Using Small Peptide Segments of Amyloid-β and Humanin to Examine their Physical Interactions

Author(s): Deborah L. Heyl, Brandon Iwaniec, Daniel Esckilsen, Deanna Price, Prathyusha Guttikonda, Jennifer Cooper, Julia Lombardi, Maria Milletti, Hedeel Guy Evans*.

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Amyloid fibrils in Alzheimer’s disease are composed of amyloid-β (Aβ) peptides of variant lengths. Humanin (HN), a 24 amino acid residue neuroprotective peptide, is known to interact with the predominant Aβ isoform in the brain, Aβ (1-40).

Methods: Here, we constructed smaller segments of Aβ and HN and identified residues in HN important for both HN-HN and HN-Aβ interactions. Peptides corresponding to amino acid residues 5- 15 of HN, HN (5-15), HN (5-15, L11S), where Leu11 was replaced with Ser, and residues 17-28 of Aβ, Aβ (17-28), were synthesized and tested for their ability to block formation of the complex between HN and Aβ (1-40).

Results: Co-immunoprecipitation and binding kinetics showed that HN (5-15) was more efficient at blocking the complex between HN and Aβ (1-40) than either HN (5-15, L11S) or Aβ (17-28). Binding kinetics of these smaller peptides with either full-length HN or Aβ (1-40) showed that HN (5- 15) was able to bind either Aβ (1-40) or HN more efficiently than HN (5-15, L11S) or Aβ (17-28). Compared to full-length HN, however, HN (5-15) bound Aβ (1-40) with a weaker affinity suggesting that while HN (5-15) binds Aβ, other residues in the full length HN peptide are necessary for maximum interactions.

Conclusion: L11 was more important for interactions with Aβ (1-40) than with HN. Aβ (17-28) was relatively ineffective at binding to either Aβ (1-40) or HN. Moreover, HN, and the smaller HN (5-15), HN (5-15 L11S), and Aβ (17-28) peptides, had different effects on regulating Aβ (1-40) aggregation kinetics.

Keywords: Amyloid-beta, humanin, binding, kinetics, peptide, interactions, aggregation.

