An Overview of Bio-oil Upgrading with High Hydrogen-containing Feedstocks to Produce Transportation Fuels: Chemistry, Catalysts, and Engineering

Author(s): Bing Wang, Rui Xiao*, Huiyan Zhang*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

As an alternative to increasingly depleted traditional petroleum fuel, bio-oil has many advantages: high energy density, flexibility, easy storage and transportation. Nevertheless, bio-oil also presents some unwanted characteristics such as high viscosity, acidity, oxygen content and chemical instability. The process of bio-oil upgrading is necessary before utilization as transportation fuels. In addition, the bio-oil has low effective hydrogen/ carbon molar ratio (H/Ceff) which may lead to coke formation and hence deactivation of the catalyst during the upgrading process. Therefore, it seemed that co-refining of biooil with other higher hydrogen-containing feedstocks is necessary. This paper provides a broad review of the bio-oil upgrading with high hydrogen-containing feedstocks to produce transportation fuels: chemistry, catalyst, and engineering research aspects were discussed. The different thermochemical conversion routes to produce bio-oil and its physical-chemical properties are discussed firstly. Then the bio-oil upgrading research using traditional technologies and common catalysts that emerged in recent years are briefly reviewed. Furthermore, the applications of high H/Ceff feedstock to produce high-quality of bio-oil are also discussed. Moreover, the emphasis is placed on co-refining technologies to produce transportation fuels. The processes of co-refining bio-oil and vacuum gas oil in fluid catalytic cracking (FCC) unit for transportation fuels from laboratory scale to pilot scale are also covered in this review. Co-refining technology makes it possible for commercial applications of bio-oil. Finally, some suggestions and prospects are put forward.

Keywords: Bio-oil, upgrading, catalyst, H/Ceff, co-refining, transportation fuel.

[1]
Brennan, L.; Owende, P. Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev., 2010, 14(2), 557-577.
[2]
Guo, Y.; Yeh, T.; Song, W.H.; Xu, D.H.; Wang, S.Z. A review of bio-oil production from hydrothermal liquefaction of algae. Renew. Sustain. Energy Rev., 2015, 48, 776-790.
[3]
Mortensen, P.M.; Grunwaldt, J.D.; Jensen, P.A.; Knudsen, K.G.; Jensen, A.D. A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen., 2011, 407(1-2), 1-19.
[4]
Zhang, L.; Liu, R.; Yin, R.; Mei, Y. Upgrading of bio-oil from biomass fast pyrolysis in China: A review. Renew. Sustain. Energy Rev., 2013, 24(10), 66-72.
[5]
Gu, Y.; Yin, Q.; Wang, S.; Li, X.; Guo, Z.; Luo, Z. Experimental study on the physical-chemical properties of bio-oil and diesel emulsification. Adv. Mat. Res., 2012, 94, 433-440.
[6]
Huber, G.W.; Iborra, S.; Corma, A. Synthesis of transportation fuels from biomass: Chemistry, catalysts, and engineering. Chem. Rev., 2006, 106(9), 4044-4098.
[7]
Yang, Z.; Kumar, A.; Huhnke, R.L. Review of recent developments to improve storage and transportation stability of bio-oil. Renew. Sust. Energ. Rev., 2015, 50, 859-870.
[8]
Xiu, S.; Shahbazi, A. Bio-oil production and upgrading research: A review. Sust. Energ. Rev., 2012, 16(7), 4406-4414.
[9]
Veses, A.; Aznar, M.; López, J.M.; Callén, M.S.; Murillo, R.; Garcaí, T. Production of upgraded bio-oils by biomass catalytic pyrolysis in an auger reactor using low cost materials. Fuel, 2015, 141, 17-22.
[10]
Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy, 2012, 38, 68-94.
[11]
Lian, X.; Xue, Y.; Zhao, Z.C.; Xu, G.W.; Han, S.; Yu, H. Progress on upgrading methods of bio-oil: A review. Int. J. Energy Res., 2017, 41(13), 1798-1816.
[12]
Islam, M.R.; Parveen, M.; Haniu, H. Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis. Bioresour. Technol., 2010, 101(11), 4162-4168.
[13]
Bridgwater, A.V. Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J., 2003, 91(2-3), 87-102.
[14]
Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy Fuels, 2006, 20(3), 848-889.
