Microbiological Diagnosis of Skeletal System Infections in Children

Author(s): Pablo Yagupsky*.

Journal Name: Current Pediatric Reviews

Volume 15 , Issue 3 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: If not timely diagnosed and adequately treated, skeletal system infections in children may result in severe and permanent disability. Prompt identification of the etiology of the disease and determination of its antibiotic susceptibility are crucial for the successful management of septic arthritis, osteomyelitis, and spondylodiscitis. However, the bacteriological diagnosis of these infections has been traditionally limited by the low yield of conventional cultures and, on average, one-third of cases of pediatric joint and bone infections remained unconfirmed.

Objective: To review the medical literature to summarize the current approach diagnosing the pediatric skeletal system infections.

Methods: The relevant publications for the last three decades were reviewed.

Results: In recent years, the detection of skeletal system pathogens has been revolutionized by the use of improved laboratory methods, including seeding of synovial fluid and bone exudates into blood culture vials, and the development and implementation of sensitive nucleic acid amplification assays. These advances have resulted in the recognition of Kingella kingae as the predominant etiology of hematogenous infections of bones, joints, intervertebral discs and tendon sheaths in children aged 6-48 months, and reduced the fraction of culture-negative osteoarthritis.

Conclusion: As the exudate and tissue samples obtained from young children with skeletal system infections are frequently insufficient for a comprehensive laboratory workup, physicians should take in consideration the patient’s age, predisposing medical conditions and possible exposure to zoonotic organisms, and use a judicious combination of Gram’s stain, culture on blood culture vials, and molecular tests to maximize the microbiological diagnosis of these diseases.

Keywords: Children, skeletal system infections, diagnosis, culture, nucleic acid amplification tests, synovial fluid.

[1]
Pääkkönen M, Peltola H. Simplifying the treatment of acute bacterial bone and joint infections in children. Expert Rev Anti Infect Ther 2011; 9(12): 1125-31.
[http://dx.doi.org/10.1586/eri.11.140] [PMID: 22114963]
[2]
Ceroni D, Kampouroglou G, Valaikaite R, Anderson della Llana R, Salvo D. Osteoarticular infections in young children: what has changed over the last years? Swiss Med Wkly 2014; 144w13971
[http://dx.doi.org/10.4414/smw.2014.13971] [PMID: 24921410]
[3]
Floyed RL, Steele RW. Culture-negative osteomyelitis. Pediatr Infect Dis J 2003; 22(8): 731-6.
[http://dx.doi.org/10.1097/01.inf.0000078901.26909.cf] [PMID: 12913776]
[4]
Spyridakis E, Gerber JS, Schriver E, et al. Clinical features and outcome of children with culture-negative septic arthritis. J Pediatr Infect Dis Soc 2019; 8(3): 228-34.
[http://dx.doi.org/10.1093/jpids/piy034] [PMID: 29718310]
[5]
Fernandez M, Carrol CL, Baker CJ. Discitis and vertebral osteomyelitis in children: an 18-year review. Pediatrics 2000; 105(6): 1299-304.
[http://dx.doi.org/10.1542/peds.105.6.1299] [PMID: 10835072]
[6]
Ceroni D, Belaieff W, Kanavaki A, et al. Possible association of Kingella kingae with infantile spondylodiscitis. Pediatr Infect Dis J 2013; 32(11): 1296-8.
[http://dx.doi.org/10.1097/INF.0b013e3182a6df50] [PMID: 24131988]
[7]
Juchler C, Spyropoulou V, Wagner N, et al. The contemporary bacteriologic epidemiology of osteoarticular infections in children in Switzerland. J Pediatr 2018; 194: 190-196.e1.
[http://dx.doi.org/10.1016/j.jpeds.2017.11.025] [PMID: 29263015]
[8]
Gutierrez K. Bone and joint infectionPrinciples and practice of pediatric infectious disease 2nd ed 2003; 467-74.
