Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Multi-walled Carbon Nanotubes Reinforced into Hollow Fiber by Chitosan Sol-gel for Solid/Liquid Phase Microextraction of NSAIDs from Urine Prior to HPLC-DAD Analysis

Author(s): Nabil N. AL-Hashimi*, Amjad H. El-Sheikh, Rania F. Qawariq, Majed H. Shtaiwi and Rowan AlEjielat

Volume 20, Issue 5, 2019

Page: [390 - 400] Pages: 11

DOI: 10.2174/1389201020666190405181234

Price: $65

Abstract

Background: The efficient analytical method for the analysis of nonsteroidal antiinflammatory drugs (NSAIDs) in a biological fluid is important for determining the toxicological aspects of such long-term used therapies.

Methods: In the present work, multi-walled carbon nanotubes reinforced into a hollow fiber by chitosan sol-gel assisted-solid/ liquid phase microextraction (MWCNTs-HF-CA-SPME) method followed by the high-performance liquid chromatography-diode array detection (HPLC–DAD) was developed for the determination of three NSAIDs, ketoprofen, diclofenac, and ibuprofen in human urine samples. MWCNTs with various dimensions were characterized by various analytical techniques. The extraction device was prepared by immobilizing the MWCNTs in the pores of 2.5 cm microtube via chitosan sol-gel assisted technology while the lumen of the microtube was filled with few microliters of 1-octanol with two ends sealed. The extraction device was operated by direct immersion in the sample solution.

Results: The main factors influencing the extraction efficiency of the selected NSAIDs have been examined. The method showed good linearity R2 ≥ 0.997 with RSDs from 1.1 to 12.3%. The limits of detection (LODs) were 2.633, 2.035 and 2.386 µg L-1, for ketoprofen, diclofenac, and ibuprofen, respectively. The developed method demonstrated a satisfactory result for the determination of selected drugs in patient urine samples and comparable results against reference methods.

Conclusion: The method is simple, sensitive and can be considered as an alternative for clinical laboratory analysis of selected drugs.

Keywords: Multi-walled carbon nanotubes, reinforced-solid/liquid microextraction, Chitosan sol-gel, NSAIDs, HPLC-DAD, urine.

