Preterm Birth, Inflammation and Infection: New Alternative Strategies for their Prevention

Author(s): Víctor M. Muñoz-Pérez*, Mario I. Ortiz*, Raquel Cariño-Cortés, Eduardo Fernández-Martínez, Leticia Rocha-Zavaleta, Mirandeli Bautista-Ávila.

Journal Name: Current Pharmaceutical Biotechnology

Volume 20 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Worldwide, the progress in reducing neonatal mortality has been very slow. The rate of preterm birth has increased over the last 20 years in low-income and middle-income countries. Its association with increased mortality and morbidity is based on experimental studies and neonatal outcomes from countries with socioeconomic differences, which have considered implementing alternative healthcare strategies to prevent and reduce preterm births.

Methods: Currently, there is no widely effective strategy to prevent preterm birth. Pharmacological therapies are directed at inhibiting myometrial contractions to prolong parturition. Some drugs, medicinal plants and microorganisms possess myorelaxant, anti-inflammatory and immunomodulatory properties that have proved useful in preventing preterm birth associated with inflammation and infection.

Results: This review focuses on the existing literature regarding the use of different drugs, medicinal plants, and microorganisms that show promising benefits for the prevention of preterm birth associated with inflammation and infection. New alternative strategies involving the use of PDE-4 inhibitors, medicinal plants and probiotics could have a great impact on improving prenatal and neonatal outcomes and give babies the best start in life, ensuring lifelong health benefits.

Conclusion: Despite promising results from well-documented cases, only a small number of these alternative strategies have been studied in clinical trials. The development of new drugs and the use of medicinal plants and probiotics for the treatment and/or prevention of preterm birth is an area of growing interest due to their potential therapeutic benefits in the field of gynecology and obstetrics.

Keywords: Preterm birth, infection, inflammation, immunomodulation, PDE-4 inhibitors, medicinal plants, probiotics, microbiota.

[1]
Blencowe, H.; Cousens, S.; Chou, D.; Oestergaard, M.; Say, L.; Moller, A.B.; Kinney, M.; Lawn, J. Born too soon: The global epidemiology of 15 million preterm births. Reprod. Health, 2013, 10, 2.
[2]
Beck, S.; Wojdyla, D.; Say, L.; Betran, A.P.; Merialdi, M.; Requejo, J.H.; Rubens, C.; Menon, R.; Van Look, P.F. The worldwide incidence of preterm birth: A systematic review of maternal mortality and morbidity. Bull. World Health Organ., 2010, 88(1), 31-38.
[3]
Petrou, S. The economic consequences of preterm birth during the first 10 years of life. BJOG, 2005, 112, 10-15.
[4]
Jacob, J.; Lehne, M.; Mischker, A.; Klinger, N.; Zickermann, C.; Walker, J. Cost effects of preterm birth: A comparison of health care costs associated with early preterm, late preterm, and full-term birth in the first 3 years after birth. Eur. J. Health Econ., 2017, 18(8), 1041-1046.
[5]
Mangham, L.J.; Petrou, S.; Doyle, L.W.; Draper, E.S.; Marlow, N. The cost of preterm birth throughout childhood in England and Wales. Pediatrics, 2009, 123(2), 312-327.
[6]
Xu, X.; Grigorescu, V.; Siefert, K.A.; Lori, J.R.; Ransom, S.B. Cost of racial disparity in preterm birth: Evidence from Michigan. J. Health Care Poor Underserved, 2009, 20(3), 729-747.
[7]
Georgiou, H.M.; Di Quinzio, M.K.; Permezel, M.; Brennecke, S.P. Predicting preterm labour: Current status and future prospects. Dis. Markers, 2015, 2015435014
[8]
Chawanpaiboon, S.; Vogel, J.P.; Moller, A.B.; Lumbiganon, P.; Petzold, M.; Hogan, D.; Landoulsi, S. Global, regional, and national estimates of levels of preterm birth in 2014: A systematic review and modelling analysis. Lancet Glob. Health, 2019, 7(1), 37-46.
[9]
Gracie, S.; Pennell, C.; Ekman-Ordeberg, G.; Lye, S.; McManaman, J.; Williams, S.; Palmer, L.; Kelley, M.; Menon, R.; Gravett, M. An integrated systems biology approach to the study of preterm birth using “-omic” technology--a guideline for research. BMC Pregnancy Childbirth, 2011, 11, 71.
[10]
Verli, J.; Klukovits, A.; Kormányos, Z.; Hajagos-Tóth, J.; Ducza, E.; Seres, A.B.; Falkay, G.; Gáspár, R. Uterus-relaxing effect of beta2-agonists in combination with phosphodiesterase inhibitors: Studies on pregnant rat in vivo and on pregnant human myometrium in vitro. J. Obstet. Gynaecol. Res., 2013, 39(1), 31-39.