[9]
Ike RW. Bacterial arthritis. Curr Opin Rheumatol 1998; 10(4): 330-4.
[http://dx.doi.org/10.1097/00002281-199807000-00009] [PMID: 9725094]
[10]
Saavedra-Lozano J, Falup-Pecurariu O, Faust SN, et al. Bone and joint infections. Pediatr Infect Dis J 2017; 36(8): 788-99.
[http://dx.doi.org/10.1097/INF.0000000000001635] [PMID: 28708801]
[11]
Grammatico-Guillon L, Maakaroun Vermesse Z, Baron S, Gettner S, Rusch E, Bernard L. Paediatric bone and joint infections are more common in boys and toddlers: a national epidemiology study. Acta Paediatr 2013; 102(3): e120-5.
[http://dx.doi.org/10.1111/apa.12115] [PMID: 23205841]
[12]
Lavy CBD, Peek AC, Manjolo G. The incidence of septic arthritis in Malawian children. Int Orthop 2005; 29(3): 195-6.
[http://dx.doi.org/10.1007/s00264-005-0643-9] [PMID: 15806359]
[13]
Peltola H, Pääkkönen M. Acute osteomyelitis in children. N Engl J Med 2014; 370(4): 352-60.
[http://dx.doi.org/10.1056/NEJMra1213956] [PMID: 24450893]
[14]
Gutierrez K. Bone and joint infections in children. Pediatr Clin North Am 2005; 52(3): 779-94. [vi].
[http://dx.doi.org/10.1016/j.pcl.2005.02.005] [PMID: 15925662]
[15]
Trujillo M, Nelson JD. Suppurative and reactive arthritis in children. Semin Pediatr Infect Dis 1997; 8(4): 242-9.
[http://dx.doi.org/10.1016/S1045-1870(97)80018-0]
[16]
Dayer R, Alzahrani MM, Saran N, et al. Spinal infections in children: a multicentre retrospective study. Bone Joint J 2018; 100-B(4): 542-8.
[http://dx.doi.org/10.1302/0301-620X.100B4.BJJ-2017-1080.R1] [PMID: 29629576]
[17]
Jurissen A, Ceupens JL, Bossuyt X. T lymphocyte dependence of the antibody response to ‘T lymphocyte independent type 2’ antigens. Immunol 2004; 111: 1-7.
[http://dx.doi.org/10.1111/j.1365-2567.2004.01775.x]
[18]
Mediamolle N, Mallet C, Aupiais C, et al. Bone and joint infections in infants under three months of age. Acta Paediatr 2018; 108(5)
[http://dx.doi.org/10.1111/apa.14569] [PMID: 30188592]
[19]
Eggink BH, Rowen JL. Primary osteomyelitis and suppurative arthritis caused by coagulase-negative staphylococci in a preterm neonate. Pediatr Infect Dis J 2003; 22(6): 572-3.
[http://dx.doi.org/10.1097/01.inf.0000069797.63444.df] [PMID: 12828160]
[20]
Teo HE, Peh WC. Skeletal tuberculosis in children. Pediatr Radiol 2004; 34(11): 853-60.
[http://dx.doi.org/10.1007/s00247-004-1223-7] [PMID: 15278319]
[21]
Rice PA. Gonococcal arthritis (disseminated gonococcal infection). Infect Dis Clin North Am 2005; 19(4): 853-61.
[http://dx.doi.org/10.1016/j.idc.2005.07.003] [PMID: 16297736]
[22]
Abouanaser SF, Srigley JA, Nguyen T, et al. Bordetella holmesii, an emerging cause of septic arthritis. J Clin Microbiol 2013; 51(4): 1313-5.
[http://dx.doi.org/10.1128/JCM.06437-11] [PMID: 23345301]
[23]
Franz A, Webster AD, Furr PM, Taylor-Robinson D. Mycoplasmal arthritis in patients with primary immunoglobulin deficiency: clinical features and outcome in 18 patients. Br J Rheumatol 1997; 36(6): 661-8.
