The Inducing Roles of the New Isolated Bursal Hexapeptide and Pentapeptide on the Immune Response of AIV Vaccine in Mice

Author(s): Shan Shan Hao, Man Man Zong, Ze Zhang, Jia Xi Cai, Yang Zheng, Xiu Li Feng*, Chen Wang*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Bursa of Fabricius is the acknowledged central humoral immune organ. The bursal-derived peptides play the important roles on the immature B cell development and antibody production.

Objectives: Here we explored the functions of the new isolated bursal hexapeptide and pentapeptide on the humoral, cellular immune response and antigen presentation to Avian Influenza Virus (AIV) vaccine in mice immunization.

Methods: The bursa extract samples were purified following RP HPLC method, and were analyzed with MS/MS to identify the amino acid sequences. Mice were twice subcutaneously injected with AIV inactivated vaccine plus with two new isolated bursal peptides at three dosages, respectively. On two weeks after the second immunization, sera samples were collected from the immunized mice to measure AIV-specific IgG antibody levels and HI antibody titers. Also, on 7th day after the second immunization, lymphocytes were isolated from the immunized mice to detect T cell subtype and lymphocyte viabilities, and the expressions of co-stimulatory molecule on dendritic cells in the immunized mice.

Results: Two new bursal hexapeptide and pentapeptide with amino acid sequences KGNRVY and MPPTH were isolated, respectively. Our investigation proved the strong regulatory roles of bursal hexapeptide on AIV-specific IgG levels and HI antibody titers, and lymphocyte viabilities, and the significant increased T cells subpopulation and expressions of MHCII molecule on dendritic cells in the immunized mice. Moreover, our findings verified the significantly enhanced AIV-specific IgG antibody and HI titers, and the strong increased T cell subpopulation and expressions of CD40 molecule on dendritic cells in the mice immunized with AIV vaccine and bursal pentapeptide.

Conclusion: We isolated and identified two new hexapeptide and pentapeptide from bursa, and proved that these two bursal peptides effectively induced the AIV-specific antibody, T cell and antigen presentation immune responses, which provided an experimental basis for the further clinical application of the bursal derived active peptide on the vaccine improvement.

Keywords: Bursal hexapeptide, Bursal pentapeptide, AIV inactivated vaccine, antibody response, T cell, costimulatory factor.

