.; Schmuckli-Maurer, J.; Schaer, J.C.
Gugger, M. Bombesin receptor subtypes in human cancers: Detection with the universal radioligand 125i-[d-tyr6, β-ala11, phe13, nle14] bombesin(6-14). Clin. Cancer Res., 2002, 8(4), 1139-1146.
[38]
Shirahige, Y.; Cai, R.Z.; Szepeshazi, K.; Halmos, G.; Pinski, J.; Groot, K. (). Inhibitory effect of bombesin/gastrin-releasing peptide (GRP) antagonists RC-3950-ii and RC-3095 on MCF-7 miii human breast cancer xenografts in nude mice. Biomed. Pharmacother., 1994, 48(10), 465-472.
[39]
Halmos, G.; Schally, A.V. Reduction in receptors for bombesin and epidermal growth factor in xenografts of human small-cell lung cancer after treatment with bombesin antagonist RC-3095. Proc. Natl. Acad. Sci. USA, 1997, 94(3), 956-960.
[40]
Yano, T.; Pinski, J.; Szepeshazi, K.; Halmos, G.; Radulovic, S.; Groot, K. Inhibitory effect of bombesin/gastrin-releasing peptide antagonist RC-3095 and luteinizing hormone-releasing hormone antagonist SB-75 on the growth of MCF-7 miii human breast cancer xenografts in athymic nude mice. Cancer, 1994, 73(4), 1229-1238.
[41]
Kahán, Z.; Sun, B.; Schally, A.V.; Arencibia, J.M.; Cai, R.Z.; Groot, K. Inhibition of growth of Mda-Mb-468 estrogen-independent human breast carcinoma by bombesin/gastrin-releasing peptide antagonists Rc-3095 and Rc-3940-ii. Cancer, 2000, 88(6), 1384-1392.
[42]
Bajo, A.M.; Schally, A.V.; Groot, K.; Szepeshazi, K. Bombesin antagonists inhibit proangiogenic factors in human experimental breast cancers. Br. J. Cancer, 2004, 90(1), 245-252.
[43]
Schwartsmann, G.; Dileone, L.P.; Horowitz, M.; Schunemann, D.; Cancella, A.; Pereira, A.S. A phase i trial of the bombesin/gastrin-releasing peptide (BN/GRP) antagonist RC3095 in patients with advanced solid malignancies. Invest. New Drugs, 2006, 24(5), 403-412.
[44]
Jensen, R.T.; Battey, J.F.; Spindel, E.R.; Benya, R.V. International union of pharmacology. LXVIII. mammalian bombesin receptors: Nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacol. Rev., 2008, 60(1), 1-42.
[45]
Carrieri, A.; Lacivita, E.; Belviso, B.D.; Caliandro, R.; Mastrorilli, P.; Gallo, V. Structural determinants in the binding of BB2 receptor ligands: in silico, x-ray and nmr studies in PD176252 analogues. Curr. Top. Med. Chem., 2017, 17(14), 1-12.
[46]
Yao, R.S.; Li, T.T.; Xu, J.; Jiang, L.E.; Ruan, B.F. Design, synthesis and anti-itch activity evaluation of aromatic amino acid derivatives as gastrin-releasing peptide receptor antagonists. Med. Chem., 2012, 8(5), 865-873.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 8
Year: 2019
Page: [992 - 1001]
Pages: 10
DOI: 10.2174/1871520619666190408133141
Price: $58

Article Metrics

PDF: 49
HTML: 4