[http://dx.doi.org/10.1093/rheumatology/36.6.661] [PMID: 9236676]
[24]
Mathew S, Overturf GD. Complement and properidin deficiencies in meningococcal disease. Pediatr Infect Dis J 2006; 25(3): 255-6.
[http://dx.doi.org/10.1097/01.inf.0000209215.65445.04] [PMID: 16511390]
[25]
Syrogiannopoulos GA, McCracken GH Jr, Nelson JD. Osteoarticular infections in children with sickle cell disease. Pediatrics 1986; 78(6): 1090-6.
[PMID: 3786034]
[26]
Baldwin KD, Brusalis CM, Nduaguba AM, Sankar WN. Predictive factors for differentiating between septic arthritis and Lyme disease of the knee in children. J Bone Joint Surg Am 2016; 98(9): 721-8.
[http://dx.doi.org/10.2106/JBJS.14.01331] [PMID: 27147684]
[27]
Giladi M, Maman E, Paran D, et al. Cat-scratch disease-associated arthropathy. Arthritis Rheum 2005; 52(11): 3611-7.
[http://dx.doi.org/10.1002/art.21411] [PMID: 16255053]
[28]
Benjamin B, Annobil SH, Khan MR. Osteoarticular complications of childhood brucellosis: a study of 57 cases in Saudi Arabia. J Pediatr Orthop 1992; 12(6): 801-5.
[http://dx.doi.org/10.1097/01241398-199211000-00019] [PMID: 1452754]
[29]
Dendle C, Woolley IJ, Korman TM. Rat-bite fever septic arthritis: illustrative case and literature review. Eur J Clin Microbiol Infect Dis 2006; 25(12): 791-7.
[http://dx.doi.org/10.1007/s10096-006-0224-x] [PMID: 17096137]
[30]
Currie BJ, Fisher DA, Howard DM, et al. Endemic melioidosis in tropical northern Australia: a 10-year prospective study and review of the literature. Clin Infect Dis 2000; 31(4): 981-6.
[http://dx.doi.org/10.1086/318116] [PMID: 11049780]
[31]
Brancós MA, Peris P, Miró JM, et al. Septic arthritis in heroin addicts. Semin Arthritis Rheum 1991; 21(2): 81-7.
[http://dx.doi.org/10.1016/0049-0172(91)90041-W] [PMID: 1749942]
[32]
Jacobs RF, McCarthy RE, Elser JM. Pseudomonas osteochondritis complicating puncture wounds of the foot in children: a 10-year evaluation. J Infect Dis 1989; 160(4): 657-61.
[http://dx.doi.org/10.1093/infdis/160.4.657] [PMID: 2571647]
[33]
Davies HD. Infectious Complications with the use of biologic response modifiers in infants and children. Pediatrics 2016; 138(2)e20161209
[http://dx.doi.org/10.1542/peds.2016-1209] [PMID: 27432853]
[34]
Peltola H, Pääkkönen M, Kallio P, Kallio MJ. Short- versus long-term antimicrobial treatment for acute hematogenous osteomyelitis of childhood: prospective, randomized trial on 131 culture-positive cases. Pediatr Infect Dis J 2010; 29(12): 1123-8.
[http://dx.doi.org/10.1097/INF.0b013e3181f55a89] [PMID: 20842069]
[35]
Arnold S. Osteomyelitis In: Shah SS, Kemper AR, Ratner AJ Eds Pediatric infectious diseases 2nd edition Mc Graw Hill 2018; 443- 55.
[36]
Ryu SY, Patel R. Microbiology of bone and joint infections.Bone and joint infections From microbiology to diagnostics and treatment 2015; 5-20.
[37]
Goldenberg DL. Septic arthritis. Lancet 1998; 351(9097): 197-202.
[http://dx.doi.org/10.1016/S0140-6736(97)09522-6] [PMID: 9449882]
[38]
Goldenberg DL, Reed JI. Bacterial arthritis. N Engl J Med 1985; 312(12): 764-71.
