The Interaction of Zinc Oxide/Green Tea Extract Complex Nanoparticles and its Effect on Monosodium Glutamate Toxicity in Liver of Rats

Author(s): Fawziah A. Al-Salmi, Reham Z. Hamza, Nahla S. El-Shenawy*.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 6 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Background: Zinc oxide nanoparticles (ZnO NPs) are increasingly utilized in both industrial and medical applications. Therefore, the study was aimed to investigate the effect of green nanoparticle complex (green tea extract/zinc oxide nanoparticles complex, GTE/ZnO NPs) on oxidative stress induced by monosodium glutamate (MSG) on the liver of rats.

Methods: Wistar male rats (n=64) weighing between 200-250 g were divided randomly into eight groups: control group was given physiological saline (1 mg/kg), two groups were treated with two different doses of MSG (MSG-LD, MSG-HD; 6 and 17.5 mg/Kg, respectively), GTE was given 1 mg/mL, 5th group was treated with ZnO NPs and 6th group was treated with GTE/ZnO NPs complex while, 7th and 8th groups were treated with MSG-LD + GTE/ZnO NPs complex and MSG-HD + GTE/ZnO NPs complex, respectively. All substances were given orally for 30 consecutive days. At the end of the study, the liver was homogenized for measurement of the oxidative stress status and anti-inflammatory biomarkers as well as histological and transmission alternations.

Results: Results showed that the antioxidant enzymes activity and glutathione level were significantly decreased in MSG groups than control in a dose-dependent manner. Conversely, the malondialdehyde and inflammatory cytokines levels were significantly increased in MSG groups than the control group. The liver indicated no evidence of alteration in oxidative status, anti-inflammatory and morphological parameters in GTE, ZnO NPs and GTE/ZnO NPs complex groups.

Conclusion: In conclusion, MSG at both doses caused oxidative stress and inflammation on liver after 28 days of exposure that supported histological analysis and transmission view of hepatic parenchyma. GTE/ZnO NPs act as partial hepato-protective against MSG.

Keywords: Monosodium glutamate, Camellia sinensis, ZnO nanoparticles, Anti-inflammatory, histological alternations, oxidative stress.