[1]
Natale, G.; Bocci, G.; Ribatti, D. Scholars and scientists in the history of the lymphatic system. J. Anat., 2017, 231(3), 417-429. [http://dx.doi.org/10.1111/joa.12644]. [PMID: 28614587].
[2]
Gitlin, A.D.; Nussenzweig, M.C. Immunology: Fifty years of B lymphocytes. Nature, 2015, 517(7533), 139-141. [http://dx.doi.org/10.1038/517139a]. [PMID: 25567266].
[3]
Hardy, R.R.; Hayakawa, K. B cell development pathways. Annu. Rev. Immunol., 2001, 19, 595-621. [http://dx.doi.org/10.1146/annurev.immunol.19.1.595]. [PMID: 11244048].
[4]
Pieper, K.; Grimbacher, B.; Eibel, H. B-cell biology and development. J. Allergy Clin. Immunol., 2013, 131(4), 959-971. [http://dx.doi.org/10.1016/j.jaci.2013.01.046]. [PMID: 23465663].
[5]
Han, D.; Zhang, Y.; Chen, J.; Hua, G.; Li, J.; Deng, X.; Deng, X. Transcriptome analyses of differential gene expression in the bursa of Fabricius between Silky Fowl and White Leghorn. Sci. Rep., 2017, 7, 45959. [http://dx.doi.org/10.1038/srep45959]. [PMID: 28406147].
[6]
Ekino, S.; Sonoda, K.; Inui, S. Origin of IgM(+)IgG(+) lymphocytes in the bursa of Fabricius. Cell Tissue Res., 2015, 362(1), 153-162. [http://dx.doi.org/10.1007/s00441-015-2196-6]. [PMID: 25948483].
[7]
Ekino, S.; Sonoda, K. New insight into the origin of IgG-bearing cells in the bursa of Fabricius. Int. Rev. Cell Mol. Biol., 2014, 312, 101-137. [http://dx.doi.org/10.1016/B978-0-12-800178-3.00004-X]. [PMID: 25262240].
[8]
Audhya, T.; Kroon, D.; Heavner, G.; Viamontes, G.; Goldstein, G. Tripeptide structure of bursin, a selective B-cell-differentiating hormone of the bursa of fabricius. Science, 1986, 231(4741), 997-999. [http://dx.doi.org/10.1126/science.3484838]. [PMID: 3484838].
[9]
Liu, X.D.; Zhou, B.; Feng, X.L.; Cao, R.B.; Chen, P.Y. BP8, a novel peptide from avian immune system, modulates B cell developments. Amino Acids, 2014, 46(12), 2705-2713. [http://dx.doi.org/10.1007/s00726-014-1824-x]. [PMID: 25168247].
[10]
Feng, X.L.; Liu, Q.T.; Cao, R.B.; Zhou, B.; Li, Y.; Zhang, Y.P.; Liu, K.; Liu, X.D.; Wei, J.C.; Qiu, Y.F.; Li, X.F.; Ma, Z.Y.; Chen, P.Y. Gene expression profiling of hybridoma cells after bursal-derived bioactive factor BP5 treatment. Amino Acids, 2012, 43(6), 2443-2456. [http://dx.doi.org/10.1007/s00726-012-1323-x]. [PMID: 22674378].
[11]
Feng, X.L.; Liu, Q.T.; Cao, R.B.; Zhou, B.; Ma, Z.Y.; Deng, W.L.; Wei, J.C.; Qiu, Y.F.; Wang, F.Q.; Gu, J.Y.; Wang, F.J.; Zheng, Q.S.; Ishag, H.; Chen, P.Y. Identification and characterization of novel immunomodulatory bursal-derived pentapeptide-II (BPP-II). J. Biol. Chem., 2012, 287(6), 3798-3807. [http://dx.doi.org/10.1074/jbc.M111.273854]. [PMID: 22184121].
[12]
Feng, X.; Cao, R.; Zhou, B.; Liu, Q.; Liu, K.; Liu, X.; Zhang, Y.; Gu, J.; Miao, D.; Chen, P. The potential mechanism of Bursal-derived BPP-II on the antibody production and avian pre-B cell. Vaccine, 2013, 31(11), 1535-1539. [http://dx.doi.org/10.1016/j.vaccine.2012.09.022]. [PMID: 23000123].
[13]
Liu, X.D.; Zhou, B.; Cao, R.B.; Feng, X.L.; Ma, Z.Y.; Chen, P.Y. BP5 regulated B cell development promoting anti-oxidant defence. Amino Acids, 2014, 46(1), 209-222. [http://dx.doi.org/10.1007/s00726-013-1620-z]. [PMID: 24292101].
[14]
Feng, X.L.; Liu, Q.T.; Cao, R.B.; Zhou, B.; Wang, F.Q.; Deng, W.L.; Qiu, Y.F.; Zhang, Y.; Ishag, H.; Ma, Z.Y.; Zheng, Q.S.; Chen, P.Y. A bursal pentapeptide (BPP-I), a novel bursal-derived peptide, exhibits antiproliferation of tumor cell and immunomodulator activity. Amino Acids, 2012, 42(6), 2215-2222. [http://dx.doi.org/10.1007/s00726-011-0961-8]. [PMID: 21751033].
[15]
Feng, X.; Liu, T.; Wang, F.; Cao, R.; Zhou, B.; Zhang, Y.; Mao, X.; Chen, P.; Zhang, H. Isolation, antiproliferation on tumor cell and immunomodulatory activity of BSP-I, a novel bursal peptide from chicken humoral immune system. Peptides, 2011, 32(6), 1103-1109. [http://dx.doi.org/10.1016/j.peptides.2011.04.020]. [PMID: 21550370].