Graphical Abstract
[1]
Heyneman, C.A.; Lawless-Liday, C.; Wall, G.C. Oral versus topical NSAIDs in rheumatic diseases: A comparison. Drugs, 2000, 60(3), 555-574.
[2]
Sarzi-Puttini, P.; Atzeni, F.; Lanata, L.; Bagnasco, M. Efficacy of ketoprofen vs. ibuprofen and diclofenac: A systematic review of the literature and meta-analysis. Clin. Exp. Rheumatol., 2013, 31, 731-738.
[3]
Haroutiunian, S.; Drennan, D.; Lipman, A.G. Topical NSAID therapy for musculoskeletal pain. Pain Med., 2010, 11(4), 535-549.
[4]
Kokki, H. Nonsteroidal ant-inflammatory drugs for postoperative pain a focus on children. Pediatr. Drugs, 2003, 5(2), 103-123.
[5]
Hörl, W.H. Nonsteroidal anti-inflammatory drugs and the kidney. Pharmaceuticals, 2010, 3, 2291-2321.
[6]
Drini, M. Peptic ulcer disease and non-steroidal anti-inflammatory drugs. Aust. Prescr., 2017, 40(3), 91-93.
[7]
Griffin, M.R.; Yared, A.; Ray, W.A. Nonsteroidal anti-inflammatory drugs acute renal failure in elderly persons. Am. J. Epidemiol., 2000, 151(5), 488-496.
[8]
Ingrasciotta, Y.; Sultana, J.; Giorgianni, F.; Fontana, A.; Santangelo, A.; Tari, D.; Santoro, D.; Arcoraci, V.; Perrotta, M.; Ibanez, L.; Trifiro, G. Association of individual non-steroidal anti-inflammatory drugs and chronic kidney disease: A population-based case control study. PLoS One, 2015, 10(4), 1-14.
[9]
Verbeeck, R.K.; Blackburn, J.L.; Loewen, G.R. Clinical pharmacokinetics of non-steroidal anti-inflammatory drugs. Clin. Pharmacokinet., 1983, 8(4), 297-331.
[10]
Litalien, C.; Jacqz-Aigrain, E. Risks and benefits of nonsteroidal anti-inflammatory drugs in children, a comparison with paracetamol. Pediatr. Drugs, 2001, 3(11), 817-858.
[11]
Patel, P.N.; Samanthula, G.; Shrigod, V.; Modh, S.C.; Chaudhari, J.R. RP-HLPC method for determination of several NSAIDs and their combination drugs. Chromatogr. Res. Int., 2013, 2013, 1-13.
[12]
Hirai, T.; Matsumoto, S.; Kishi, I. Simultaneous analysis of several non-steroidal ant-inflammatory drugs in human urine by high-performance liquid chromatography with normal solid-phase. J. Chromatogr. B , 1997, 692, 375-388.
[13]
Szõgyi, M.; Cserháti, T. Chromatography of non-steroidal anti-inflammatory drugs: new achievements. Pharm. Anal. Acta, 2012, 3(2), 1-9.
[14]
Miksa, I.R.; Cummings, M.R.; Poppenga, R.H. Multi-residue determination of anti-inflammatory analgesics in sera by liquid chromatography-mass spectrometry. J. Anal. Toxicol., 2005, 29, 95-104.
[15]
Jedziniak, P.; Szprengier-Juszkiewicz, T.; Sledzińska, E.; Zmudzki, J. Determination of non-steroidal anti-inflammatory drugs and their metabolites in milk by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2012, 403(10), 2955-2963.
[16]
Becerra-Herrera, M.; Honda, L.; Richter, P. Ultra-high-performance liquid chromatography-time-of-flight high-resolution mass spectrometry to quantify acidic drugs in wastewater. J. Chromatogr. A, 2015, 1423, 96-103.
[17]
Petrović, M.; Blaževic, N. Optimization of gas chromatography method for the enantioseparation of arylpropionic non-steroidal anti-inflammatory drug methyl esters. J. Pharm. Biomed. Anal., 2005, 39, 531-534.
[18]
Hložek, T.; Bursová, M.; Čabala, R. Fast ibuprofen, ketoprofen and naproxen simultaneous determination in human serum for clinical toxicology by GC-FID. Clin. Biochem., 2014, 47(15), 109-111.
[19]
Krokos, A.; Tsakelidou, E.; Raikos, N.; Theodoridis, G.; Gika, H. NSAIDs determination in human serum by GC-MS. Separations, 2018, 5(3), 1-13.
[20]
Dowling, G.; Gallo, P.; Fabbrocino, S.; Serpe, L.; Regan, L. Determination of ibuprofen, ketoprofen, diclofenac and phenylbutazone in bovine milk by gas chromatography-tandem mass spectrometry. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess., 2008, 25(12), 1497-1508.
[21]
Kotowska, U.; Kapelewska, J.; Sturgulewska, J. Determination of phenols and pharmaceuticals in municipal wastewaters from polish treatment plants by ultrasound-assisted emulsification-microextraction followed GC-MS. Environ. Sci. Pollut. Res. , 2014, 21(1), 660-673.
[22]