Horie, M.; Nishio, K.; Fujita, K.; Kato, H.; Nakamura, A. Kinugasa. S.; Endoh, S.; Miyauchi, A.; Yamamoto, K.; Murayama, H.; Niki, E.; Iwahashi, H.; Yoshida, Y.; Nakanishi, J. Ultrafine NiO particles induce cytotoxicity in vitro by cellular uptake and subsequent Ni(II) release. Chem. Res. Toxicol., 2009, 22(8), 1415-1426.
Espitia, P.J.P.; Soares, N.D.F.F.; Coimbra, J.S.D.R.; Andrade, N.J.D.; Cruz, R.S.; Medeiros, E.A.A. Zinc oxide nanoparticles: synthesis, antimicrobial activity, and food packaging applications. Food Bioprod. Technol, 2012, 5, 1447-1464.
Gantedi, S.; Anreddy, R.N.R. Toxicological studies of zinc oxide nanomaterials in rats. Toxicol. Environ. Chem., 2012, 94(9), 1768-1779.
Ambika, S.; Sundararajan, M. Biology antibacterial behavior of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. J. Photochem. Photobiol. B, 2015, 146, 52-57.
Lakshmi, S.P.; Reddy, A.T.; Banno, A.; Reddy, R.C. PPAR Agonists for the prevention and treatment of lung cancer. PPAR Res., 2017, 2017, 8252796.
Akhtar, M.J.; Alhadlaq, H.A.; Alshamsan, A.; Khan, M.M.; Ahamed, M. Aluminum doping tunes band gap energy level as well as oxidative stress-mediated cytotoxicity of ZnO nanoparticles in MCF-7 cells. Sci. Rep., 2015, 5, 13876-13912.
Vimala, K.; Shanthi, K.; Sundarraj, S.; Kannan, S. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. J. Colloid Interface Sci., 2017, 488, 92-108.
Iwasaki, T.; Shoji, T.; Kamno, Y. Isentropic analysis of polar cold airmass streams in the northern hemispheric Winter. J. Atmos. Sci., 2014, 71, 2230-2243.
Green, A.R.; Carney, D.R.; Pallin, D.J.; Ngo, L.H.; Raymond, K.L.; Iezzoni, L.I.; Banaji, M.R. Implicit bias among physicians and its prediction of thrombolysis decisions for black and white patients. J. Gen. Intern. Med., 2007, 22, 1231-1238.
Rathore, K.; Wang, H.C.R. Green tea catechin extract in intervention of chronic breast cell carcinogenesis induced by environmental carcinogens. Mol. Carcinog., 2012, 51(3), 280-289.
de Lima, M.A. Mota, Landim J.S.P.; TarginoI, T.S.S.; da Silva, S.F.R.; Silva, S.L.D.; Pereira, M.R.P. Evaluation of the anti-inflammatory and analgesic effects of green tea (Camellia sinensis) in mice. Acta Cir. Bras., 2015, 30(4), 242-246.
Yan, Y.; Gu, X.; Xu, H.E.; Melcher, K. A highly sensitive non-radioactive activity assay for AMP-activated protein kinase (AMPK). Methods Protocol., 2018, 1(1), 3.
Senthilkumar, S.; Sivakumar, T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities. Intern. J. Pharmacol. Pharmace. Sci, 2014, 6, 461-465.
Dhanemozhi, C.; Rajeswari, A.; Sathyajothi, S. green synthesis of zinc oxide nanoparticle using green tea leaf extract for supercapacitor application. Materials Today: Proc., 2017, 4, 660-667.
Adrienne, S. The toxicity safety of MSG: A study in suppression of information. Account. Res., 1999, 6, 259-310.
El-Meghawry, E.A.; Osman, H.E.; Daghestani, M.H. The effect of vitamin C administration on monosodium glutamate induced liver injury: An experimental study. Exp. Toxicol. Pathol., 2013, 65(5), 513-521.
Yahya, N.J.; Hamid, Z.A.; Hanipah, E.N.A.; Ajik, E.M.; Yusoff, N.A.; Taib, I.S. Oxidative stress and morphological assessment of bone marrow in monosodium glutamate-treated rat. J. Teknologica, 2018, 80(2), 105-111.
Hamza, R.Z.; Al-Harbi, M.S. Monosodium glutamate induced testicular toxicity and the possible ameliorative role of vitamin E or selenium in male rats. Toxicol. Rep., 2014, 1, 1037-1045.
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1970, 95, 351-358.
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47, 469-474.
Aebi, H. Catalase in vitro. Methods Enzymol., 1984, 105, 121-126.
Couri, D.; Abdel-Rahman, M.S. Effect of chlorine dioxide and metabolites on glutathione-dependent system in rat, mouse and chicken blood. J. Environ. Pathol. Toxicol., 1980, 3, 451-460.
Hafeman, D.G.; Sunde, R.A.; Hoekstra, W.G. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J. Nutr., 1974, 104, 580-587.
Suzuki, K.; Ota, H.; Sasagawa, S.; Sakatani, T.; Fujikura, T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal. Biochem., 1983, 132, 345-352.
Litwack, G.; Bothwell, J.W.; Williams, J.N.; Elvehjem, C.A. A colorimetric assay for xanthine oxide in rat liver homogenates. J. Biol. Chem., 1953, 200, 303-310.
Hu, M.L. Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol., 1994, 233, 380-385.
Wener, M.H.; Daum, P.R.; McQuillin, G.M. The influence of age, sex, and race on the upper reference limit of serum C-reactive protein concentration. J. Rheumatol., 2000, 27(10), 2351-2359.
Speciale, U.M.; Chirafisi, J.; Saija, A.; Cimino, F. Nutritional antioxidants and adaptive cell responses: An update. Curr. Med. Mol1ec., 2011, 1(9), 770-789.
Monika, S.; Marta, S.; Matylda, K.N.; Joanna, S.; Damian, S.; Monika, B.S.; Magdalena, K.Ł.; Małgorzata, G.; Paweł, B. Effects of green tea supplementation on inflammation markers, antioxidant status and blood pressure in NaCl-induced hypertensive rat model. Food Nutr. Res., 2017, 61, 1295525.
Matsubara, S.; Rodrigues-Amaya, D.B. Teores de catequinas e teaflavinas em chás comercializados no Brasil. Ciênc Tecnol. Aliments, 2006, 26(2), 401-407.
Kern, P.A.; Ranganathan, S.; Li, C.; Wood, L.; Ranganathan, G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am. J. Physiol. Endocrinol. Metab., 2001, 280, E745-E751.
Eweka, A.O.; Om’Iniabohs, F.A.E. Histological studies of the effects of monosodium glutamate on the inferior colliculus of adult Wistar rats. Rev. Electron. Biomed, 2008, 3, 24-30.
Eweka, A.O.; Igbigbi, P.S.; Ucheya, R.E. Histochemical studies of the effects of monosodium glutamate on the liver of adult Wistar rats. Ann. Med. Health Sci. Res., 2011, 1(1), 21-30.
Hazar, F. Leptin, high-sensitivity C-reactive protein and malondialdehyde concentrations in elite adolescent soccer players and physically active adolescents. Afr. J. Microbiol. Res., 2008, 6(12), 3047-3051.
Thomas, H.; Venkatraman, N. Research on strategic groups: Progress and prognosis. J. Manage. Stud., 1988, 25(6), 537-555.
Wiedemann, F.R.; Manfredi, G.; Mawrin, C. Mitochondrial DNA and respiratory chain function in spinal cords of ALS patients. J. Neurochem., 2002, 80, 616-625.
Zheng, Y.; Li, R.; Wang, Y. Session E nano-structured materials, biomedical materials and materials simulation. Int. J. Mod. Phys. B, 2009, 23, 1566-1571.
Adamcakova-Dodd, A.; Stebounova, L.V.; Kim, J.S.; Vorrink, S.U.; Ault, A.P.; O’Shaughnessy, P.T.; Grassian, V.H.; Thorne, P.S. 1. Toxicity assessment of zinc oxide nanoparticles using sub-acute and sub-chronic murine inhalation models. Part. Fibre Toxicol., 2014, 11, 15.
Hanley, C.; Thurber, A.; Hanna, C.; Punnoose, A.; Zhang, J.; Wingett, D.G. The influences of cell type and ZnO nanoparticle size on immune cell cytotoxicity and cytokine induction. Nanoscale Res. Lett., 2009, 4, 1409-1420.
Somdet, S.; Kulprachakarn, K.; Pangjit, K.; Pattanapanyasat, K.; Fuchaeron, S. Green tea extract and epigallocatechin 3-gallate reduced labile iron pool and protected oxidative stress in iron-loaded cultured hepatocytes. Adv. Biosci. Biotechnol., 2012, 3, 1140-1150.
Lamberta, J.D.; Eliasa, R.J. The antioxidant and pro-oxidant activities of green tea polyphenols: A role in cancer prevention. Arch. Biochem. Biophys., 2010, 501(1), 65-72.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [465 - 475]
Pages: 11
DOI: 10.2174/1389201020666190408120532
Price: $58

Article Metrics

PDF: 13