[http://dx.doi.org/10.1056/NEJM198503213121206] [PMID: 3883171]
[39]
Yagupsky P. Kingella kingae: carriage, transmission, and disease. Clin Microbiol Rev 2015; 28(1): 54-79.
[http://dx.doi.org/10.1128/CMR.00028-14] [PMID: 25567222]
[40]
Moumile K, Merckx J, Glorion C, Pouliquen JC, Berche P, Ferroni A. Bacterial aetiology of acute osteoarticular infections in children. Acta Paediatr 2005; 94(4): 419-22.
[http://dx.doi.org/10.1080/08035250410023278] [PMID: 16092454]
[41]
Lironi C, Steiger C, Juchler C, Spyropoulou V, Samara E, Ceroni D. Pyogenic tenosynovitis in children. A case series. Pediatr Infect Dis J 2017; 36(11): 1097-9.
[http://dx.doi.org/10.1097/INF.0000000000001673] [PMID: 28661965]
[42]
El Houmami N, Yagupsky P, Ceroni D. Kingella kingae hand and wrist tenosynovitis in young children. J Hand Surg Eur Vol 2018; 43(9): 1001-4.
[http://dx.doi.org/10.1177/1753193418764818] [PMID: 29587602]
[43]
Samuel LP, Balada-Llasat JM, Harrington A, Cavagnolo R. Multicenter assessment of Gram stain error rates. J Clin Microbiol 2016; 54(6): 1442-7.
[http://dx.doi.org/10.1128/JCM.03066-15] [PMID: 26888900]
[44]
Stirling P, Faroug R, Freemont T. Anticoagulating synovial fluid samples in septic arthritis. Rheumatology (Oxford) 2014; 53(12): 2315-7.
[http://dx.doi.org/10.1093/rheumatology/keu327] [PMID: 25172938]
[45]
Stirling P, Faroug R, Amanat S, et al. False-negative rate of gram-stain microscopy for diagnosis of septic arthritis: suggestions for improvement. Int J Microbiol 2014; 2014 830857
[http://dx.doi.org/10.1155/2014/830857] [PMID: 24678320]
[46]
Press J, Peled N, Buskila D, Yagupsky P. Leukocyte count in the synovial fluid of children with culture-proven brucellar arthritis. Clin Rheumatol 2002; 21(3): 191-3.
[http://dx.doi.org/10.1007/s10067-002-8283-6] [PMID: 12111621]
[47]
Connell TG, Rele M, Cowley D, Buttery JP, Curtis N, Curtis N. How reliable is a negative blood culture result? Volume of blood submitted for culture in routine practice in a children’s hospital. Pediatrics 2007; 119(5): 891-6.
[http://dx.doi.org/10.1542/peds.2006-0440] [PMID: 17473088]
[48]
Speiser JC, Moore TL, Osborn TG, Weiss TD, Zuckner J. Changing trends in pediatric septic arthritis. Semin Arthritis Rheum 1985; 15(2): 132-8.
[http://dx.doi.org/10.1016/0049-0172(85)90031-9] [PMID: 4071065]
[49]
Peltola H, Vahvanen V. Acute purulent arthritis in children. Scand J Infect Dis 1983; 15(1): 75-80.
[http://dx.doi.org/10.3109/inf.1983.15.issue-1.12] [PMID: 6844880]
[50]
Dich VQ, Nelson JD, Haltalin KC. Osteomyelitis in infants and children. A review of 163 cases. Am J Dis Child 1975; 129(11): 1273-8.
[http://dx.doi.org/10.1001/archpedi.1975.02120480007004] [PMID: 1190158]
[51]
Dubost JJ. Septic arthritis with no organism: a dilemma. Joint Bone Spine 2006; 73(4): 341-3.