[11]
Agrawal, V.; Hirsch, E. Intrauterine infection and preterm labor. Semin. Fetal Neonatal Med., 2012, 17(1), 12-19.
[12]
Haas, D.M.; Haas, D.M.; Caldwell, D.M.; Kirkpatrick, P.; McIntosh, J.J.; Welton, N.J. Tocolytic therapy for preterm delivery: Systematic review and network meta-analysis. BMJ, 2012, 345e6226
[13]
Hubinont, C.; Debieve, F. Prevention of preterm labour: 2011 update on tocolysis. J. Pregnancy, 2011, 2011941057
[14]
de Heus, R.; Mol, B.W.; Erwich, J.J. Adverse drug reactions to tocolytic treatment for preterm labour: Prospective cohort study. BMJ, 2009, 338, 744.
[15]
Lamont, C.D.; Jorgensen, J.S.; Lamont, R.F. The safety of tocolytics used for the inhibition of preterm labour. Expert Opin. Drug Saf., 2016, 15(9), 1163-1173.
[16]
Haas, D.M.; Imperiale, T.F.; Kirkpatrick, P.R.; Klein, R.W.; Zollinger, T.W.; Golichowski, A.M. Tocolytic therapy: A meta-analysis and decision analysis. Obstet. Gynecol., 2009, 113(3), 585-594.
[17]
Haas, D.M.; Benjamin, T.; Sawyer, R.; Quinney, S.K. Short-term tocolytics for preterm delivery - current perspectives. Int. J. Womens Health, 2014, 6, 343-349.
[18]
Seelbach-Goebel, B. Antibiotic therapy for premature rupture of membranes and preterm labor and effect on fetal outcome. Geburtshilfe Frauenheilkd., 2013, 73(12), 1218-1227.
[19]
Kemp, M.W. Preterm birth, intrauterine infection, and fetal inflammation. Front. Immunol., 2014, 5, 574.
[20]
Smid, M.C.; Stringer, E.M.; Stringer, J.S. A Worldwide epidemic: The problem and challenges of preterm birth in low- and middle-income countries. Am. J. Perinatol., 2016, 33(3), 276-289.
[21]
Purisch, S.E.; Gyamfi-Bannerman, C. Epidemiology of preterm birth. Semin. Perinatol., 2017, 41(7), 387-391.
[22]
Klein, L.L.; Gibbs, R.S. Infection and preterm birth. Obstet. Gynecol. Clin. North Am., 2005, 32(3), 397-410.
[23]
Hackenhaar, A.A.; Albernaz, E.P.; da Fonseca, T.M. Preterm premature rupture of the fetal membranes: Association with sociodemographic factors and maternal genitourinary infections. J. Pediatr. (Rio J.), 2014, 90(2), 197-202.
[24]
Ng, P.Y.; Ireland, D.J.; Keelan, J.A. Drugs to block cytokine signaling for the prevention and treatment of inflammation-induced preterm birth. Front. Immunol., 2015, 6, 166.
[25]
Sato, T.A.; Keelan, J.A.; Mitchell, M.D. Critical paracrine interactions between TNF-alpha and IL-10 regulate lipopolysaccharide-stimulated human choriodecidual cytokine and prostaglandin E2 production. J. Immunol., 2003, 170(1), 158-166.
[26]
Phillips, R.J.; Fortier, M.A.; Lopez Bernal, A. Prostaglandin pathway gene expression in human placenta, amnion and choriodecidua is differentially affected by preterm and term labour and by uterine inflammation. BMC Pregnancy Childbirth, 2014, 14, 241.
[27]
Gonzalez, J.M.; Franzke, C.W.; Yang, F.; Romero, R.; Girardi, G. Complement activation triggers metalloproteinases release inducing cervical remodeling and preterm birth in mice. Am. J. Pathol., 2011, 179(2), 838-849.
[28]
Oger, S.; Méhats, C.; Dallot, E.; Cabrol, D.; Leroy, M.J. Evidence for a role of phosphodiesterase 4 in lipopolysaccharide-stimulated prostaglandin E2 production and matrix metalloproteinase-9 activity in human amniochorionic membranes. J. Immunol., 2005, 174(12), 8082-8089.
[29]
Song, D.; Shi, Y. Immune system modifications and feto-maternal immune tolerance. Chin. Med. J. (Engl.), 2014, 127(17), 3171-3180.
[30]
Challis, J.R.; Lockwood, C.J.; Myatt, L.; Norman, J.E.; Strauss, J.F.; Petraglia, F. Inflammation and pregnancy. Reprod. Sci., 2009, 16(2), 206-215.