Makino, K.; Itoh, Y.; Teshima, D.; Oishi, R. Determination of nonsteroidal ant-inflammatory drugs in human specimens by capillary zone electrophoresis and micellar electrokinetic chromatography. Electrophoresis, 2004, 25, 1488-1495.
[23]
El-Kommos, M.; Mohamed, N.; Abdel Hakiem, A. Selective micellar electrokinetic chromatographic method for simultaneous determination of some pharmaceutical binary mixtures containing non-steroidal ant-inflammatory drugs. J. Pharm. Anal., 2013, 3(1), 53-60.
[24]
Macià, A.; Borrull, F.; Calull, M.; Aguilar, C. Capillary electrophoresis for the analysis of non-steroidal ant-inflammatory drugs. Trends Analyt. Chem., 2007, 26(2), 133-153.
[25]
Kataoka, H. New trend in sample preparation for clinical and pharmaceutical analysis. TrAC Trend. Anal. Chem., 2003, 22(4), 232-244.
[26]
Silva, C.; Cavaco, C.; Perestrelo, R.; Pereira, J.; Câmara, J. Microextraction by packed sorbent (MEPS) and solid-phase microextraction (SPME) as sample preparation procedures for the metabolomics profiling of urine. Metabolites, 2014, 4, 71-97.
[27]
Peng, J.; Tang, F.; Zhou, R.; Xie, X.; Li, S.; Xie, F.; Yu, P.; Mu, L. New techniques of on-line biological sample processing and their application in the field of biopharmaceutical analysis. Acta Pharm. Sin. B, 2016, 6(6), 540-551.
[28]
Fernandes, A.; de Souza, P.; de Oliveira, A.; Chaves, A. A new method for the determination of creatinine in urine samples based on disposable pipette extraction. J. Braz. Chem. Soc., 2018, 29(4), 695-700.
[29]
Es’haghi, A.; Golsefidi, M.A.; Saify, A.; Tanha, A.A.; Rezaeifar, Z.; Alian-Nezhadi, Z. Carbon nanotube reinforced hollow fiber solid/liquid phase microextraction: A novel extraction technique for the measurement of caffeic acid in Echinacea purpurea herbal extracts combined with high-performance chromatography. J. Chromatogr. A, 2010, 1217, 2768-2775.
[30]
Hasheminasab, K.S.; Fakhari, A.R.; Dhahsavani, A.; Ahmar, H. A new method for the enhancement of electromembrane extraction efficiency using carbon nanotube reinforced hollow fiber for the determination of acidic drugs in spiked plasma, urine, breast milk and wastewater samples. J. Chromatogr. A, 2013, 1285, 1-6.
[31]
Es’haghi, Z.; Nezhadali, A.; Bahar, S.; Bohlooli, S.; Banaei, A. [PMIM]Br@TiO2 nanocomposite reinforced hollow fiber solid/liquid phase microextraction: An effective extraction technique for measurement of benzodiazepines in hair, urine and wastewater samples combined with high-performance liquid chromatography. J. Chromatgr. B., 2015, 980, 55-64.
[32]
Forough, M.; Farhadi, K.; Molaei, R.; Khalili, H.; Shakeri, R.; Zamani, A.; Matin, A.A. Capillary electrophoresis with online stacking in combination with AgNPs@MCM-41 reinforced hollow fiber solid-liquid microextraction for quantitative analysis of capecitabine and its main metabolite 5-fluorouracil in plasma samples isolated from cancer patients. J. Chromatgr. B., 2017, 1040, 22-37.
[33]
Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. Rep., 2004, 34, 61-102.
[34]
Zare, K.; Gupta, V.K.; Moradi, O.; Makhlouf, A.S.H.; Sillanpȁȁ, M.; Nadagouda, M.N.; Sadegh, H.; Shahryari-ghoshekandi, R.; Pal, A.; Wang, Z.; Yyagi, I.; Kazemi, M. A coparative study on the basis of adsorption capacity between CNTs and activated carbons as adsorbent for removal of noxious synthetic dyes: A review. J. Nanostruct. Chem, 2015, 5, 227-236.
[35]
Mauter, M.S.; Elimelech, M. Environmental applications of carbon-based nanomaterials. Environ. Sci. Technol., 2008, 42, 5843-5859.
[36]
Li, Q.L.; Yuan, D.X.; Lin, Q.M. Evaluation of multi-walled carbon nanotubes as an adsorbent for trapping volatile organic compounds from environmental samples. J. Chromatogr. A, 2004, 1026, 283-288.
[37]
Feng, X.; Tian, M.; Li, A.; Zhao, X.; Zhang, Y. Multiwalled carbon nanotube coated on stainless steel wire for solid-phase microextraction of organochlorine pesticides in water. Anal. Lett., 2010, 43, 2477-2486.
[38]