[15]
Zhang, Q.; Chang, J.; Wang, T.J.; Xu, Y. Review of biomass pyrolysis oil properties and upgrading research. Energy Convers. Manage., 2007, 48(1), 87-92.
[16]
Lu, Q.; Li, W.Z.; Zhu, X.F. Overview of fuel properties of biomass fast pyrolysis oils. Energy Convers. Manage., 2009, 50(5), 1376-1383.
[17]
Zhang, S.P.; Yan, Y.J.; Li, T.C.; Ren, Z.W. Upgrading of liquid fuel from the pyrolysis of biomass. Bioresour. Technol., 2005, 96(5), 545-550.
[18]
Boucher, M.E.; Chaala, A.; Roy, C. Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: Properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy, 2000, 19(5), 337-350.
[19]
Shihadeh, A.; Hochgreb, S. Impact of biomass pyrolysis oil process conditions on ignition delay in compression ignition engines. Energy Fuels, 2002, 16(3), 552-561.
[20]
Şenol, O.İ.; Viljava, T.R.; Krause, A.O.I. Hydrodeoxygenation of methyl esters on sulphided NiMo/γ-Al2O3 and CoMo/γ-Al2O3 catalysts. Catal. Today, 2005, 100(3-4), 331-335.
[21]
Gu, Y.L.; Xu, G.H.; Guo, Z.G.; Wang, S.R. Esterification research on a biooil model compounds system with an optimal solid acid catalyst. dv. Mater. Res., 2012. 383-390, 1144-1149.
[22]
Xu, Y.; Wang, T.J.; Ma, L.L.; Zhang, Q.; Wang, L. Upgrading of liquid fuel from the vacuum pyrolysis of biomass over the Mo-Ni/γ-Al2O3 catalysts. Biomass Bioenergy, 2009, 33(8), 1030-1036.
[23]
Özçimen, D.; Karaosmanoğlu, F. Production and characterization of bio-oil and biochar from rapeseed cake. Renew. Energy, 2004, 29(5), 779-787.
[24]
Huber, G.W.; Corma, A. Synergies between bio- and oil refineries for the production of fuels from biomass. Angew. Chem. Int. Ed., 2007, 46(38), 7184-7201.
[25]
Guo, X.Y.; Zheng, Y.; Zhang, B.H.; Chen, J.Y. Analysis of coke precursor on catalyst and study on regeneration of catalyst in upgrading of bio-oil. Biomass Bioenergy, 2009, 33(10), 1469-1473.
[26]
Hu, X.; Lu, G.X. Investigation of the steam reforming of a series of model compounds derived from bio-oil for hydrogen production. Appl. Catal. B Environ., 2009, 88(3-4), 376-385.
[27]
Hilten, R.N.; Das, K.C. Comparison of three accelerated aging procedures to assess bio-oil stability. Fuel, 2010, 89(10), 2741-2749.
[28]
Meng, J.J.; Moore, A.; Tilotta, D.; Kelley, S.; Park, S. Toward understanding of bio-oil aging: Accelerated aging of bio-oil fractions. ACS Sustain. Chem.& Eng., 2014, 2(8), 2011-2018.
[29]
Miao, X.L.; Wu, Q.Y. High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol., 2004, 110(1), 85-93.
[30]
Zanzi, R.; Sjöström, K.; Björnbom, E. Rapid pyrolysis of agricultural residues at high temperature. Biomass Bioenergy, 2002, 23(5), 357-366.
[31]
Morris, K.W. Fast pyrolysis of bagasse to produce bio-oil fuel for power generation. Int. Sugar J., 2011, 103, 259-263.
[32]
Miao, X.L.; Wu, Q.Y.; Yang, C.Y. Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis, 2004, 71(2), 855-863.
[33]
González, J.F.; Ramiro, A.; González-García, C.M.; Gañán, J.; Encinar, J.M.; Sabio, E.; Rubiales, J. Pyrolysis of almond shells. Energy applications of fractions. Ind. Eng. Chem. Res., 2005, 44(9), 3003-3012.
[34]
Şensöz, S.; Angin, D.; Yorgun, S. Influence of particle size on the pyrolysis of rapeseed (Brassica napus L.): Fuel properties of bio-oil. Biomass Bioenergy, 2000, 19(4), 271-279.
[35]
Şensöz, S.; Demiral, İ.; Gerçel, H.F. Olive bagasse (Olea europea L.) pyrolysis. Bioresour. Technol., 2006, 97(3), 429-436.