[16]
Watson, C.T.; Glanville, J.; Marasco, W.A. The individual and population genetics of antibody immunity. Trends Immunol., 2017, 38(7), 459-470. [http://dx.doi.org/10.1016/j.it.2017.04.003]. [PMID: 28539189].
[17]
Tsiantoulas, D.; Diehl, C.J.; Witztum, J.L.; Binder, C.J. B cells and humoral immunity in atherosclerosis. Circ. Res., 2014, 114(11), 1743-1756. [http://dx.doi.org/10.1161/CIRCRESAHA.113.301145]. [PMID: 24855199].
[18]
Feng, X.L.; Liu, Q.T.; Cao, R.B.; Zhou, B.; Zhang, Y.P.; Liu, K.; Liu, X.D.; Wei, J.C.; Li, X.F.; Chen, P.Y. Characterization and immunomodulatory function comparison of various bursal-derived peptides isolated from the humoral central immune organ. Peptides, 2012, 33(2), 258-264. [http://dx.doi.org/10.1016/j.peptides.2012.01.012]. [PMID: 22286032].
[19]
Edwards, S. OIE laboratory standards for avian influenza. Dev. Biol. (Basel), 2006, 124, 159-162. [PMID: 16447507].
[20]
Kiniwa, Y.; Li, J.; Wang, M.; Sun, C.; Lee, J.E.; Wang, R.F.; Wang, H.Y. Identification of DRG-1 as a melanoma-associated antigen recognized by CD4+ Th1 cells. PLoS One, 2015, 10(5)e0124094 [http://dx.doi.org/10.1371/journal.pone.0124094]. [PMID: 25993655].
[21]
Kelkar, P.; Walter, A.; Papadopoulos, S.; Mroß, C.; Munck, M.; Peche, V.S.; Noegel, A.A. Nesprin-2 mediated nuclear trafficking and its clinical implications. Nucleus, 2015, 6(6), 479-489. [http://dx.doi.org/10.1080/19491034.2015.1128608]. [PMID: 26645154].
[22]
Swanson-Mungerson, M.; Incrocci, R.; Subramaniam, V.; Williams, P.; Hall, M.L.; Mayer, A.M.S. Effects of cyanobacteria Oscillatoria sp. lipopolysaccharide on B cell activation and Toll-like receptor 4 signaling. Toxicol. Lett., 2017, 275, 101-107. [http://dx.doi.org/10.1016/j.toxlet.2017.05.013]. [PMID: 28499610].
[23]
Segura, E. Review of mouse and human dendritic cell subsets. Methods Mol. Biol., 2016, 1423, 3-15. [http://dx.doi.org/10.1007/978-1-4939-3606-9_1]. [PMID: 27142005].
[24]
Oh, J.; Shin, J.S. Molecular mechanism and cellular function of MHCII ubiquitination. Immunol. Rev., 2015, 266(1), 134-144. [http://dx.doi.org/10.1111/imr.12303]. [PMID: 26085212].
[25]
Barnett, L.G.; Simkins, H.M.; Barnett, B.E.; Korn, L.L.; Johnson, A.L.; Wherry, E.J.; Wu, G.F.; Laufer, T.M. B cell antigen presentation in the initiation of follicular helper T cell and germinal center differentiation. J. Immunol., 2014, 192(8), 3607-3617. [http://dx.doi.org/10.4049/jimmunol.1301284]. [PMID: 24646739].
[26]
Jones, M.B.; Ryan, S.O.; Johnson, J.L.; Cobb, B.A. Dendritic cell-specific Mgat2 knockout mice show antigen presentation defects but reveal an unexpected CD11c expression pattern. Glycobiology, 2016, 26(9), 1007-1013. [http://dx.doi.org/10.1093/glycob/cww056]. [PMID: 27146521].
[27]
Elizondo, D.M.; Andargie, T.E.; Kubhar, D.S.; Gugssa, A.; Lipscomb, M.W. CD40-CD40L cross-talk drives fascin expression in dendritic cells for efficient antigen presentation to CD4+ T cells. Int. Immunol., 2017, 29(3), 121-131. [http://dx.doi.org/10.1093/intimm/dxx013]. [PMID: 28369442].
[28]
Buchta, C.M.; Bishop, G.A. Toll-like receptors and B cells: functions and mechanisms. Immunol. Res., 2014, 59(1-3), 12-22. [http://dx.doi.org/10.1007/s12026-014-8523-2]. [PMID: 24847763].
[29]
Gardell, J.L.; Parker, D.C. CD40L is transferred to antigen-presenting B cells during delivery of T-cell help. Eur. J. Immunol., 2017, 47(1), 41-50. [http://dx.doi.org/10.1002/eji.201646504]. [PMID: 27753080].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 7
Year: 2019
Page: [542 - 549]
Pages: 8
DOI: 10.2174/0929866526666190405123932
Price: $65

Article Metrics

PDF: 22
HTML: 7
EPUB: 2
PRC: 2