[31]
Gomez-Lopez, N.; St. Louis, D.; Lehr, M.A.; Sanchez-Rodriguez, E.N.; Arenas-Hernandez, M. Immune cells in term and preterm labor. Cell. Mol. Immunol., 2014, 11(6), 571-581.
[32]
Saito, S.; Nakashima, A.; Shima, T.; Ito, M. Th1/Th2/Th17 and regulatory T-cell paradigm in pregnancy. Am. J. Reprod. Immunol., 2010, 63(6), 601-610.
[33]
Miura, Y.; Payne, M.S.; Keelan, J.A.; Noe, A.; Carter, S.; Watts, R.; Spiller, O.B.; Jobe, A.H.; Kallapur, S.G.; Saito, M.; Stock, S.J.; Newnham, J.P.; Kemp, M.W. Maternal intravenous treatment with either azithromycin or solithromycin clears Urea plasma parvum from the amniotic fluid in an ovine model of intrauterine infection. Antimicrob. Agents Chemother., 2014, 58(9), 5413-5420.
[34]
Muñoz-Pérez, V.M.; Ortiz, M.I.; Ponce-Monter, H.A.; Monter-Pérez, V.; Barragán-Ramírez, G. Anti-inflammatory and utero-relaxant effect of alpha-bisabolol on the pregnant human uterus. Korean J. Physiol. Pharmacol., 2018, 22(4), 391-398.
[35]
Yuan, W.; Lopez Bernal, A. Cyclic AMP signaling pathways in the regulation of uterine relaxation. BMC Pregnancy Childbirth, 2007, 7, 10.
[36]
Yan, K.; Gao, L.N.; Cui, Y.L.; Zhang, Y.; Zhou, X. The cyclic AMP signaling pathway: Exploring targets for successful drug discovery. (Review). Mol. Med. Rep., 2016, 13(5), 3715-3723.
[37]
Wen, A.Y.; Sakamoto, K.M.; Miller, S.M. The role of the transcription factor CREB in immune function. J. Immunol., 2010, 185(11), 6413-6419.
[38]
Guo, C.M.; Kasaraneni, N.; Sun, K.; Myatt, L. Cross talk between PKC and CREB in the induction of COX-2 by PGF2alpha in human amnion fibroblasts. Endocrinology, 2012, 153(10), 4938-4945.
[39]
Molnar, P.; Perrault, R.; Louis, S.; Zahradka, P. The cyclic AMP response element-binding protein (CREB) mediates smooth muscle cell proliferation in response to angiotensin II. J. Cell Commun. Signal., 2014, 8(1), 29-37.
[40]
Dodd, J.M.; Jones, L.; Flenady, V.; Cincotta, R.; Crowther, C.A. Prenatal administration of progesterone for preventing preterm birth in women considered to be at risk of preterm birth. Cochrane Database Syst. Rev., 2013, 31(7)004947
[41]
Fonseca, E.B.; Celik, E.; Parra, M.; Singh, M.; Nicolaides, K.H. Progesterone and the risk of preterm birth among women with a short cervix. N. Engl. J. Med., 2007, 357(5), 462-469.
[42]
Norman, J.E.; Marlow, N.; Messow, C.M.; Shennan, A.; Bennett, P.R.; Thornton, S.; Robson, S.C.; McConnachie, A.; Petrou, S.; Sebire, N.J.; Lavander, T.; Whyte, S.; Norrie, J. Vaginal progesterone prophylaxis for preterm birth (the OPPTIMUM study): A multicentre, randomised, double-blind trial. Lancet, 2016, 387(10033), 2106-2116.
[43]
Boyle, A.K.; Rinaldi, S.F.; Norman, J.E.; Stock, S.J. Preterm birth: Inflammation, fetal injury and treatment strategies. J. Reprod. Immunol., 2017, 119, 62-66.
[44]
Gomez-Lopez, N.; Laresgoiti-Servitje, E. T regulatory cells: Regulating both term and preterm labor? Immunol. Cell Biol., 2014, 11(6), 571-581.
[45]
Rinaldi, S.F.; Catalano, R.D.; Wade, J.; Rossi, A.G.; Norman, J.E. Decidual neutrophil infiltration is not required for preterm birth in a mouse model of infection-induced preterm labor. J. Immunol., 2014, 192(5), 2315-2325.
[46]
Filipovich, Y.; Agrawal, V.; Crawford, S.E.; Fitchev, P.; Qu, X.; Klein, J.; Hirsch, E. Depletion of polymorphonuclear leukocytes has no effect on preterm delivery in a mouse model of Escherichia coli-induced labor. Am. J. Obstet. Gynecol., 2015, 213(5), 697-610.
[47]
Gonzalez, J.M.; Dong, Z.; Romero, R.; Girardi, G. Cervical remodeling/ripening at term and preterm delivery: The same mechanism initiated by different mediators and different effector cells. PLoS One, 2011, 6(11), 26877.
[48]
Muñoz-Pérez, V.M.; Fernández-Martínez, E.; Ponce-Monter, H.; Ortiz, M.I. Relaxant and anti-inflammatory effect of two thalidomide analogs as PDE-4 inhibitors in pregnant rat uterus. Korean J. Physiol. Pharmacol., 2017, 21(4), 429-437.
[49]
Shynlova, O.; Dorogin, A.; Li, Y.; Lye, S. Inhibition of infection-mediated preterm birth by administration of broad spectrum chemokine inhibitor in mice. J. Cell. Mol. Med., 2014, 18(9), 1816-1829.
[50]
Stinson, L.F.; Ireland, D.J.; Kemp, M.W.; Payne, M.S.; Stock, S.J.; Newnham, J.P.; Keelan, J.A. Effects of cytokine-suppressive anti-inflammatory drugs on inflammatory activation in ex vivo human and ovine fetal membranes. Reproduction, 2014, 147(3), 313-320.
[51]
Boyle, A.K.; Rinaldi, S.F.; Rossi, A.G.; Saunders, P.T.K.; Norman, J.E. Statin treatment in a novel infection-induced mouse model of preterm birth. J. Reprod. Immunol., 2015, 111, 16.
[52]
Dominguez Rubio, A.P.; Sordelli, M.S.; Salazar, A.I.; Aisemberg, J.; Bariani, M.V.; Cella, M.; Rosenstein, R.E.; Franchi, A.M. Melatonin prevents experimental preterm labor and increases offspring survival. J. Pineal Res., 2014, 56(2), 154-162.
[53]
Gonzalez, J.M.; Pedroni, S.M.; Girardi, G. Statins prevent cervical remodeling, myometrial contractions and preterm labor through a mechanism that involves hemoxygenase-1 and complement inhibition. Mol. Hum. Reprod., 2014, 20(6), 579-589.
[54]
Saito, M.; Payne, M.S.; Miura, Y.; Ireland, D.J.; Stock, S.; Kallapur, S.G.; Kannan, P.S.; Newnham, J.P.; Kramer, B.W.; Jobe, A.H.; Keelan, J.A.; Kemp, M.W. Polymyxin B agonist capture therapy for intrauterine inflammation: Proof-of-principle in a fetal ovine model. Reprod. Sci., 2014, 21(5), 623-631.
[55]
Manuck, T.A. Pharmacogenomics of preterm birth prevention and treatment. BJOG, 2016, 123(3), 368-375.
[56]
Stock, S.J.; Patey, O.; Thilaganathan, B.; White, S.; Furfaro, L.L.; Payne, M.S.; Spiller, O.B. Intrauterine Candida albicans infection causes systemic fetal candidiasis with progressive cardiac dysfunction in a sheep model of early pregnancy. Reprod. Sci., 2017, 24(1), 77-84.
[57]
Kotas, M.E.; Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell, 2015, 160(5), 816-827.
[58]
Chovatiya, R.; Medzhitov, R. Stress, inflammation, and defense of homeostasis. Mol. Cell, 2014, 54(2), 281-288.
[59]
Wensink, A.C.; Hack, C.E.; Bovenschen, N. Granzymes regulate proinflammatory cytokine responses. J. Immunol., 2015, 194(2), 491-497.
[60]
Frazier, W.J.; Xue, J.; Luce, W.A.; Liu, Y. MAPK signaling drives inflammation in LPS-stimulated cardiomyocytes: The route of crosstalk to G-protein-coupled receptors. PLoS One, 2012, 7(11), 50071.
[61]
Kaplan, M.H. STAT signaling in inflammation. JAK-STAT, 2013, 2(1), 24198.
[62]
Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther., 2017, 2, 17023.
[63]
Raker, V.K.; Becker, C.; Steinbrink, K. The cAMP pathway as therapeutic target in autoimmune and inflammatory diseases. Front. Immunol., 2016, 7, 123.
[64]
Godinho, R.O.; Duarte, T.; Pacini, E.S. New perspectives in signaling mediated by receptors coupled to stimulatory G protein: The emerging significance of cAMP efflux and extracellular cAMP-adenosine pathway. Front. Pharmacol., 2015, 6, 58.
[65]
Lefkimmiatis, K.; Zaccolo, M. cAMP signaling in subcellular compartments. Pharmacol. Ther., 2014, 143(3), 295-304.