[36]
Tsai, W.T.; Lee, M.K.; Chang, Y.M. Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrolysis, 2006, 76(1-2), 230-237.
[37]
Bridgwater, A.V.; Peacocke, G.V.C. Fast pyrolysis processes for biomass. Sust. Energ. Rev., 2000, 4(1), 1-73.
[38]
Ba, T.; Chaala, A.; Garcia-Perez, M.; Roy, C. Colloidal properties of bio-oils obtained by vacuum pyrolysis of softwood bark storage stability. Energy Fuels, 2004, 18(1), 188-201.
[39]
González, J.F.; Encinar, J.M.; Canito, J.L.; Sabio, E.; Chacón, M. Pyrolysis of cherry stones: Energy uses of the different fractions and kinetic study. J. Anal. Appl. Pyrolysis, 2003, 67(1), 165-190.
[40]
Gerçel, H.F. The production and evaluation of bio-oils from the pyrolysis of sunflower-oil cake. Biomass Bioenergy, 2002, 23(4), 307-314.
[41]
Xiong, W.M.; Zhu, M.Z.; Deng, L.; Fu, Y.; Guo, Q.X. Esterification of organic acid in bio-oil using acidic ionic liquid catalysts. Energy Fuels, 2009, 23(4), 2278-2283.
[42]
Weerachanchai, P.; Tangsathitkulchai, C.; Tangsathitkulchai, M. Effect of reaction conditions on the catalytic esterification of bio-oil. Korean J. Chem. Eng., 2012, 29(2), 182-189.
[43]
Li, X.; Gunawan, R.; Lievens, C.; Wang, Y.; Mourant, D.; Wang, S.; Wu, H.; Garcia-Perez, M.; Li, C.Z. Simultaneous catalytic esterification of carboxylic acids and acetalisation of aldehydes in a fast pyrolysis bio-oil from mallee biomass. Fuel, 2011, 90(7), 2530-2537.
[44]
Lohitharn, N.; Shanks, B.H. Upgrading of bio-oil: Effect of light aldehydes on acetic acid removal via esterification. Catal. Commun., 2009, 11(2), 96-99.
[45]
Li, X.; Gunawan, R.; Lievens, C.; Wang, Y.; Mourant, D.; Wang, S.; Wu, H.W.; Garcia-Perez, M.; Li, C.Z. Simultaneous catalytic esterification of carboxylic acids and acetalisation of aldehydes in a fast pyrolysis bio-oil from mallee biomass. Fuel, 2011, 90(7), 2530-2537.
[46]
Lohitharn, N.; Shanks, B.H. Upgrading of bio-oil: effect of light aldehydes on acetic acid removal via esterification. Catal. Commun., 2009, 11(2), 96-99.
[47]
French, R.J.; Stunkel, J.; Baldwin, R.M. Mild hydrotreating of bio-oil: Effect of reaction severity and fate of oxygenated species. Energy Fuels, 2011, 25(7), 3266-3274.
[48]
Tang, Y.; Miao, S.; Shanks, B.H.; Zheng, X. Bifunctional mesoporous organic-inorganic hybrid silica for combined one-step hydrogenation/esterification. Appl. Catal. A Gen., 2010, 375(2), 310-317.
[49]
Tang, Y.; Miao, S.; Mo, L.; Zheng, X.; Shanks, B.H. One-step hydrogenation/esterification activity enhancement over bifunctional mesoporous organic-inorganic hybrid silicas. Top. Catal., 2013, 56(18), 1804-1813.
[50]
Li, Z.; Kelkar, S.; Raycraft, L.; Garedew, M.; Jackson, J.E.; Miller, D.J.; Saffron, C.M. A mild approach for bio-oil stabilization and upgrading: Electrocatalytic hydrogenation using ruthenium supported on activated carbon cloth. Green Chem., 2014, 16, 844-852.
[51]
Wang, C.; Guo, Z.; Yang, Y.; Chang, J.; Borgna, A. Hydrogenation of furfural as model reaction of bio-oil stabilization under mild conditions using multiwalled carbon nanotube (MWNT)-supported Pt catalysts. Ind. Eng. Chem. Res., 2014, 53(28), 11284-11291.
[52]
Sanna, A.; Vispute, T.P.; Huber, G.W. Hydrodeoxygenation of the aqueous fraction of bio-oil with Ru/C and Pt/C catalysts. Appl. Catal. B Environ., 2015, 165, 446-456.
[53]
Furimsky, E. Catalytic hydrodeoxygenation. Appl. Catal. A Gen., 2000, 199(2), 147-190.
[54]
Ferrari, M.; Maggi, R.; Delmon, B.; Grange, P. Influences of the hydrogen sulfide partial pressure and of a nitrogen compound on the hydrodeoxygena-tion activity of a CoMo/carbon catalyst. J. Catal., 2001, 198(1), 47-55.
[55]
Tang, Z.; Zhang, Y.; Guo, Q. Catalytic hydrocracking of pyrolytic lignin to liquid fuel in supercritical ethanol. Ind. Eng. Chem. Res., 2010, 49(5), 2040-2046.
[56]
Gayubo, A.G.; Aguayo, A.T.; Atutxa, A.; Aguado, R.; Bilbao, J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. I. alcohols and phenols. Ind. Eng. Chem. Res., 2004, 43(11), 2610-2618.
[57]
Gayubo, A.G.; Aguayo, A.T.; Atutxa, A.; Aguado, R.; Martin, O.; Bilbao, J. Transformation of oxygenate components of biomass pyrolysis oil on a HZSM-5 zeolite. II. aldehydes, ketones, and acids. Ind. Eng. Chem. Res., 2004, 43(11), 2619-2626.
[58]
Qu, W.; Wei, L.; Julson, J. An exploration of improving the properties of heavy bio-oil. Energy Fuels, 2013, 27(8), 4717-4722.
[59]
Xu, X.W.; Jiang, E.C.; Wang, M.F.; Li, B.S. Rich hydrogen production from crude gas secondary catalytic cracking over Fe/γ-Al2O3. Renew. Energy, 2012, 39(1), 126-131.
[60]
Guo, X.Y.; Yan, Y.J.; Li, T.S. Influence of catalyst type and regeneration on upgrading of crude bio-oil through catalytical thermal cracking. Chin. J. Chem. Eng., 2004, 4(1), 53-58.
[61]
Trane, R.; Dahl, S.; Skjøth-Rasmussen, M.S.; Jensen, A.D. Catalytic steam reforming of bio-oil. Int. J. Hydrogen Energy, 2012, 37(8), 6447-6472.
[62]
Wang, W.; Wang, Y.; Liu, Y. Production of hydrogen by ethanol steam reforming over nickel–metal oxide catalysts prepared via urea–nitrate combustion method. Int. J. Energy Res., 2011, 35(6), 501-506.
[63]
Czernik, S.; French, R.; Feik, A.C.; Chornet, E. Hydrogen by catalytic steam reforming of liquid byproducts from biomass thermoconversion processes. Ind. Eng. Chem. Res., 2002, 41(17), 4209-4215.
[64]
Garcia, L.; French, R.; Czernik, S.; Chornet, E. Catalytic steam reforming of bio-oils for the production of hydrogen: Effects of catalyst composition. Appl. Catal. A Gen., 2000, 201(2), 225-239.
[65]
Cheng, Y.T.; Jae, J.; Shi, J.; Fan, W.; Huber, G.W. Production of renewable aromatic compounds by catalytic fast pyrolysis of lignocellulosic biomass with bifunctional Ga/ZSM-5 catalysts. Angew. Chem. Int. Ed., 2012, 51(6), 1387-1390.
[66]
Carlson, T.R.; Cheng, Y.T.; Jae, J.; Huber, G.W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci., 2011, 4, 145-161.
[67]
Dickerson, T.; Soria, J. Catalytic fast pyrolysis: A review. Energies, 2013, 6(1), 514-538.
[68]
Thangalazhy-Gopakumar, S.; Adhikari, S.; Gupta, R.B.; Tu, M.; Taylor, S. Production of hydrocarbon fuels from biomass using catalytic pyrolysis under helium and hydrogen environments. Bioresour. Technol., 2011, 102(12), 6742-6749.
[69]
Braden, D.; Henao, C.; Heltzel, J.; Maravelias, C.; Dumesic, J. Production of liquid hydrocarbon fuels by catalytic conversion of biomass-derived levulinic acid. Green Chem., 2011, 13, 1755-1765.
[70]
Mullen, C.A.; Boateng, A.A. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process. Technol., 2010, 91(11), 1446-1458.