[http://dx.doi.org/10.1016/j.jbspin.2005.11.011] [PMID: 16631404]
[52]
Chang WS, Chiu NC, Chi H, Li WC, Huang FY. Comparison of the characteristics of culture-negative versus culture-positive septic arthritis in children. J Microbiol Immunol Infect 2005; 38(3): 189-93.
[PMID: 15986069]
[53]
Lyon RM, Evanich JD. Culture-negative septic arthritis in children. J Pediatr Orthop 1999; 19(5): 655-9.
[http://dx.doi.org/10.1097/01241398-199909000-00020] [PMID: 10488870]
[54]
Kehl-Fie TE, St Geme JW III. Identification and characterization of an RTX toxin in the emerging pathogen Kingella kingae. J Bacteriol 2007; 189(2): 430-6.
[http://dx.doi.org/10.1128/JB.01319-06] [PMID: 17098895]
[55]
Basmaci R, Bonacorsi S, Ilharreborde B, et al. High respiratory virus oropharyngeal carriage rate during Kingella kingae osteoarticular infections in children. Future Microbiol 2015; 10(1): 9-14.
[http://dx.doi.org/10.2217/fmb.14.117] [PMID: 25598333]
[56]
El Houmami N, Mirand A, Dubourg G, et al. Hand, foot and mouth disease and Kingella kingae infections. Pediatr Infect Dis J 2015; 34(5): 547-8.
[http://dx.doi.org/10.1097/INF.0000000000000607] [PMID: 25876094]
[57]
Chang DW, Nudell YA, Lau J, Zakharian E, Balashova NV. RTX toxin plays a key role in Kingella kingae virulence in an infant rat model. Infect Immun 2014; 82(6): 2318-28.
[http://dx.doi.org/10.1128/IAI.01636-14] [PMID: 24664507]
[58]
Muñoz VL, Porsch EA, St Geme JW III. Kingella kingae surface polysaccharides promote resistance to human serum and virulence in a juvenile rat model. Infect Immun 2018; 86(6): e00100-18.
[http://dx.doi.org/10.1128/IAI.00100-18] [PMID: 29581191]
[59]
Dubnov-Raz G, Scheuerman O, Chodick G, Finkelstein Y, Samra Z, Garty BZ. Invasive Kingella kingae infections in children: clinical and laboratory characteristics. Pediatrics 2008; 122(6): 1305-9.
[http://dx.doi.org/10.1542/peds.2007-3070] [PMID: 19047250]
[60]
Dubnov-Raz G, Ephros M, Garty BZ, et al. Invasive pediatric Kingella kingae Infections: a nationwide collaborative study. Pediatr Infect Dis J 2010; 29(7): 639-43.
[http://dx.doi.org/10.1097/INF.0b013e3181d57a6c] [PMID: 20182400]
[61]
Basmaci R, Lorrot M, Bidet P, et al. Comparison of clinical and biologic features of Kingella kingae and Staphylococcus aureus arthritis at initial evaluation. Pediatr Infect Dis J 2011; 30(10): 902-4.
[http://dx.doi.org/10.1097/INF.0b013e31821fe0f7] [PMID: 21552181]
[62]
Basmaci R, Ilharreborde B, Lorrot M, Bidet P, Bingen E, Bonacorsi S. Predictive score to discriminate Kingella kingae from Staphylococcus aureus arthritis in France. Pediatr Infect Dis J 2011; 30(12): 1120-1.
[http://dx.doi.org/10.1097/INF.0b013e31822ce97e] [PMID: 22105423]
[63]
Ceroni D, Cherkaoui A, Combescure C, François P, Kaelin A, Schrenzel J. Differentiating osteoarticular infections caused by Kingella kingae from those due to typical pathogens in young children. Pediatr Infect Dis J 2011; 30(10): 906-9.
[http://dx.doi.org/10.1097/INF.0b013e31821c3aee] [PMID: 21494171]
[64]
Yagupsky P, Dagan R, Howard CW, Einhorn M, Kassis I, Simu A. High prevalence of Kingella kingae in joint fluid from children with septic arthritis revealed by the BACTEC blood culture system. J Clin Microbiol 1992; 30(5): 1278-81.