[66]
Tokoyoda, K.; Tsujikawa, K.; Matsushita, H.; Ono, Y.; Hayashi, T.; Harada, Y.; Abe, R.; Kubo, M.; Yamamoto, H. Up-regulation of IL-4 production by the activated cAMP/cAMP-dependent protein kinase (protein kinase A) pathway in CD3/CD28-stimulated naive T cells. Int. Immunol., 2004, 16(5), 643-653.
[67]
Jin, S.L.; Ding, S.L.; Lin, S.C. Phosphodiesterase 4 and its inhibitors in inflammatory diseases. Chang Gung Med. J., 2012, 35(3), 197-210.
[68]
Kumar, N.; Goldminz, A.M.; Kim, N.; Gottlieb, A.B. Phosphodiesterase 4-targeted treatments for autoimmune diseases. BMC Med., 2013, 11, 96.
[69]
Layseca-Espinoza, E.S.M.F.; González-Amaro, R. Phosphodiesterase inhibitors as immunomodulatory drugs. Inmunologia, 2003, 22, 39-52.
[70]
Mehats, C.; Schmitz, T.; Oger, S.; Hervé, R.; Cabrol, D.; Leroy, M.J. PDE4 as a target in preterm labour. BMC Pregnancy Childbirth, 2007, 7, 12.
[71]
Schmitz, T.; Souil, E.; Hervé, R.; Nicco, C.; Batteux, F.; Germain, G.; Cabrol, D.; Evain-Brion, D.; Leroy, M.J.; Méhats, C. PDE4 inhibition prevents preterm delivery induced by an intrauterine inflammation. J. Immunol., 2007, 178(2), 1115-1121.
[72]
Man, H.W.; Schafer, P.; Wong, L.M.; Patterson, R.T.; Corral, L.G.; Raymon, H.; Blease, K. Discovery of (S)-N-[2-[1-(3-ethoxy-4-methoxyphenyl)-2-methanesulfonylethyl]-1,3-dioxo-2,3-dihy dro-1H-isoindol-4-yl] acetamide (apremilast), a potent and orally active phosphodiesterase 4 and tumor necrosis factor-alpha inhibitor. J. Med. Chem., 2009, 52(6), 1522-1524.
[73]
Marriott, J.B.; Clarke, I.A.; Dredge, K.; Muller, G.; Stirling, D.; Dalgleish, A.G. Thalidomide and its analogues have distinct and opposing effects on TNF-alpha and TNFR2 during co-stimulation of both CD4(+) and CD8(+) T cells. Clin. Exp. Immunol., 2002, 130(1), 75-84.
[74]
Fernandez-Martinez, E.; Morales-Ríos, M.S.; Pérez-Alvarez, V.; Muriel, P. Immunomodulatory effects of thalidomide analogs on LPS-induced plasma and hepatic cytokines in the rat. Biochem. Pharmacol., 2004, 68(7), 1321-1329.
[75]
Fernandez-Martinez, E.; Ponce-Monter, H.; Soria-Jasso, L.E.; Ortiz, M.I.; Arias-Montaño, J.A.; Barragán-Ramírez, G.; Mayén-García, C. Inhibition of uterine contractility by thalidomide analogs via phosphodiesterase-4 inhibition and calcium entry blockade. Molecules, 2016, 21(10), 1332.
[76]
Schafer, P.H.; Parton, A.; Capone, L.; Cedzik, D.; Brady, H.; Evans, J.F.; Man, H.W.; Muller, G.W.; Stirling, D.I.; Chopra, R. Apremilast is a selective PDE4 inhibitor with regulatory effects on innate immunity. Cell. Signal., 2014, 26(9), 2016-2029.
[77]
Wollin, L.; Bundschuh, D.S.; Wohlsen, A.; Marx, D.; Beume, R. Inhibition of airway hyperresponsiveness and pulmonary inflammation by roflumilast and other PDE4 inhibitors. Pulm. Pharmacol. Ther., 2006, 19(5), 343-352.
[78]
Moustafa, F.; Feldman, S.R. A review of phosphodiesterase-inhibition and the potential role for phosphodiesterase 4-inhibitors in clinical dermatology. Dermatol. Online J., 2014, 20(5), 22608.
[79]
Facchinetti, F.; Pedrielli, G.; Benoni, G.; Joppi, M.; Verlato, G.; Dante, G.; Balduzzi, S.; Cuzzolin, L. Herbal supplements in pregnancy: unexpected results from a multicentre study. Hum. Reprod., 2012, 27(11), 3161-3167.
[80]
Kaburi, A.N.; Okula, M.O.; Kosgei, R.J.; Mulwa, N.C.; Maitai, C.K. Herbal remedies and other risk factors for preterm birth in rural Kenya. Afr. J. Pharmacol. Ther., 2015, 4(4), 135-142.
[81]
Ko, S.G.; Yin, C.S.; Du, B.; Kim, K.H. Herbal medicines for inflammatory diseases. Mediators Inflamm., 2014, 2011, 1.
[82]
Rezaeizadeh, G.; Hantoushzadeh, S.; Ghiasi, S.; Nikfar, S.; Abdollahi, M. A systematic review of the uterine relaxant effect of herbal sources. Curr. Pharm. Biotechnol., 2016, 17(11), 934-948.
[83]
Fast, D.J.; Balles, J.A.; Scholten, J.D.; Mulder, T.; Rana, J. Echinacea purpurea root extract inhibits TNF release in response to Pam3Csk4 in a phosphatidylinositol-3-kinase dependent manner. Cell. Immunol., 2015, 297(2), 94-99.
[84]
Holst, L.; Havnen, G.C.; Nordeng, H. Echinacea and elderberry-should they be used against upper respiratory tract infections during pregnancy? Front. Pharmacol., 2014, 5, 31.
[85]
Barrett, B.; Brown, R.; Rakel, D.; Mundt, M.; Bone, K.; Barlow, S.; Ewers, T. Echinacea for treating the common cold: A randomized trial. Ann. Intern. Med., 2010, 153(12), 769-777.
[86]
Heitmann, K.; Havnen, G.C.; Holst, L.; Nordeng, H. Pregnancy outcomes after prenatal exposure to echinacea: The Norwegian mother and child cohort study. Eur. J. Clin. Pharmacol., 2016, 72(5), 623-630.
[87]
Igarashi, T. Physical and psychologic effects of aromatherapy inhalation on pregnant women: A randomized controlled trial. J. Altern. Complement. Med., 2013, 19(10), 805-810.
[88]
Forrer, M.; Kulik, E.M.; Filippi, A.; Waltimo, T. The antimicrobial activity of alpha-bisabolol and tea tree oil against Solobacterium moorei, a Gram-positive bacterium associated with halitosis. Arch. Oral Biol., 2013, 58(1), 10-16.
[89]
Akour, A.; Kasabri, V.; Afifi, F.U.; Bulatova, N. The use of medicinal herbs in gynecological and pregnancy-related disorders by Jordanian women: A review of folkloric practice vs. evidence-based pharmacology. Pharm. Biol., 2016, 54(9), 1901-1918.
[90]
Ghonime, M.; Eldomany, R.; Abdelaziz, A.; Soliman, H. Evaluation of immunomodulatory effect of three herbal plants growing in Egypt. Immunopharmacol. Immunotoxicol., 2011, 33(1), 141-145.
[91]
Ilyas, U.; Katare, D.P.; Aeri, V.; Naseef, P.P. A review on hepatoprotective and immunomodulatory herbal plants. Pharmacogn. Rev., 2016, 10(19), 66-70.
[92]
Shi, L.H.; Balakrishnan, K.; Thiagarajah, K.; Mohd Ismail, N.I.; Yin, O.S. Beneficial properties of probiotics. Trop. Life Sci. Res., 2016, 27(2), 73-90.
[93]
Dilli, D.; Aydin, B.; Fettah, N.D.; Özyazıcı, E.; Beken, S.; Zenciroğlu, A.; Okumuş, N.; Özyurt, B.M.; İpek, M.Ş.; Akdağ, A.; Turan, Ö.; Bozdağ, Ş. The propre-save study: effects of probiotics and prebiotics alone or combined on necrotizing enterocolitis in very low birth weight infants. J. Pediatr., 2015, 166(3), 545-551.
[94]
Deshpande, G.; Jape, G.; Rao, S.; Patole, S. Benefits of probiotics in preterm neonates in low-income and medium-income countries: a systematic review of randomised controlled trials. BMJ Open, 2017, 7(12)017638
[95]
Shadid, R.; Haarman, M.; Knol, J.; Theis, W.; Beermann, C.; Rjosk-Dendorfer, D.; Schendel, D.J.; Koletzko, B.V.; Krauss-Etschmann, S. Effects of galactooligosaccharide and long-chain fructooligosaccharide supplementation during pregnancy on maternal and neonatal microbiota and immunity--a randomized, double-blind, placebo-controlled study. Am. J. Clin. Nutr., 2007, 86(5), 1426-1437.
[96]
Jarde, A.; Lewis-Mikhael, A.M.; Moayyedi, P.; Stearns, J.C.; Collins, S.M.; Beyene, J.; McDonald, S.D. Pregnancy outcomes in women taking probiotics or prebiotics: A systematic review and meta-analysis. BMC Pregnancy Childbirth, 2018, 18(1), 14.
[97]
Parma, M.; Stella Vanni, V.; Bertini, M.; Candiani, M. Probiotics in the prevention of recurrences of bacterial vaginosis. Altern. Ther. Health Med., 2014, 20, 52-57.
[98]
Griffin, C. Probiotics in obstetrics and gynaecology. Aust. N. Z. J. Obstet. Gynaecol., 2015, 55(3), 201-209.
[99]
Keelan, J.A.; Newnham, J.P. Recent advances in the prevention of preterm birth. F1000 Res., 2017, 6.
[100]
Stout, M.J.; Zhou, Y.; Wylie, K.M.; Tarr, P.I.; Macones, G.A.; Tuuli, M.G. Early pregnancy vaginal microbiome trends and preterm birth. Am. J. Obstet. Gynecol., 2017, 217(3), 356-356.
[101]
Reid, G.; Bocking, A. The potential for probiotics to prevent bacterial vaginosis and preterm labor. Am. J. Obstet. Gynecol., 2003, 189(4), 1202-1208.
[102]
Holst, E.; Goffeng, A.R.; Andersch, B. Bacterial vaginosis and vaginal microorganisms in idiopathic premature labor and association with pregnancy outcome. J. Clin. Microbiol., 1994, 32(1), 176-186.
[103]
Keelan, J.A.; Newnham, J.P. Editorial: Advances in the prevention and treatment of inflammation-associated preterm birth. Front. Immunol., 2016, 7, 264.
[104]
Donders, G.G.; Zodzika, J.; Rezeberga, D. Treatment of bacterial vaginosis: What we have and what we miss. Expert Opin. Pharmacother., 2014, 15(5), 645-657.
[105]
van Schalkwyk, J.; Yudin, M.H.; Yudin, M.H.; Allen, V.; Bouchard, C.; Boucher, M.; Boucoiran, I.; Caddy, S.; Castillo, E.; Kennedy, V.L.; Money, D.M.; Murphy, K.; Ogilvie, G.; Paquet, C.; van Schalkwyk, J. Vulvovaginitis: Screening for and management of trichomoniasis, vulvovaginal candidiasis, and bacterial vaginosis. J. Obstet. Gynaecol. Can., 2015, 37(3), 266-274.
[106]
Parma, M.; Stella Vanni, V.; Bertini, M.; Candiani, M. Probiotics in the prevention of recurrences of bacterial vaginosis. Altern. Ther. Health Med., 2014, 20, 52-57.
[107]
Othman, M.; Alfirevic, Z.; Neilson, J.P. Probiotics for preventing preterm labour. Cochrane Database Syst. Rev., 2007, (1)CD005941
[108]
VandeVusse, L.; Hanson, L.; Safdar, N. Perinatal outcomes of prenatal probiotic and prebiotic administration: An integrative review. J. Perinat. Neonatal Nurs., 2013, 27(4), 288-301.
[109]
Reid, G.; Bocking, A. The potential for probiotics to prevent bacterial vaginosis and preterm labor. Am. J. Obstet. Gynecol., 2003, 189(4), 1202-1208.
[110]
Yang, S.; Reid, G.; Challis, J.R.; Kim, S.O.; Gloor, G.B.; Bocking, A.D. Is there a role for probiotics in the prevention of preterm birth? Front. Immunol., 2015, 6, 62.
[111]
Shalev, E. Ingestion of probiotics: Optional treatment of bacterial vaginosis in pregnancy. Isr. Med. Assoc. J., 2002, 4(5), 357-360.
[112]
Deeks, E.D. Apremilast: A review in psoriasis and psoriatic arthritis. Drugs, 2015, 75(12), 1393-1403.
[113]
Del Rosso, J.Q.; Kircik, L. Oral apremilast for the treatment of plaque psoriasis. J. Clin. Aesthet. Dermatol., 2016, 9(9), 43-48.
[114]
Buenestado, A.; Grassin-Delyle, S.; Guitard, F.; Naline, E.; Faisy, C.; Israël-Biet, D.; Sage, E.; Bellamy, J.F.; Tenor, H.; Devillier, P. Roflumilast inhibits the release of chemokines and TNF-alpha from human lung macrophages stimulated with lipopolysaccharide. Br. J. Pharmacol., 2012, 165(6), 1877-1890.
[115]
Wedzicha, J.A.; Calverley, P.M.; Rabe, K.F. Roflumilast: A review of its use in the treatment of COPD. Int. J. Chron. Obstruct. Pulmon. Dis., 2016, 11, 81-90.