[71]
French, R.; Czernik, S. Catalytic pyrolysis of biomass for biofuels production. Fuel Process. Technol., 2010, 91(1), 25-32.
[72]
Abnisa, F.; Mohd, A.W.D.W. A review on co-pyrolysis of biomass: An optional technique to obtain a high-grade pyrolysis oil. Energy Environ. Sci., 2014, 87, 71-85.
[73]
Blesa, M.J.; Miranda, J.L.; Moliner, R.; Izquierdo, M.T.; Palacios, J.M. Low-temperature co-pyrolysis of a low-rank coal and biomass to prepare smokeless fuel briquettes. J. Ana1. Appl. Pyrolysis, 2003, 70(2), 665-677.
[74]
Vuthaluru, H.B. Investigations into the pyrolytic behaviour of coal/biomass blends using thermogravimetric analysis. Bioresour. Technol., 2004, 92(2), 187-195.
[75]
Vuthaluru, H.B. Thermal behaviour of coal/biomass blends during co-pyrolysis. Fuel Process. Technol., 2004, 85(2-3), 141-155.
[76]
Rizkiana, J.; Guan, G.; Widayatno, W.B.; Yang, J.; Hao, X.; Matsuoka, K.; Abudula, A. Mg-modified ultra-stable Y type zeolite for the rapid catalytic co-pyrolysis of low-rank coal and biomass. RSC Advances, 2016, 6, 2096-2105.
[77]
Chattopadhyay, J.; Pathak, T.S.; Srivastava, R.; Singh, A.C. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (Polyethylene Terephthalate)) and product analysis. Energy, 2016, 103, 513-521.
[78]
Zhang, H.Y.; Nie, J.L.; Xiao, R.; Jin, B.S.; Dong, C.Q.; Xiao, G.M. Catalytic co-pyrolysis of biomass and different plastics (polyethylene, polypropylene, and polystyrene) to improve hydrocarbon yield in a fluidized-bed reactor. Energy Fuels, 2014, 28(3), 1940-1947.
[79]
Wildschut, J.; Melian-Cabrera, I.; Heeres, H.J. Catalyst studies on the hydrotreatment of fast pyrolysis oil. Appl. Catal. B Environ., 2010, 99(1-2), 298-306.
[80]
Mercader, F.D.M.; Groeneveld, M.J.; Kersten, S.R.A.; Geantet, C.; Toussaint, G.; Way, N.W.J.; Schaverien, C.J.; Hogendoorn, K.J.A. Hydrodeoxygenation of pyrolysis oil fractions: Process understanding and quality assessment through co-processing in refinery units. Energy Environ. Sci., 2011, 4(3), 985-997.
[81]
Wang, B.; Duan, P.G.; Xu, Y.P.; Wang, F.; Shi, X.L.; Fu, J.; Lu, X.Y. Co-hydrotreating of algae and used engine oil for the direct production of gasoline and diesel fuels or blending components. Energy, 2017, 136, 151-162.
[82]
Li, N.; Tompsett, G.A.; Huber, G.W. Renewable high-octane gasoline by aqueous-phase hydrodeoxygenation of C5 and C6 carbohydrates over Pt/Zirconium phosphate catalysts. ChemSusChem, 2010, 3(10), 1154-11577.
[83]
Li, N.; Huber, G.W. Aqueous-phase hydrodeoxygenation of sorbitol with Pt/SiO2–Al2O3: identification of reaction intermediates. J. Catal., 2010, 270(1), 48-59.
[84]
Dickerson, T.; Soria, J. Catalytic fast pyrolysis: A review. Energies, 2013, 6(1), 514-538.
[85]
Thunman, H.; Niklasson, F.; Johnsson, F.; Leckner, B. Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds. Energy Fuels, 2001, 15(6), 1488-1497.
[86]
Elliott, D.C. Baker, E.G.; Piskorz, J.; Scott, D.S.; Solantausta, Y. Production of liquid hydrocarbon fuels from peat. Energy Fuels, 1988, 2(2), 234-235.
[87]
Elliott, D.C.; Oasmaa, A. Catalytic hydrotreating of black liquor oils. Energy Fuels, 1991, 5(1), 102-109.
[88]
French, R.J.; Stunkel, J.; Baldwin, R.M. Mild hydrotreating of bio-oil: Effect of reaction severity and fate of oxygenated species. Energy Fuels, 2011, 25(7), 3266-3274.
[89]
Elliott, D.C.; Schiefelbein, G.F. Liquid hydrocarbon fuels from biomass. 1989, 34(4), 1160-1166.
[90]
Srinivas, S.T.; Dalai, A.K.; Bakhshi, N.N. Thermal and catalytic upgrading of a biomass-derived oil in a dual reaction system. Can. J. Chem. Eng., 2000, 78(2), 343-354.
[91]
Wildschut, J.; Mahfud, F.H.; Venderbosch, R.H.; Heeres, H.J. Hydrotreatment of fast pyrolysis oil using heterogeneous noble-metal catalysts. Ind. Eng. Chem. Res., 2009, 48(23), 10324-10334.
[92]
Gutierrez, A.; Kaila, R.K.; Honkela, M.L.; Slioor, R.; Krause, A.O.I. Hydrodeoxygenation of guaiacol on noble metal catalysts. Catal. Today, 2009, 147(3-4), 239-246.
[93]
Adjaye, J.D.; Bakhshi, N.N. Production of hydrocarbons by catalytic upgrading of a fast pyrolysis bio-Oil. 1. Conversion over various catalysts. Fuel Process. Technol., 1995, 45(3), 161-183.
[94]
Williams, P.T.; Horne, P.A. Characterisation of oils from the fluidised bed pyrolysis of biomass with zeolite catalyst upgrading. Biomass Bioeng., 1994, 7(1-6), 223-236.
[95]
Katikaneni, S.P.R.; Adjaye, J.D.; Bakhshi, N.N. Performance of aluminophosphate molecular sieve catalysts for the production of hydrocarbons from wood-derived and vegetable oils. Energy Fuels, 1995, 9(6), 1065-1078.
[96]
Carlson, T.R.; Cheng, Y.T.; Jae, J.; Huber, G.W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci., 2010, 4(1), 145-161.
[97]
Carlson, T.R.; Jae, J.; Lin, Y.C.; Tompsett, G.A.; Huber, G.W. Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions. J. Catal., 2010, 270(1), 110-124.
[98]
Carlson, T.R.; Cheng, Y.T.; Jae, J.; Huber, G.W. Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energy Environ. Sci., 2011, 4, 145-161.
[99]
Mullen, C.A.; Boateng, A.A. Catalytic pyrolysis-GC/MS of lignin from several sources. Fuel Process. Technol., 2010, 91(11), 1446-1458.
[100]
Onay, Ö. The catalytic co-pyrolysis of waste tires and pistachio seeds. Energy Sources Part -A Recovery Util. Environ. Effects, 2014, 36(18), 2070-2077.
[101]
Duan, P.G.; Jin, B.B.; Xu, Y.P.; Wang, F. Co-pyrolysis of microalgae and waste rubber tire in supercritical ethanol. Chem. Eng. J., 2015, 269, 262-271.
[102]
Wang, Y.; Dai, L.; Fan, L.; Cao, L.; Zhou, Y.; Zhao, Y.; Liu, Y.; Ruan, R. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production. Waste Manag., 2017, 61, 276-282.
[103]
Ma, W.C.; Liu, B.; Zhang, R.X.; Gu, T.B.; Ji, X.; Zhong, L.; Chen, G.Y.; Ma, L.L.; Cheng, Z.J.; Li, X.P. Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC). Appl. Energy, 2018, 217, 233-240.
[104]
Elliott, D.C. Historical developments in hydroprocessing bio-oils. Energy Fuels, 2007, 21(3), 1792-1815.
[105]
Vispute, T.P.; Zhang, H.; Sanna, A.; Xiao, R.; Huber, G.W. Renewable chemical commodity feedstocks from integrated catalytic processing of pyrolysis oils. Science, 2012, 330(6008), 1222-1227.
[106]
Zhang, H.Y.; Cheng, Y.T.; Vispute, T.P.; Xiao, R.; Huber, G.W. Catalytic conversion of biomass-derived feedstocks intoolefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio. Energy Environ. Sci., 2011, 4, 2297-2307.
[107]
Faix, A.; Schweinle, J.; Schöll, S.; Becker, G.; Meier, D. Life-cycle assessment of the BTO®;-process (biomass-to-oil) with combined heat and power generation. Environ. Prog. Sustain., 2010, 29(2), 193-202.
[108]
Huang, Y.; Qiu, S.; Oduro, I.N.; Guo, X.; Fang, Y.M. Production of high-yield bio-oil with a high effective hydrogen/carbon molar ratio through acidolysis and in situ hydrogenation. Energy Fuels, 2016, 30(11), 9524-9531.
[109]
Karatzos, S.; McMillan, J.; Saddler, J. The potential and challenges of drop-in biofuels. IEA Bioenergy, 2014, 39, 1-209.
[110]
Deuss, P.J.; Scott, M.; Tran, F.; Westwood, N.J.; de Vries, J.G.; Barta, K.J. Aromatic monomers by in situ conversion of reactive intermediates in the acid-catalyzed depolymerization of lignin. J. Am. Chem. Soc., 2015, 137(23), 7456-7467.
[111]
Johansson, A.C.; Wiinikka, H.; Sandström, L.; Marklund, M.; Öhrman, O.G.W.; Narvesjö, J. Characterization of pyrolysis products produced from different Nordic biomass types in a cyclone pilot plant. Fuel Process. Technol., 2016, 146, 9-19.
[112]
Zuo, C.Y.; Xu, J.; Cai, Q.J.; Zhang, S.P. Study on the factors of co-processing of bio-oil and petroleum fraction. Renew. Energ. Resour., 2016, 34(6), 926-932.
[113]
Pinho, A.D.R.; Almeida, M.B.B.D.; Mendes, F.L.; Casavechia, L.C.; Talmadge, M.S.; Kinchin, C.M.; Chum, H.L. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel, 2017, 188, 462-473.
[114]
Pinho, A.D.R.; Almeida, M.B.B.D.; Mendes, F.L.; Ximenes, V.L.; Casavechia, L.C. Co-processing raw bio-oil and gasoil in an FCC unit. Fuel Process. Technol., 2015, 131, 159-166.
[115]
Pinho, A.D.R.; Almeida, M.B.B.D.; Mendes, F.L.; Casavechia, L.C.; Talmadge, M.S.; Kinchin, C.M.; Chum, H. Fast pyrolysis oil from pinewood chips co-processing with vacuum gas oil in an FCC unit for second generation fuel production. Fuel, 2016, 188, 462-473.
[116]
Hoffmann, J.; Jensen, C.; Rosendahl, L. Co-processing potential of HTL bio-crude at petroleum refineries – Part 1: Fractional distillation and characterization. Fuel, 2016, 165, 526-535.
[117]
Jensen, C.U.; Hoffmann, J.; Rosendahl, L.A. Co-processing potential of HTL bio-crude at petroleum refineries – Part 2: A parametric hydrotreating study. Fuel, 2016, 165, 536-543.
[118]
Thegarid, N.; Fogassy, G.; Schuurman, Y.; Mirodatos, C.; Stefanidis, S.; Iliopoulou, E.F.; Kalogiannis, K.; Lappas, A.A. Second-generation biofuels by co-processing catalytic pyrolysis oil in FCC units. Appl. Catal. B Environ., 2014, 145, 161-166.
[119]
Mercader, F.D.M.; Groeneveld, M.J.; Kersten, S.R.A.; Way, N.W.J.; Schaverien, C.J.; Hogendoorn, J.A. Production of advanced biofuels: Co-processing of upgraded pyrolysis oil in standard refinery units. Appl. Catal. B Environ., 2010, 96(1-2), 57-66.
[120]
Ma, Z.; Wei, L.; Zhou, W.; Jia, L.; Hou, B.; Li, D.; Zhao, Y. Overview of catalyst application in petroleum refinery for biomass catalytic pyrolysis and bio-oil upgrading. Rsc. Adv., 2015, 5(107), 88287-88297.
[121]
Fogassy, G.; Thegarid, N.; Toussaint, G.; Veen, A.C.V.; Schuurman, Y.; Mirodatos, C. Biomass derived feedstock co-processing with vacuum gas oil for second-generation fuel production in FCC units. Appl. Catal. B Environ., 2010, 96(3-4), 476-485.
[122]
Wang, C.X.; Li, M.R.; Fang, Y.M. Co-processing of catalytic-pyrolysis-derived bio-oil with VGO in a pilot-scale FCC riser. Ind. Eng. Chem. Res., 2016, 55(12), 3525-3534.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 7
Year: 2019
Page: [746 - 767]
Pages: 22
DOI: 10.2174/1385272823666190405145007
Price: $58

Article Metrics

PDF: 17
HTML: 2