Song, X-Y.; Shi, Y-P.; Chen, J. A novel extraction technique based on carbon nanotubes reinforced hollow fiber solid/liquid microextraction for the determination of piroxicam and diclofenac combined with high performance liquid chromatography. Talanta, 2012, 100, 153-161.
[39]
Liu, C-X.; Choi, J-W. Improved dispersion of carbon nanotube in polymers at high concentration. Nanomaterials, 2012, 2, 329-347.
[40]
Abbasian, M.; Balali-Mood, M.; Amoli, H.S.; Masoumi, A. A new solid-phase microextraction fiber separation and determination of methamphetamines in human urine using sol-gel technique. J. Sol-Gel Sci. Technol., 2017, 81, 247-260.
[41]
Liang, C.; Wang, B.; Chen, J.; Yong, Q.; Huang, Y.; Liao, B. Dispersion of multi-walled carbon nanotubes by polymer with carbazole pendants. J. Phys. Chem. B, 2017, 121(35), 8408-8416.
[42]
Wang, Y-C.; Huang, K-C.; Dong, R-X.; Liu, C-T.; Wang, C-C.; Ho, K-C.; Lin, J-J. Polymer-dispersed MWCNT gel electrolytes for high performance of dye-sensitized solar cells. J. Mater. Chem., 2012, 22, 6982-6989.
[43]
Valcárcel, M.; Cárdenas, S.; Simonet, B. Role of carbon nanotubes in analytical science. Anal. Chem., 2007, 79, 4788-4797.
[44]
Maybody, J.J.; Nemati, A.; Salahi, E.; Amin, M.H. Effects of MWCNTs dispersion on the microstructure of sol-gel derived hydroxyapatite. Int. J. Nanosci. Nanotechnol., 2010, 6(2), 114-124.
[45]
Rwei, S.P.; Chen, T.Y.; Cheng, Y.Y. Sol/gel transition of chitosan solutions. J. Biomater. Sci. Polym. Ed., 2005, 16(11), 1433-1445.
[46]
Khajeh, M.; Yan, H.; Arefnejad, E.; Bohlooli, M. Matrix solid-phase dispersion with chitosan-zinc oxide nanoparticles combined with flotation-assisted dispersive liquid-liquid microextraction for the determination of 13 n-alkanes in soil samples. J. Sep. Sci., 2014, 37(22), 3291-3298.
[47]
Jiang, L.; Liu, L.; Jiang, L.; Peng, Z.; Lu, G. A chitosan-multiwall carbon nanotube modified electrode for simultaneous detection of dopamine and ascorbic acid. Anal. Sci., 2004, 20, 1055-1059.
[48]
Honarkar, H.; Barikani, M. Application of biopolymers I: Chitosan. Monatshefte für Chemie-Chem. Monthly, 2009, 140(12), 1403-1420.
[49]
Irimia, T.; Dinu-Pirvu, C.-E.; Ghica, M.V.; Lupuleasa, D.; Muntean, D.-L.; Udeanu, D.L.; Popa, L. Chitosan-based in situ gel for ocular delivery of therapeutics: a stae-of-the-art review. Mar. Drug, 2018, 16(10)373. , 1-23.
[50]
Zhang, M.; Smith, A.; Gorski, W. Carbon nanotube-chitosan system for electrochemical sensing based on dehydrogenase enzymes. Anal. Chem., 2004, 76(17), 5045-5050.
[51]
Kharissova, O.V.; Kharisov, B.I.; Ortiz, E.G.C. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Advances, 2013, 3, 24812-24852.
[52]
Zhang, J.; Wang, Q.; Wang, L.; Wang, A. Manipulated dispersion of carbon nanotubes with derivatives of chitosan. Carbon, 2007, 45, 1911-1920.
[53]
Yan, L.Y.; Poon, Y.F.; Chan-Park, M.B. Individually dispersing single-walled carbon nanotubes with novel neutral pH water-soluble chitosan derivatives. J. Phys. Chem., 2008, 112, 7579-7587.
[54]
Shieh, Y.T.; Wu, H.M.; Twu, Y.K. An investigation on dispersion of carbon nanotube in chitosan solutions. Colloid Polym. Sci., 2010, 288, 377-385.
[55]
Solank, P.R.; Kaushik, A.; Ansari, A.; Tiwari, A.; Malhotra, B.D. Multi-walled carbon nanotubes/ soli-gel-derived silica/chitosan nanobiocomposite for total cholesterol sensor. Sens. Actuators B Chem., 2009, 137, 727-735.
[56]
Sharmeen, S.; Rahman, A.F.M.A.; Lubna, M.M.; Salem, K.S.; Islam, R.; Khan, M.A. Polyethylene glycol functionalized carbon nanotubes/gelatin-chitosan nanocomposite: An approach for significant drug release. Bioact. Mater., 2018, 3(3), 236-244.
[57]
Moura, D.; Mano, J.F.; Paiva, M.C.; Alves, N.M. Chitosan nanocomposites based on distinct inorganic filler for biomedical application. Sci. Technol. Adv. Mater., 2016, 17, 626-643.
[58]
Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J., 2013, 49(4), 780-792.
[59]
El-Sheikh, A.H.; Sweileh, J.A.; Saleh, M. Partially pyrolyzed olive pomace sorbent of high permeability for preconcentration of metals from environmental waters. J. Hazard. Mater., 2009, 169, 58-64.