[116]
McLean, J.H.; Smith, A.; Rogers, S.; Clarke, K.; Darby-King, A.; Harley, C.W. A phosphodiesterase inhibitor, cilomilast, enhances cAMP activity to restore conditioned odor preference memory after serotonergic depletion in the neonate rat. Neurobiol. Learn. Mem., 2009, 92(1), 63-69.
[117]
Profita, M.; Chiappara, G.; Mirabella, F.; Di Giorgi, R.; Chimenti, L.; Costanzo, G.; Riccobono, L.; Bellia, V.; Bousquet, J.; Vignola, A.M. Effect of cilomilast (Ariflo) on TNF-alpha, IL-8, and GM-CSF release by airway cells of patients with COPD. Thorax, 2003, 58(7), 573-579.
[118]
Mehats, C.; Oger, S.; Leroy, M.J. Cyclic nucleotide phosphodiesterase-4 inhibitors: A promising therapeutic approach to premature birth? Eur. J. Obstet. Gynecol. Reprod. Biol., 2004, 117, 15-27.
[119]
Sun, J.G.; Deng, Y.M.; Wu, X.; Tang, H.F.; Deng, J.F.; Chen, J.Q.; Yang, S.Y.; Xie, Q.M. Inhibition of phosphodiesterase activity, airway inflammation and hyper responsiveness by PDE4 inhibitor and glucocorticoid in a murine model of allergic asthma. Life Sci., 2006, 79(22), 2077-2085.
[120]
Beeh, K.M.; Beier, J.; Lerch, C.; Schulz, A.K.; Buhl, R. Effects of piclamilast, a selective phosphodiesterase-4 inhibitor, on oxidative burst of sputum cells from mild asthmatics and stable COPD patients. Lung, 2004, 182(6), 369-377.
[121]
Mata, M.; Pallardo, F.; Morcillo, E.J.; Cortijo, J. Piclamilast inhibits the pro-apoptotic and anti-proliferative responses of A549 cells exposed to H2O2 via mechanisms involving AP-1 activation. Free Radic. Res., 2012, 46(5), 690-699.
[122]
Korhonen, R.; Hömmö, T.; Keränen, T.; Laavola, M.; Hämäläinen, M.; Vuolteenaho, K.; Lehtimäki, L.; Kankaanranta, H.; Moilanen, E. Attenuation of TNF production and experimentally induced inflammation by PDE4 inhibitor rolipram is mediated by MAPK phosphatase-1. Br. J. Pharmacol., 2013, 169(7), 1525-1536.
[123]
Lee, D.U.; Shin, D.M.; Hong, J.H. The regulatory role of rolipram on inflammatory mediators and cholinergic/adrenergic stimulation-induced signals in isolated primary mouse submandibular gland cells. Mediators Inflamm., 2016, 2016, 11.
[124]
Zhu, J.; Mix, E.; Winblad, B. The antidepressant and antiinflammatory effects of rolipram in the central nervous system. CNS Drug Rev., 2001, 7(4), 387-398.
[125]
Muller, G.W.; Shire, M.G.; Wong, L.M.; Corral, L.G.; Patterson, R.T.; Chen, Y.; Stirling, D.I. Thalidomide analogs and PDE4 inhibition. Bioorg. Med. Chem. Lett., 1998, 8(19), 2669-2674.
[126]
Cuzzolin, L.; Francini-Pesenti, F.; Verlato, G.; Joppi, M.; Baldelli, P.; Benoni, G. Use of herbal products among 392 Italian pregnant women: focus on pregnancy outcome. Pharmacoepidemiol. Drug Saf., 2010, 19(11), 1151-1158.
[127]
Myhre, R.; Brantsæter, A.L.; Myking, S.; Eggesbø, M.; Meltzer, H.M.; Haugen, M.; Jacobsson, B. Intakes of garlic and dried fruits are associated with lower risk of spontaneous preterm delivery. J. Nutr., 2013, 143(7), 1100-1108.
[128]
Schafer, G.; Kaschula, C.H. The immunomodulation and anti-inflammatory effects of garlic organosulfur compounds in cancer chemoprevention. Anticancer. Agents Med. Chem., 2014, 14(2), 233-240.
[129]
de Siqueira, R.J.; Ribeiro-Filho, H.V.; Freire, R.S.; Cosker, F.; Freire, W.B.; Vasconcelos-Silva, A.A.; Soares, M.A.; Lahlou, S.; Magalhães, P.J. (-)-alpha-Bisabolol inhibits preferentially electromechanical coupling on rat isolated arteries. Vascul. Pharmacol., 2014, 63(1), 37-45.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 5
Year: 2019
Page: [354 - 365]
Pages: 12
DOI: 10.2174/1389201020666190408112013
Price: $58

Article Metrics

PDF: 31
HTML: 4
EPUB: 1
PRC: 1