[PMID: 1583131]
[65]
Moumile K, Merckx J, Glorion C, Berche P, Ferroni A. Osteoarticular infections caused by Kingella kingae in children: contribution of polymerase chain reaction to the microbiologic diagnosis. Pediatr Infect Dis J 2003; 22(9): 837-9.
[http://dx.doi.org/10.1097/01.inf.0000083848.93457.e7] [PMID: 14515832]
[66]
Verdier I, Gayet-Ageron A, Ploton C, et al. Contribution of a broad range polymerase chain reaction to the diagnosis of osteoarticular infections caused by Kingella kingae: description of twenty-four recent pediatric diagnoses. Pediatr Infect Dis J 2005; 24(8): 692-6.
[http://dx.doi.org/10.1097/01.inf.0000172153.10569.dc] [PMID: 16094222]
[67]
Rosey AL, Abachin E, Quesnes G, et al. Development of a broad-range 16S rDNA real-time PCR for the diagnosis of septic arthritis in children. J Microbiol Methods 2007; 68(1): 88-93.
[http://dx.doi.org/10.1016/j.mimet.2006.06.010] [PMID: 16904782]
[68]
Cherkaoui A, Ceroni D, Ferey S, Emonet S, Schrenzel J. Pediatric osteo-articular infections with negative culture results: what about Kingella kingae? Rev Med Suisse 2009; 5(224): 2235-9.
[PMID: 19994673]
[69]
Slinger R, Moldovan I, Bowes J, Chan F. Polymerase chain reaction detection of Kingella kingae in children with culture-negative septic arthritis in eastern Ontario. Paediatr Child Health 2016; 21(2): 79-82.
[http://dx.doi.org/10.1093/pch/21.2.79] [PMID: 27095882]
[70]
Ilharreborde B, Bidet P, Lorrot M, et al. New real-time PCR-based method for Kingella kingae DNA detection: application to samples collected from 89 children with acute arthritis. J Clin Microbiol 2009; 47(6): 1837-41.
[http://dx.doi.org/10.1128/JCM.00144-09] [PMID: 19369442]
[71]
Chometon S, Benito Y, Chaker M, et al. Specific real-time polymerase chain reaction places Kingella kingae as the most common cause of osteoarticular infections in young children. Pediatr Infect Dis J 2007; 26(5): 377-81.
[http://dx.doi.org/10.1097/01.inf.0000259954.88139.f4] [PMID: 17468645]
[72]
El Houmami N, Durand GA, Bzdrenga J, et al. A new highly sensitive and specific real-time PCR assay targeting the malate dehydrogenase gene of Kingella kingae and application to 201 pediatric clinical specimens. J Clin Microbiol 2018; 26: 56-pii: e00505-18.. [http://10.1128/JCM.00505-18
[73]
Fenollar F, Lévy PY, Raoult D. Usefulness of broad-range PCR for the diagnosis of osteoarticular infections. Curr Opin Rheumatol 2008; 20(4): 463-70.
[http://dx.doi.org/10.1097/BOR.0b013e3283032030] [PMID: 18525362]
[74]
El Houmami N, Bakour S, Bzdrenga J, et al. Isolation and characterization of Kingella negevensis sp. nov., a novel Kingella species detected in a healthy paediatric population. Int J Syst Evol Microbiol 2017; 67(7): 2370-6.
[http://dx.doi.org/10.1099/ijsem.0.001957] [PMID: 28699877]
[75]
Moshirabadi A, Razi M, Arasteh P, et al. Polymerase chain reaction assay using the restriction fragment length polymorphism technique in the detection of prosthetic joint infections: a multicentered study. J Arthroplasty 2018; S0883-5403(18): 31057- X.30471785.
[http://dx.doi.org/10.1016/j.arth.2018.10.017.] [PMID: 12926863322 ]
[76]
Yagupsky P, Porat N, Pinco E. Pharyngeal colonization by Kingella kingae in children with invasive disease. Pediatr Infect Dis J 2009; 28(2): 155-7.