[60]
El-Sheikh, A.H.; Alzawahreh, A.; Sweileh, J.A. Preparation of an efficient sorbent by washing then pyrolysis of olive wood for simultaneous solid phase extraction of chloro-phenols and nitro-phenols from water. Talanta, 2011, 85, 1034-1042.
[61]
El-Sheikh, A.H.; Abu Hilal, M.; Sweileh, J.A. Bio-separation, speciation and determination of chromium in water using partially pyrolyzed olive pomace sorbent. Bioresour. Technol., 2011, 102, 5749-5756.
[62]
Murthy, Z.V.P.; Gaikwad, M.S. Preparation of chitosan-multiwalled carbon nanotubes blended membranes: Characterization and performance in the separation of sodium and magnesium ions. Nanoscale Microscale Thermophys. Eng., 2013, 17, 245-262.
[63]
Ekpete, A.; Marcus, A.C.; Osi, V. Preparation and characterization of activated carbon obtained from plantain (Musa paradisiaca) fruit stem. J. Chem., 2017, 2017, 1-6.
[64]
Meloun, M.; Bordovská, S.; Galla, L. The thermodynamic dissociation constants of four non-steroidal anti-inflammatory drugs by the least-squares nonlinear regression of multiwavelength spectrophotometric pH-titration data. J. Pharm. Biomed. Anal., 2007, 45, 552-564.
[65]
Saraji, M.; Bidgoli, A.A.H.; Farajmand, B. Hollow fiber-base liquid-liquid-liquid microextraction followed by flow injection analysis using column-less HPLC for the determination of phenazopyridine in plasma and urine. J. Sep. Sci., 2011, 34, 1708-1715.
[66]
Riaño, S.; Alcudia-León, M.C.; Lucena, R.; Cárdenas, S.; Valcárcel, M. Determination of non-steroidal anti-inflammatory drugs in urine by the combination of stir membrane liquid-liquid-liquid microextraction and liquid chromatography. Anal. Bioanal. Chem., 2012, 403, 2583-2589.
[67]
Shukri, D.S.M.; Sanagi, M.M.; Ibrahim, N.N.Z.A.; Aboul-enein, H. Liquid chromatography setermination of NSAIDs in urine after dispersive liquid-liquid microextraction based on solidification of floating organic droplets. Chromatographia, 2015, 78, 987-994.
[68]
Cha, Y.B.; Myung, S-W. Determination of non-steroidal anti-inflammatory drugs in human urine sample using HPLC/UV and three phase hollow fiber-liquid phase microextraction. Bull. Korean Chem. Soc., 2013, 34(11), 3444-3450.
[69]
El-Sheikh, A.H.; Al-Jafari, M.K.; Sweileh, J.A. Solid phase extraction and uptake properties of multi-walled carbon nanotube of different dimensions towards some nitro-phenols and chloro-phenols from water. Int. J. Environ. Anal. Chem., 2012, 92, 190-209.
[70]
Smallwood, I.M. Handbook of organic solvent properties, 1rd ed; London/ UK: Amold, Hodder Headline Group, 1996.
[71]
Payán, M.R.; López, M.; Fernández-Torres, R.; Bernal, J.L.; Mochón, M. HPLC determination of ibuprofen, diclofenac and salicylic acid using hollow fiber-based liquid phase microextraction (HF-LPME). Anal. Chim. Acta, 2009, 653, 184-190.
[72]
Martinez-Sena, T.; Armenta, S.; de la Guardia, M.; Esteve-Turrillas, A. Determination of non-steroidal anti-inflammatory drugs in water and urine using selective molecular imprinted polymer extraction and liquid chromatography. J. Pharm. Biomed. Anal., 2016, 30(131), 48-53.
[73]
Worawit, C.; Cocovi-Solberg, D.J.; Varanusupakul, P.; Miró, M. In-line carbon nanofiber reinforced hollow fiber-mediated liquid phase microextraction using a 3D printed extraction platform as a front end to liquid chromatography for automatic sample preparation and analysis: A proof of concept study. Talanta, 2018, 185, 611-619.
[74]
Shukri, D.S.; Sanagi, M.M.; Ibrahim, W.A.W.; Abidin, N.N.Z.; Aboul-Enein, H.Y. Liquid chromatographic determination of NSAIDs in urine after dispersive liquid-liquid microextraction based on solidification of floating organic droplets. Chromatographia, 2015, 15-16, 987-994.
[75]
García-Vázquez, A.; Borrull, F.; Calull, M.; Aguilar, C. Single-drop microextraction combined in-line with capillary electrophotesis for the determination of nonsteroidal anti-inflammatory drugs in urine samples. Electrophoresis, 2016, 37, 274-281.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy