Current Updates on the Regulation of Beta-Secretase Movement as a Potential Restorative Focus for Management of Alzheimer's Disease

Author(s): Syed Sayeed Ahmad, Mohammad Amjad Kamal*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The most recent decade was described by a developing awareness about the seriousness of dementia in the field of age-related people. Among the dementias, Alzheimer's assumes a plentiful role as a result of its amazingly high rate and casualty. A few pharmacological procedures have been attempted yet at the same time now, Alzheimer continues being an untreatable malady. The collection of Aβ in the brain is an early poisonous occasion in the pathogenesis of Alzheimer's disease, which is the most widely recognized type of dementia correlated with plaques and tangles within the brain. However, the mechanism of the intraneuronal direction of BACE1 is poorly understood. AD is caused by mutations in one of the genes that encoding APP, presenilins 1 and 2. Most of the mutations in these genes increase Aβ42 production. Numerous receptors are associated with initiating Aβ transport and clearance. Among them, RAGE is an influx transport receptor that binds soluble Aβ and mediates pathophysiological cellular responses. RAGE additionally intervenes the vehicle of plasma Aβ over the blood-brain barrier. LRP-1 functions as a clearance receptor for Aβ at the blood-brain barrier. The regulation of beta-secretase movement is being explored as a potential restorative focus for treating AD.

Keywords: Alzheimer's disease, BACE1, RAGE, Aβ, Blood-Brain Barrier, mutation.

[1]
Athanasopoulos, D.; Karagiannis, G.; Tsolaki, M. Recent findings in alzheimer disease and nutrition focusing on epigenetics. Adv. Nutr., 2016, 7(5), 917-927.
[http://dx.doi.org/10.3945/an.116.012229] [PMID: 27633107]
[2]
Cummings, J.L.; Isaacson, R.S.; Schmitt, F.A.; Velting, D.M. A practical algorithm for managing Alzheimer’s disease: what, when, and why? Ann. Clin. Transl. Neurol., 2015, 2(3), 307-323.
[http://dx.doi.org/10.1002/acn3.166] [PMID: 25815358]
[3]
Ahmad, S.S.; Akhtar, S.; Jamal, Q.M.; Rizvi, S.M.; Kamal, M.A.; Khan, M.K.; Siddiqui, M.H.; Siddiqui, M.H. Multiple targets for the management of alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2016, 15(10), 1279-1289.
[http://dx.doi.org/10.2174/1871527315666161003165855] [PMID: 27712576]
[4]
Aprahamian, I.; Stella, F.; Forlenza, O.V. New treatment strategies for Alzheimer’s disease: is there a hope? Indian J. Med. Res., 2013, 138(4), 449-460.
[PMID: 24434253]
[5]
Alam, A.; Shaikh, S.; Ahmad, S.S.; Ansari, M.A.; Shakil, S.; Rizvi, S.M.; Shakil, S.; Imran, M.; Haneef, M.; Abuzenadah, A.M.; Kamal, M.A. Molecular interaction of human brain acetylcholinesterase with a natural inhibitor huperzine-B: an enzoinformatics approach. CNS Neurol. Disord. Drug Targets, 2014, 13(3), 487-490.
[http://dx.doi.org/10.2174/18715273113126660163] [PMID: 24059299]
[6]
Amoroso, N.; Diacono, D.; La Rocca, M.; Bellotti, R.; Tangaro, S. Salient networks: a novel application to study Alzheimer disease. Biomed. Eng. Online, 2018, 17(Suppl. 1), 162.
[http://dx.doi.org/10.1186/s12938-018-0566-5] [PMID: 30458801]
[7]
Cassani, R.; Estarellas, M.; San-Martin, R.; Fraga, F.J.; Falk, T.H. Systematic review on resting state EEG for alzheimer’s disease diagnosis and progression assessment. Dis. Markers, 2018, 20185174815
[http://dx.doi.org/10.1155/2018/5174815] [PMID: 30405860]
[8]
Rajmohan, R.; Reddy, P.H. Amyloid-beta and phosphorylated tau accumulations cause abnormalities at synapses of alzheimer’s disease neurons. J. Alzheimers Dis., 2017, 57(4), 975-999.
[http://dx.doi.org/10.3233/JAD-160612] [PMID: 27567878]
[9]
Morris, G.P.; Clark, I.A.; Vissel, B. Questions concerning the role of amyloid-β in the definition, aetiology and diagnosis of Alzheimer’s disease. Acta Neuropathol., 2018, 136(5), 663-689.
[http://dx.doi.org/10.1007/s00401-018-1918-8] [PMID: 30349969]
[10]
Hu, X.; Hicks, C.W.; He, W.; Wong, P.; Macklin, W.B.; Trapp, B.D.; Yan, R. Bace1 modulates myelination in the central and peripheral nervous system. Nat. Neurosci., 2006, 9(12), 1520-1525.
[http://dx.doi.org/10.1038/nn1797] [PMID: 17099708]
[11]
Sauder, J.M.; Arthur, J.W.; Dunbrack, R.L., Jr Modeling of substrate specificity of the Alzheimer’s disease amyloid precursor protein beta-secretase. J. Mol. Biol., 2000, 300(2), 241-248.
[http://dx.doi.org/10.1006/jmbi.2000.3860] [PMID: 10873463]
[12]
Hong, L.; Koelsch, G.; Lin, X.; Wu, S.; Terzyan, S.; Ghosh, A.K.; Zhang, X.C.; Tang, J. Structure of the protease domain of memapsin 2 (beta-secretase) complexed with inhibitor. Science, 2000, 290(5489), 150-153.
[http://dx.doi.org/10.1126/science.290.5489.150] [PMID: 11021803]
[13]
Maillard, M.C.; Hom, R.K.; Benson, T.E.; Moon, J.B.; Mamo, S.; Bienkowski, M.; Tomasselli, A.G.; Woods, D.D.; Prince, D.B.; Paddock, D.J.; Emmons, T.L.; Tucker, J.A.; Dappen, M.S.; Brogley, L.; Thorsett, E.D.; Jewett, N.; Sinha, S.; John, V. Design, synthesis, and crystal structure of hydroxyethyl secondary amine-based peptidomimetic inhibitors of human beta-secretase. J. Med. Chem., 2007, 50(4), 776-781.
[http://dx.doi.org/10.1021/jm061242y] [PMID: 17300163]
[14]
Descamps, O.; Spilman, P.; Zhang, Q.; Libeu, C.P.; Poksay, K.; Gorostiza, O.; Campagna, J.; Jagodzinska, B.; Bredesen, D.E.; John, V. AβPP-selective BACE inhibitors (ASBI): novel class of therapeutic agents for alzheimer’s disease. J. Alzheimers Dis., 2013, 37(2), 343-355.
[http://dx.doi.org/10.3233/JAD-130578] [PMID: 23948888]
[15]
Lee, J.; Samson, A.A.S.; Song, J.M. Inkjet printing-based β-secretase fluorescence resonance energy transfer (FRET) assay for screening of potential β-secretase inhibitors of Alzheimer’s disease. Anal. Chim. Acta, 2018, 1022, 89-95.
[http://dx.doi.org/10.1016/j.aca.2018.03.033] [PMID: 29729742]
[16]
Kayed, R.; Head, E.; Thompson, J.L.; McIntire, T.M.; Milton, S.C.; Cotman, C.W.; Glabe, C.G. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science, 2003, 300(5618), 486-489.
[http://dx.doi.org/10.1126/science.1079469] [PMID: 12702875]
[17]
Walsh, D.M.; Klyubin, I.; Shankar, G.M.; Townsend, M.; Fadeeva, J.V.; Betts, V.; Podlisny, M.B.; Cleary, J.P.; Ashe, K.H.; Rowan, M.J.; Selkoe, D.J. The role of cell-derived oligomers of Abeta in Alzheimer’s disease and avenues for therapeutic intervention. Biochem. Soc. Trans., 2005, 33(Pt 5), 1087-1090.
[http://dx.doi.org/10.1042/BST0331087] [PMID: 16246051]
[18]
Lesné, S.; Koh, M.T.; Kotilinek, L.; Kayed, R.; Glabe, C.G.; Yang, A.; Gallagher, M.; Ashe, K.H. A specific amyloid-beta protein assembly in the brain impairs memory. Nature, 2006, 440(7082), 352-357.
[http://dx.doi.org/10.1038/nature04533] [PMID: 16541076]
[19]
Deane, R.; Bell, R.D.; Sagare, A.; Zlokovic, B.V. Clearance of amyloid-β peptide across the blood-brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol. Disord. Drug Targets, 2009, 8(1), 16-30.
[http://dx.doi.org/10.2174/187152709787601867] [PMID: 19275634]
[20]
Hone, E.; Martins, I.J.; Fonte, J.; Martins, R.N. Apolipoprotein E influences amyloid-beta clearance from the murine periphery. J. Alzheimers Dis., 2003, 5(1), 1-8.
[http://dx.doi.org/10.3233/JAD-2003-5101] [PMID: 12590160]
[21]
Ghiso, J.; Shayo, M.; Calero, M.; Ng, D.; Tomidokoro, Y.; Gandy, S.; Rostagno, A.; Frangione, B. Systemic catabolism of alzheimer’s Abeta40 and Abeta42. J. Biol. Chem., 2004, 279(44), 45897-45908.
[http://dx.doi.org/10.1074/jbc.M407668200] [PMID: 15322125]
[22]
Haass, C.; Schlossmacher, M.G.; Hung, A.Y.; Vigo-Pelfrey, C.; Mellon, A.; Ostaszewski, B.L.; Lieberburg, I.; Koo, E.H.; Schenk, D.; Teplow, D.B.; Selkoe, D.J. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature, 1992, 359(6393), 322-325.
[http://dx.doi.org/10.1038/359322a0] [PMID: 1383826]
[23]
Seubert, P.; Oltersdorf, T.; Lee, M.G.; Barbour, R.; Blomquist, C.; Davis, D.L.; Bryant, K.; Fritz, L.C.; Galasko, D.; Thal, L.J.; Lieberburg, I.; Schenk, D.B. Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature, 1993, 361(6409), 260-263.
[http://dx.doi.org/10.1038/361260a0] [PMID: 7678698]
[24]
Zhao, J.; Paganini, L.; Mucke, L.; Gordon, M.; Refolo, L.; Carman, M.; Sinha, S.; Oltersdorf, T.; Lieberburg, I.; McConlogue, L. β-secretase processing of the β-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J. Biol. Chem., 1996, 271(49), 31407-31411.
[http://dx.doi.org/10.1074/jbc.271.49.31407] [PMID: 8940150]
[25]
Marwarha, G.; Claycombe-Larson, K.; Lund, J.; Ghribi, O. Palmitate-Induced SREBP1 expression and activation underlies the increased BACE 1 activity and amyloid beta genesis. Mol. Neurobiol., 2019, 56(7), 5256-5269.
[http://dx.doi.org/10.1007/s12035-018-1451-8] [PMID: 3056941]
[26]
Haass, C.; Hung, A.Y.; Schlossmacher, M.G.; Teplow, D.B.; Selkoe, D.J. β-Amyloid peptide and a 3-kDa fragment are derived by distinct cellular mechanisms. J. Biol. Chem., 1993, 268(5), 3021-3024.
[PMID: 8428976]
[27]
Haass, C.; Capell, A.; Citron, M.; Teplow, D.B.; Selkoe, D.J. The vacuolar H(+)-ATPase inhibitor bafilomycin A1 differentially affects proteolytic processing of mutant and wild-type beta-amyloid precursor protein. J. Biol. Chem., 1995, 270(11), 6186-6192.
[http://dx.doi.org/10.1074/jbc.270.11.6186] [PMID: 7890753]
[28]
Knops, J.; Suomensaari, S.; Lee, M.; McConlogue, L.; Seubert, P.; Sinha, S. Cell-type and amyloid precursor protein-type specific inhibition of A β release by bafilomycin A1, a selective inhibitor of vacuolar ATPases. J. Biol. Chem., 1995, 270(6), 2419-2422.
[http://dx.doi.org/10.1074/jbc.270.6.2419] [PMID: 7852298]
[29]
Koo, E.H.; Squazzo, S.L. Evidence that production and release of amyloid β-protein involves the endocytic pathway. J. Biol. Chem., 1994, 269(26), 17386-17389.
[PMID: 8021238]
[30]
Haass, C.; Lemere, C.A.; Capell, A.; Citron, M.; Seubert, P.; Schenk, D.; Lannfelt, L.; Selkoe, D.J. The Swedish mutation causes early-onset Alzheimer’s disease by beta-secretase cleavage within the secretory pathway. Nat. Med., 1995, 1(12), 1291-1296.
[http://dx.doi.org/10.1038/nm1295-1291] [PMID: 7489411]
[31]
Kao, S.C.; Krichevsky, A.M.; Kosik, K.S.; Tsai, L.H. BACE1 suppression by RNA interference in primary cortical neurons. J. Biol. Chem., 2004, 279(3), 1942-1949.
[http://dx.doi.org/10.1074/jbc.M309219200] [PMID: 14600149]
[32]
Ohno, M.; Sametsky, E.A.; Younkin, L.H.; Oakley, H.; Younkin, S.G.; Citron, M.; Vassar, R.; Disterhoft, J.F. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron, 2004, 41(1), 27-33.
[http://dx.doi.org/10.1016/S0896-6273(03)00810-9] [PMID: 14715132]
[33]
Hussain, I.; Hawkins, J.; Harrison, D.; Hille, C.; Wayne, G.; Cutler, L.; Buck, T.; Walter, D.; Demont, E.; Howes, C.; Naylor, A.; Jeffrey, P.; Gonzalez, M.I.; Dingwall, C.; Michel, A.; Redshaw, S.; Davis, J.B. Oral administration of a potent and selective non-peptidic BACE-1 inhibitor decreases beta-cleavage of amyloid precursor protein and amyloid-beta production in vivo. J. Neurochem., 2007, 100(3), 802-809.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04260.x] [PMID: 17156133]
[34]
Arbor, S.C.; LaFontaine, M.; Cumbay, M. Amyloid-beta Alzheimer targets - protein processing, lipid rafts, and amyloid-beta pores. Yale J. Biol. Med., 2016, 89(1), 5-21.
[PMID: 27505013]
[35]
Dulin, F.; Léveillé, F.; Ortega, J.B.; Mornon, J.P.; Buisson, A.; Callebaut, I.; Colloc’h, N. P3 peptide, a truncated form of A β devoid of synaptotoxic effect, does not assemble into soluble oligomers. FEBS Lett., 2008, 582(13), 1865-1870.
[http://dx.doi.org/10.1016/j.febslet.2008.05.002] [PMID: 18474239]
[36]
Cook, D.G.; Forman, M.S.; Sung, J.C.; Leight, S.; Kolson, D.L.; Iwatsubo, T.; Lee, V.M.; Doms, R.W. Alzheimer’s A beta(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat. Med., 1997, 3(9), 1021-1023.
[http://dx.doi.org/10.1038/nm0997-1021] [PMID: 9288730]
[37]
Jankowsky, J.L.; Fadale, D.J.; Anderson, J.; Xu, G.M.; Gonzales, V.; Jenkins, N.A.; Copeland, N.G.; Lee, M.K.; Younkin, L.H.; Wagner, S.L.; Younkin, S.G.; Borchelt, D.R. Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet., 2004, 13(2), 159-170.
[http://dx.doi.org/10.1093/hmg/ddh019] [PMID: 14645205]
[38]
Holmes, C.; Boche, D.; Wilkinson, D.; Yadegarfar, G.; Hopkins, V.; Bayer, A.; Jones, R.W.; Bullock, R.; Love, S.; Neal, J.W.; Zotova, E.; Nicoll, J.A. Long-term effects of Abeta42 immunisation in Alzheimer’s disease: follow-up of a randomised, placebo-controlled phase I trial. Lancet, 2008, 372(9634), 216-223.
[http://dx.doi.org/10.1016/S0140-6736(08)61075-2] [PMID: 18640458]
[39]
Laird, F.M.; Cai, H.; Savonenko, A.V.; Farah, M.H.; He, K.; Melnikova, T.; Wen, H.; Chiang, H.C.; Xu, G.; Koliatsos, V.E.; Borchelt, D.R.; Price, D.L.; Lee, H.K.; Wong, P.C. BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J. Neurosci., 2005, 25(50), 11693-11709.
[http://dx.doi.org/10.1523/JNEUROSCI.2766-05.2005] [PMID: 16354928]
[40]
Marwarha, G.; Raza, S.; Meiers, C.; Ghribi, O. Leptin attenuates BACE1 expression and amyloid-β genesis via the activation of SIRT1 signaling pathway. Biochim. Biophys. Acta, 2014, 1842(9), 1587-1595.
[http://dx.doi.org/10.1016/j.bbadis.2014.05.015] [PMID: 24874077]
[41]
O'Connor, T.; Sadleir, K.R.; Maus, E.; Velliquette, R.A.; Zhao, J.; Cole, S.L.; Eimer, W.A.; Hitt, B.; Bembinster, L.A.; Lammich, S.; Lichtenthaler, S.F.; Hebert, S.S.; De Strooper, B.; Haass, C.; Bennett, D.A.; Vassar, R. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron, 2008, 60(6), 988-1009.
[http://dx.doi.org/10.1016/j.neuron.2008.10.047] [PMID: 19109907]
[42]
Guglielmotto, M.; Aragno, M.; Autelli, R.; Giliberto, L.; Novo, E.; Colombatto, S.; Danni, O.; Parola, M.; Smith, M.A.; Perry, G.; Tamagno, E.; Tabaton, M. The up-regulation of BACE1 mediated by hypoxia and ischemic injury: role of oxidative stress and HIF1alpha. J. Neurochem., 2009, 108(4), 1045-1056.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05858.x] [PMID: 19196431]
[43]
Wolfe, M.S. Inhibition and modulation of gamma-secretase for Alzheimer’s disease. Neurotherapeutics, 2008, 5(3), 391-398.
[http://dx.doi.org/10.1016/j.nurt.2008.05.010] [PMID: 18625450]
[44]
Glenner, G.G.; Wong, C.W. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. 1984. Biochem. Biophys. Res. Commun., 2012, 425(3), 534-539.
[http://dx.doi.org/10.1016/j.bbrc.2012.08.020] [PMID: 22925670]
[45]
Haass, C.; Koo, E.H.; Mellon, A.; Hung, A.Y.; Selkoe, D.J. Targeting of cell-surface beta-amyloid precursor protein to lysosomes: alternative processing into amyloid-bearing fragments. Nature, 1992, 357(6378), 500-503.
[http://dx.doi.org/10.1038/357500a0] [PMID: 1608449]
[46]
Amaro, M.; Šachl, R.; Aydogan, G.; Mikhalyov, I.I.; Vacha, R.; Hof, M. GM1 ganglioside inhibits beta-amyloid oligomerization induced by sphingomyelin. Angew. Chem. Int. Ed. Engl., 2016, 55(32), 9411-9415.
[http://dx.doi.org/10.1002/anie.201603178] [PMID: 27295499]
[47]
Canevari, L.; Abramov, A.Y.; Duchen, M.R. Toxicity of amyloid beta peptide: tales of calcium, mitochondria, and oxidative stress. Neurochem. Res., 2004, 29(3), 637-650.
[http://dx.doi.org/10.1023/B:NERE.0000014834.06405.af] [PMID: 15038611]
[48]
Gomes, B.A.Q.; Silva, J.P.B.; Romeiro, C.F.R.; Dos Santos, S.M.; Rodrigues, C.A.; Goncalves, P.R.; Sakai, J.T.; Mendes, P.F.S.; Varela, E.L.P.; Monteiro, M.C. Neuroprotective mechanisms of resveratrol in alzheimer’s disease: Role of SIRT1. Oxid. Med. Cell. Longev., 2018, 20188152373
[http://dx.doi.org/10.1155/2018/8152373] [PMID: 30510627]
[49]
Turner, A.J.; Tanzawa, K. Mammalian membrane metallopeptidases: NEP, ECE, KELL, and PEX. FASEB J., 1997, 11(5), 355-364.
[http://dx.doi.org/10.1096/fasebj.11.5.9141502] [PMID: 9141502]
[50]
Angus, R.M.; Millar, E.A.; Chalmers, G.W.; Thomson, N.C. Effect of inhaled thiorphan, a neutral endopeptidase inhibitor, on the bronchodilator response to inhaled atrial natriuretic peptide (ANP). Thorax, 1996, 51(1), 71-74.
[http://dx.doi.org/10.1136/thx.51.1.71] [PMID: 8658373]
[51]
Strittmatter, W.J.; Saunders, A.M.; Schmechel, D.; Pericak-Vance, M.; Enghild, J.; Salvesen, G.S.; Roses, A.D. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc. Natl. Acad. Sci. USA, 1993, 90(5), 1977-1981.
[http://dx.doi.org/10.1073/pnas.90.5.1977] [PMID: 8446617]
[52]
Shibata, M.; Yamada, S.; Kumar, S.R.; Calero, M.; Bading, J.; Frangione, B.; Holtzman, D.M.; Miller, C.A.; Strickland, D.K.; Ghiso, J.; Zlokovic, B.V. Clearance of Alzheimer’s amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest., 2000, 106(12), 1489-1499.
[http://dx.doi.org/10.1172/JCI10498] [PMID: 11120756]
[53]
Deane, R.; Wu, Z.; Sagare, A.; Davis, J.; Du Yan, S.; Hamm, K.; Xu, F.; Parisi, M.; LaRue, B.; Hu, H.W.; Spijkers, P.; Guo, H.; Song, X.; Lenting, P.J.; Van Nostrand, W.E.; Zlokovic, B.V. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron, 2004, 43(3), 333-344.
[http://dx.doi.org/10.1016/j.neuron.2004.07.017] [PMID: 15294142]
[54]
Mackic, J.B.; Stins, M.; McComb, J.G.; Calero, M.; Ghiso, J.; Kim, K.S.; Yan, S.D.; Stern, D.; Schmidt, A.M.; Frangione, B.; Zlokovic, B.V. Human blood-brain barrier receptors for Alzheimer’s amyloid-beta 1- 40. Asymmetrical binding, endocytosis, and transcytosis at the apical side of brain microvascular endothelial cell monolayer. J. Clin. Invest., 1998, 102(4), 734-743.
[http://dx.doi.org/10.1172/JCI2029] [PMID: 9710442]
[55]
Stern, D.M.; Yan, S.D.; Yan, S.F.; Schmidt, A.M. Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res. Rev., 2002, 1(1), 1-15.
[http://dx.doi.org/10.1016/S0047-6374(01)00366-9] [PMID: 12039445]
[56]
LaRue, B.; Hogg, E.; Sagare, A.; Jovanovic, S.; Maness, L.; Maurer, C.; Deane, R.; Zlokovic, B.V. Method for measurement of the blood-brain barrier permeability in the perfused mouse brain: application to amyloid-beta peptide in wild type and Alzheimer's Tg2576 mice. J. Neurosci. Methods, 2004, 138(1-2), 233-242.
[http://dx.doi.org/10.1016/j.jneumeth.2004.04.026] [PMID: 15325132]
[57]
Shibata, M1.; Yamada, S.; Kumar, S.R.; Calero, M.; Bading, J.; Frangione, B.; Holtzman, D.M.; Miller, C.A.; Strickland, D.K.; Ghiso, J.; Zlokovic, B.V. Clearance of alzheimer’s amyloid-beta1-40 peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier. J. Clin. Invest., 2000, 106, 1489-1499.
[58]
Deane, R.; Wu, Z.; Sagare, A.; Davis, J.; Du Yan, S.; Hamm, K.; Xu, F.; Parisi, M.; LaRue, B.; Hu, H.W.; Spijkers, P.; Guo, H.; Song, X.; Lenting, P.J.; Van Nostrand, W.E.; Zlokovic, B.V. LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms. Neuron, 2004, 43(3), 333-344.
[http://dx.doi.org/10.1016/j.neuron.2004.07.017] [PMID: 15294142]
[59]
Aksenov, M.Yu. Aksenova, M.V.; Harris, M.E.; Hensley, K.; Butterfield, D.A.; Carney, J.M. Enhancement of beta-amyloid peptide A beta(1-40)-mediated neurotoxicity by glutamine synthetase. J. Neurochem., 1995, 65(4), 1899-1902.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65041899.x] [PMID: 7561891]
[60]
Yatin, S.M.; Yatin, M.; Aulick, T.; Ain, K.B.; Butterfield, D.A. Alzheimer’s amyloid beta-peptide associated free radicals increase rat embryonic neuronal polyamine uptake and ornithine decarboxylase activity: protective effect of vitamin E. Neurosci. Lett., 1999, 263(1), 17-20.
[http://dx.doi.org/10.1016/S0304-3940(99)00101-9] [PMID: 10218900]
[61]
Weggen, S.; Eriksen, J.L.; Das, P.; Sagi, S.A.; Wang, R.; Pietrzik, C.U.; Findlay, K.A.; Smith, T.E.; Murphy, M.P.; Bulter, T.; Kang, D.E.; Marquez-Sterling, N.; Golde, T.E.; Koo, E.H. A subset of NSAIDs lower amyloidogenic Abeta42 independently of cyclooxygenase activity. Nature, 2001, 414(6860), 212-216.
[http://dx.doi.org/10.1038/35102591] [PMID: 11700559]
[62]
Neniskyte, U.; Neher, J.J.; Brown, G.C. Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia. J. Biol. Chem., 2011, 286(46), 39904-39913.
[http://dx.doi.org/10.1074/jbc.M111.267583] [PMID: 21903584]
[63]
Raghavan, N.; Tosto, G. Genetics of alzheimer’s disease: The Importance of polygenic and epistatic components. Curr. Neurol. Neurosci. Rep., 2017, 17(10), 78.
[http://dx.doi.org/10.1007/s11910-017-0787-1] [PMID: 28825204]
[64]
Kola, I.; Landis, J. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov., 2004, 3(8), 711-715.
[http://dx.doi.org/10.1038/nrd1470] [PMID: 15286737]
[65]
Waring, S.C.; Rosenberg, R.N. Genome-wide association studies in Alzheimer disease. Arch. Neurol., 2008, 65(3), 329-334.
[http://dx.doi.org/10.1001/archneur.65.3.329] [PMID: 18332245]
[66]
Mahley, R.W.; Weisgraber, K.H.; Huang, Y. Apolipoprotein E4: a causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2006, 103(15), 5644-5651.
[http://dx.doi.org/10.1073/pnas.0600549103] [PMID: 16567625]
[67]
Jonsson, T.; Stefansson, H.; Steinberg, S.; Jonsdottir, I.; Jonsson, P.V.; Snaedal, J.; Bjornsson, S.; Huttenlocher, J.; Levey, A.I.; Lah, J.J.; Rujescu, D.; Hampel, H.; Giegling, I.; Andreassen, O.A.; Engedal, K.; Ulstein, I.; Djurovic, S.; Ibrahim-Verbaas, C.; Hofman, A.; Ikram, M.A.; van Duijn, C.M.; Thorsteinsdottir, U.; Kong, A.; Stefansson, K. Variant of TREM2 associated with the risk of Alzheimer’s disease. N. Engl. J. Med., 2013, 368(2), 107-116.
[http://dx.doi.org/10.1056/NEJMoa1211103] [PMID: 23150908]
[68]
Lambert, J.C.; Ibrahim-Verbaas, C.A.; Harold, D.; Naj, A.C.; Sims, R.; Bellenguez, C.; DeStafano, A.L.; Bis, J.C.; Beecham, G.W.; Grenier-Boley, B.; Russo, G.; Thorton-Wells, T.A.; Jones, N.; Smith, A.V.; Chouraki, V.; Thomas, C.; Ikram, M.A.; Zelenika, D.; Vardarajan, B.N.; Kamatani, Y.; Lin, C.F.; Gerrish, A.; Schmidt, H.; Kunkle, B.; Dunstan, M.L.; Ruiz, A.; Bihoreau, M.T.; Choi, S.H.; Reitz, C.; Pasquier, F.; Cruchaga, C.; Craig, D.; Amin, N.; Berr, C.; Lopez, O.L.; De Jager, P.L.; Deramecourt, V.; Johnston, J.A.; Evans, D.; Lovestone, S.; Letenneur, L.; Moron, F.J.; Rubinsztein, D.C.; Eiriksdottir, G.; Sleegers, K.; Goate, A.M.; Fiévet, N.; Huentelman, M.W.; Gill, M.; Brown, K.; Kamboh, M.I.; Keller, L.; Barberger-Gateau, P.; McGuiness, B.; Larson, E.B.; Green, R.; Myers, A.J.; Dufouil, C.; Todd, S.; Wallon, D.; Love, S.; Rogaeva, E.; Gallacher, J.; St George-Hyslop, P.; Clarimon, J.; Lleo, A.; Bayer, A.; Tsuang, D.W.; Yu, L.; Tsolaki, M.; Bossù, P.; Spalletta, G.; Proitsi, P.; Collinge, J.; Sorbi, S.; Sanchez-Garcia, F.; Fox, N.C.; Hardy, J.; Deniz Naranjo, M.C.; Bosco, P.; Clarke, R.; Brayne, C.; Galimberti, D.; Mancuso, M.; Matthews, F.; Moebus, S.; Mecocci, P.; Del Zompo, M.; Maier, W.; Hampel, H.; Pilotto, A.; Bullido, M.; Panza, F.; Caffarra, P.; Nacmias, B.; Gilbert, J.R.; Mayhaus, M.; Lannefelt, L.; Hakonarson, H.; Pichler, S.; Carrasquillo, M.M.; Ingelsson, M.; Beekly, D.; Alvarez, V.; Zou, F.; Valladares, O.; Younkin, S.G.; Coto, E.; Hamilton-Nelson, K.L.; Gu, W.; Razquin, C.; Pastor, P.; Mateo, I.; Owen, M.J.; Faber, K.M.; Jonsson, P.V.; Combarros, O.; O’Donovan, M.C.; Cantwell, L.B.; Soininen, H.; Blacker, D.; Mead, S.; Mosley, T.H., Jr; Bennett, D.A.; Harris, T.B.; Fratiglioni, L.; Holmes, C.; de Bruijn, R.F.; Passmore, P.; Montine, T.J.; Bettens, K.; Rotter, J.I.; Brice, A.; Morgan, K.; Foroud, T.M.; Kukull, W.A.; Hannequin, D.; Powell, J.F.; Nalls, M.A.; Ritchie, K.; Lunetta, K.L.; Kauwe, J.S.; Boerwinkle, E.; Riemenschneider, M.; Boada, M.; Hiltuenen, M.; Martin, E.R.; Schmidt, R.; Rujescu, D.; Wang, L.S.; Dartigues, J.F.; Mayeux, R.; Tzourio, C.; Hofman, A.; Nöthen, M.M.; Graff, C.; Psaty, B.M.; Jones, L.; Haines, J.L.; Holmans, P.A.; Lathrop, M.; Pericak-Vance, M.A.; Launer, L.J.; Farrer, L.A.; van Duijn, C.M.; Van Broeckhoven, C.; Moskvina, V.; Seshadri, S.; Williams, J.; Schellenberg, G.D.; Amouyel, P. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet., 2013, 45(12), 1452-1458.
[http://dx.doi.org/10.1038/ng.2802] [PMID: 24162737]
[69]
Ankarcrona, M.; Winblad, B.; Monteiro, C.; Fearns, C.; Powers, E.T.; Johansson, J.; Westermark, G.T.; Presto, J.; Ericzon, B.G.; Kelly, J.W. Current and future treatment of amyloid diseases. J. Intern. Med., 2016, 280(2), 177-202.
[http://dx.doi.org/10.1111/joim.12506] [PMID: 27165517]
[70]
Chen, G.F.; Xu, T.H.; Yan, Y.; Zhou, Y.R.; Jiang, Y.; Melcher, K.; Xu, H.E. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol. Sin., 2017, 38(9), 1205-1235.
[http://dx.doi.org/10.1038/aps.2017.28] [PMID: 28713158]
[71]
Godyń, J.; Jończyk, J.; Panek, D.; Malawska, B. Therapeutic strategies for Alzheimer’s disease in clinical trials. Pharmacol. Rep., 2016, 68(1), 127-138.
[http://dx.doi.org/10.1016/j.pharep.2015.07.006] [PMID: 26721364]
[72]
Frisardi, V.; Solfrizzi, V.; Imbimbo, P.B.; Capurso, C.; D’Introno, A.; Colacicco, A.M.; Vendemiale, G.; Seripa, D.; Pilotto, A.; Capurso, A.; Panza, F. Towards disease-modifying treatment of Alzheimer’s disease: drugs targeting beta-amyloid. Curr. Alzheimer Res., 2010, 7(1), 40-55.
[http://dx.doi.org/10.2174/156720510790274400] [PMID: 19939231]
[73]
Eketjäll, S.; Janson, J.; Kaspersson, K.; Bogstedt, A.; Jeppsson, F.; Fälting, J.; Haeberlein, S.B.; Kugler, A.R.; Alexander, R.C.; Cebers, G. AZD3293: A novel, orally active BACE1 inhibitor with high potency and permeability and markedly slow off-rate kinetics. J. Alzheimers Dis., 2016, 50(4), 1109-1123.
[http://dx.doi.org/10.3233/JAD-150834] [PMID: 26890753]
[74]
Molecule of the month. Semagacestat. Drug News Perspect., 2008, 21(7), 390.
[PMID: 19259551]
[75]
Poli, G.; Corda, E.; Lucchini, B.; Puricelli, M.; Martino, P.A.; Dall’ara, P.; Villetti, G.; Bareggi, S.R.; Corona, C.; Vallino Costassa, E.; Gazzuola, P.; Iulini, B.; Mazza, M.; Acutis, P.; Mantegazza, P.; Casalone, C.; Imbimbo, B.P. Therapeutic effect of CHF5074, a new γ-secretase modulator, in a mouse model of scrapie. Prion, 2012, 6(1), 62-72.
[http://dx.doi.org/10.4161/pri.6.1.18317] [PMID: 22453180]
[76]
DeMattos, R.B.; Bales, K.R.; Cummins, D.J.; Dodart, J.C.; Paul, S.M.; Holtzman, D.M. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8850-8855.
[http://dx.doi.org/10.1073/pnas.151261398] [PMID: 11438712]
[77]
Jia, Q.; Deng, Y.; Qing, H. Potential therapeutic strategies for Alzheimer’s disease targeting or beyond β-amyloid: insights from clinical trials. BioMed Res. Int., 2014, 2014837157
[http://dx.doi.org/10.1155/2014/837157] [PMID: 25136630]
[78]
Grüninger, F. Invited review: Drug development for tauopathies. Neuropathol. Appl. Neurobiol., 2015, 41(1), 81-96.
[http://dx.doi.org/10.1111/nan.12192] [PMID: 25354646]
[79]
Zhang, B.; Maiti, A.; Shively, S.; Lakhani, F.; McDonald-Jones, G.; Bruce, J.; Lee, E.B.; Xie, S.X.; Joyce, S.; Li, C.; Toleikis, P.M.; Lee, V.M.; Trojanowski, J.Q. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc. Natl. Acad. Sci. USA, 2005, 102(1), 227-231.
[http://dx.doi.org/10.1073/pnas.0406361102] [PMID: 15615853]
[80]
Mueller-Steiner, S.; Zhou, Y.; Arai, H.; Roberson, E.D.; Sun, B.; Chen, J.; Wang, X.; Yu, G.; Esposito, L.; Mucke, L.; Gan, L. Antiamyloidogenic and neuroprotective functions of cathepsin B: implications for Alzheimer’s disease. Neuron, 2006, 51(6), 703-714.
[http://dx.doi.org/10.1016/j.neuron.2006.07.027] [PMID: 16982417]
[81]
Avramopoulos, D. Genetics of Alzheimer’s disease: recent advances. Genome Med., 2009, 1(3), 34.
[http://dx.doi.org/10.1186/gm34] [PMID: 19341505]
[82]
Huang, S.M.; Mouri, A.; Kokubo, H.; Nakajima, R.; Suemoto, T.; Higuchi, M.; Staufenbiel, M.; Noda, Y.; Yamaguchi, H.; Nabeshima, T.; Saido, T.C.; Iwata, N. Neprilysin-sensitive synapse-associated amyloid-beta peptide oligomers impair neuronal plasticity and cognitive function. J. Biol. Chem., 2006, 281(26), 17941-17951.
[http://dx.doi.org/10.1074/jbc.M601372200] [PMID: 16636059]
[83]
Ohyagi, Y. [A drug targeting intracellular amyloid-β and oxidative stress: apomorphine] Rinsho Shinkeigaku, 2011, 51(11), 884-887.
[http://dx.doi.org/10.5692/clinicalneurol.51.884] [PMID: 22277403]
[84]
Granic, I.; Nyakas, C.; Luiten, P.G.; Eisel, U.L.; Halmy, L.G.; Gross, G.; Schoemaker, H.; Möller, A.; Nimmrich, V. Calpain inhibition prevents amyloid-beta-induced neurodegeneration and associated behavioral dysfunction in rats. Neuropharmacology, 2010, 59(4-5), 334-342.
[http://dx.doi.org/10.1016/j.neuropharm.2010.07.013] [PMID: 20650285]
[85]
Zhao, W.; Wang, J.; Ho, L.; Ono, K.; Teplow, D.B.; Pasinetti, G.M. Identification of antihypertensive drugs which inhibit amyloid-beta protein oligomerization. J. Alzheimers Dis., 2009, 16(1), 49-57.
[http://dx.doi.org/10.3233/JAD-2009-0925] [PMID: 19158421]
[86]
Rogers, S.L.; Friedhoff, L.T. The efficacy and safety of donepezil in patients with Alzheimer’s disease: results of a US multicentre, randomized, double-blind, placebo-controlled trial. Dementia, 1996, 7(6), 293-303.
[PMID: 8915035]
[87]
Bryson, H.M.; Benfield, P. Donepezil. Drugs Aging, 1997, 10(3), 234-239.
[http://dx.doi.org/10.2165/00002512-199710030-00007] [PMID: 9108896]
[88]
Linkins, K.W.; Lloyd, J.R.; Hjelmstad, G.O.; Strausbaugh, H.J. Potential savings in the cost of caring for Alzheimer’s disease. Treatment with rivastigmine. Pharmacoeconomics, 2000, 18(6), 609-612.
[http://dx.doi.org/10.2165/00019053-200018060-00007] [PMID: 11227398]
[89]
Woodruff-Pak, D.S.; Tobia, M.J.; Jiao, X.; Beck, K.D.; Servatius, R.J. Preclinical investigation of the functional effects of memantine and memantine combined with galantamine or donepezil. Neuropsychopharmacology, 2007, 32(6), 1284-1294.
[http://dx.doi.org/10.1038/sj.npp.1301259] [PMID: 17119537]
[90]
Riepe, M.W.; Adler, G.; Ibach, B.; Tracik, F. Adding memantine to therapy with rivastigmine in patients with mild to moderate Alzheimer’s disease: Results of a 12-week pilot study. Prim. Care Companion J. Clin. Psychiatry, 2006, 8, 258-263.
[http://dx.doi.org/10.4088/PCC.v08n0501] [PMID: 17235381]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 8
Year: 2019
Page: [579 - 587]
Pages: 9
DOI: 10.2174/0929866526666190405125334

Article Metrics

PDF: 18
HTML: 4
EPUB: 1
PRC: 1

Special-new-year-discount