[http://dx.doi.org/10.1097/INF.0b013e318184dbb8] [PMID: 19106774]
[77]
Morel AS, Dubourg G, Prudent E, et al. Complementarity between targeted real-time specific PCR and conventional broad-range 16S rDNA PCR in the syndrome-driven diagnosis of infectious diseases. Eur J Clin Microbiol Infect Dis 2015; 34(3): 561-70.
[http://dx.doi.org/10.1007/s10096-014-2263-z] [PMID: 25348607]
[78]
Anderson de la Llana R, Dubois-Ferriere V, Maggio A, et al. Oropharyngeal Kingella kingae carriage in children: characteristics and correlation with osteoarticular infections. Pediatr Res 2015; 78(5): 574-9.
[http://dx.doi.org/10.1038/pr.2015.133] [PMID: 26186293]
[79]
Drancourt M, Michel-Lepage A, Boyer S, Raoult D. The point-of-care laboratory in Clinical Microbiology. Clin Microbiol Rev 2016; 29(3): 429-47.
[http://dx.doi.org/10.1128/CMR.00090-15] [PMID: 27029593]
[80]
Haldar M, Butler M, Quinn CD, Stratton CW, Tang YW, Burnham CAD. Evaluation of a real-time PCR assay for simultaneous detection of Kingella kingae and Staphylococcus aureus from synovial fluid in suspected septic arthritis. Ann Lab Med 2014; 34(4): 313-6.
[http://dx.doi.org/10.3343/alm.2014.34.4.313] [PMID: 24982837]
[81]
Searns JB, Robinson CC, Wei Q, et al. Validation of a novel molecular diagnostic panel for pediatric musculoskeletal infections: Integration of the Cepheid Xpert MRSA/SA SSTI and laboratory-developed real-time PCR assays for clindamycin resistance genes and Kingella kingae detection. J Microbiol Methods 2019; 156(1): 60-7.
[http://dx.doi.org/10.1016/j.mimet.2018.12.004] [PMID: 30527965]
[82]
Basmaci R, Ilharreborde B, Bidet P, et al. Isolation of Kingella kingae in the oropharynx during K. kingae arthritis in children. Clin Microbiol Infect 2012; 18(5): E134-6.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03799.x] [PMID: 22390653]
[83]
Ceroni D, Dubois-Ferrière V, Cherkaoui A, et al. Detection of Kingella kingae osteoarticular infections in children by oropharyngeal swab PCR. Pediatrics 2013; 131(1): e230-5.
[http://dx.doi.org/10.1542/peds.2012-0810] [PMID: 23248230]
[84]
Yagupsky P, Weiss-Salz I, Fluss R, et al. Dissemination of Kingella kingae in the community and long-term persistence of invasive clones. Pediatr Infect Dis J 2009; 28(8): 707-10.
[http://dx.doi.org/10.1097/INF.0b013e31819f1f36] [PMID: 19593253]
[85]
Ceroni D, Dubois-Ferrière V, Anderson R, et al. Small risk of osteoarticular infections in children with asymptomatic oropharyngeal carriage of Kingella kingae. Pediatr Infect Dis J 2012; 31(9): 983-5.
[http://dx.doi.org/10.1097/INF.0b013e31825d3419] [PMID: 22572754]
[86]
Yagupsky P, Dagan R, Prajgrod F, Merires M. Respiratory carriage of Kingella kingae among healthy children. Pediatr Infect Dis J 1995; 14(8): 673-8.
[http://dx.doi.org/10.1097/00006454-199508000-00005] [PMID: 8532424]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 3
Year: 2019
Page: [154 - 163]
Pages: 10
DOI: 10.2174/1573396315666190408114653

Article Metrics

PDF: 26
HTML: 2
EPUB: 1
PRC: 1

Special-new-year-discount