[1]
Reitz, C.; Brayne, C.; Mayeux, R. Epidemiology of Alzheimer disease. Nat. Rev. Neurol., 2011, 7(3), 137-152. [http://dx.doi.org/10.1038/nrneurol.2011.2]. [PMID: 21304480].
[2]
Huang, Y.; Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell, 2012, 148(6), 1204-1222. [http://dx.doi.org/10.1016/j.cell.2012.02.040]. [PMID: 22424230].
[3]
Meek, P.D.; McKeithan, K.; Schumock, G.T. Economic considerations in Alzheimer’s disease. Pharmacotherapy, 1998, 18(2 Pt 2), 68-73. [PMID: 9543467].
[4]
Mattson, M.P. Apoptosis in neurodegenerative disorders. Nat. Rev. Mol. Cell Biol., 2000, 1(2), 120-129. [http://dx.doi.org/10.1038/35040009]. [PMID: 11253364].
[5]
Pini, L.; Pievani, M.; Bocchetta, M.; Altomare, D.; Bosco, P.; Cavedo, E.; Galluzzi, S.; Marizzoni, M.; Frisoni, G.B. Brain atrophy in Alzheimer’s Disease and aging. Ageing Res. Rev., 2016, 30, 25-48. [http://dx.doi.org/10.1016/j.arr.2016.01.002]. [PMID: 26827786].
[6]
Chiang, K.; Koo, E.H. Emerging therapeutics for Alzheimer’s disease. Annu. Rev. Pharmacol. Toxicol., 2014, 54, 381-405. [http://dx.doi.org/10.1146/annurev-pharmtox-011613-135932]. [PMID: 24392696].
[7]
Wu, B.; Barile, E.; De, S.K.; Wei, J.; Purves, A.; Pellecchia, M. Highthroughput screening by Nuclear Magnetic Resonance (HTS by NMR) for the identification of PPIs antagonists. Curr. Top. Med. Chem., 2015, 15(20), 2032-2042. [http://dx.doi.org/10.2174/1568026615666150519102459]. [PMID: 25986689].
[8]
Modell, A.E.; Blosser, S.L.; Arora, P.S. Systematic targeting of protein-protein interactions. Trends Pharmacol. Sci., 2016, 37(8), 702-713. [http://dx.doi.org/10.1016/j.tips.2016.05.008]. [PMID: 27267699].
[9]
Murphy, M.P.; LeVine, H., III Alzheimer’s disease and the amyloid-β peptide. J. Alzheimers Dis., 2010, 19(1), 311-323. [http://dx.doi.org/10.3233/JAD-2010-1221]. [PMID: 20061647].
[10]
2013 Alzheimer’s disease facts and figures. Alzheimers Dement., 2013, 9(2), 208-245. [http://dx.doi.org/10.1016/j.jalz.2013.02.003]. [PMID: 23507120].
[11]
Du, J.; Murphy, R.M. Characterization of the interaction of β-amyloid with transthyretin monomers and tetramers. Biochemistry, 2010, 49(38), 8276-8289. [http://dx.doi.org/10.1021/bi101280t]. [PMID: 20795734].
[12]
Schmidt, M.; Sachse, C.; Richter, W.; Xu, C.; Fändrich, M.; Grigorieff, N. Comparison of Alzheimer Abeta(1-40) and Abeta(1-42) amyloid fibrils reveals similar protofilament structures. Proc. Natl. Acad. Sci. USA, 2009, 106(47), 19813-19818. [http://dx.doi.org/10.1073/pnas.0905007106]. [PMID: 19843697].
[13]
Goure, W.F.; Krafft, G.A.; Jerecic, J.; Hefti, F. Targeting the proper amyloid-beta neuronal toxins: A path forward for Alzheimer’s disease immunotherapeutics. Alzheimers Res. Ther., 2014, 6(4), 42. [http://dx.doi.org/10.1186/alzrt272]. [PMID: 25045405].
[14]
LaFerla, F.M.; Green, K.N.; Oddo, S. Intracellular amyloid-beta in Alzheimer’s disease. Nat. Rev. Neurosci., 2007, 8(7), 499-509. [http://dx.doi.org/10.1038/nrn2168]. [PMID: 17551515].
[15]
Sakono, M.; Zako, T. Amyloid oligomers: Formation and toxicity of Abeta oligomers. FEBS J., 2010, 277(6), 1348-1358. [http://dx.doi.org/10.1111/j.1742-4658.2010.07568.x]. [PMID: 20148964].
[16]
Hashimoto, Y.; Niikura, T.; Ito, Y.; Sudo, H.; Hata, M.; Arakawa, E.; Abe, Y.; Kita, Y.; Nishimoto, I. Detailed characterization of neuroprotection by a rescue factor humanin against various Alzheimer’s disease-relevant insults. J. Neurosci., 2001, 21(23), 9235-9245. [http://dx.doi.org/10.1523/JNEUROSCI.21-23-09235.2001]. [PMID: 11717357].
[17]
Hashimoto, Y.; Niikura, T.; Tajima, H.; Yasukawa, T.; Sudo, H.; Ito, Y.; Kita, Y.; Kawasumi, M.; Kouyama, K.; Doyu, M.; Sobue, G.; Koide, T.; Tsuji, S.; Lang, J.; Kurokawa, K.; Nishimoto, I. A rescue factor abolishing neuronal cell death by a wide spectrum of familial Alzheimer’s disease genes and Abeta. Proc. Natl. Acad. Sci. USA, 2001, 98(11), 6336-6341. [http://dx.doi.org/10.1073/pnas.101133498]. [PMID: 11371646].
[18]
Yen, K.; Lee, C.; Mehta, H.; Cohen, P. The emerging role of the mitochondrial-derived peptide humanin in stress resistance. J. Mol. Endocrinol., 2013, 50(1), R11-R19. [http://dx.doi.org/10.1530/JME-12-0203]. [PMID: 23239898].
[19]
Gong, Z.; Tas, E.; Muzumdar, R. Humanin and age-related diseases: A new link? Front. Endocrinol. (Lausanne), 2014, 5, 210. [http://dx.doi.org/10.3389/fendo.2014.00210]. [PMID: 25538685].
[20]
Jia, Y.; Ohanyan, A.; Lue, Y-H.; Swerdloff, R.S.; Liu, P.Y.; Cohen, P.; Wang, C. The effects of humanin and its analogues on male germ cell apoptosis induced by chemotherapeutic drugs. Apoptosis, 2015, 20(4), 551-561. [http://dx.doi.org/10.1007/s10495-015-1105-5]. [PMID: 25666707].
[21]
Lee, C.; Yen, K.; Cohen, P. Humanin: A harbinger of mitochondrial-derived peptides? Trends Endocrinol. Metab., 2013, 24(5), 222-228. [http://dx.doi.org/10.1016/j.tem.2013.01.005]. [PMID: 23402768].
[22]
Kunesová, G.; Hlavácek, J.; Patocka, J.; Evangelou, A.; Zikos, C.; Benaki, D.; Paravatou-Petsotas, M.; Pelecanou, M.; Livaniou, E.; Slaninova, J. The multiple T-maze in vivo testing of the neuroprotective effect of humanin analogues. Peptides, 2008, 29(11), 1982-1987. [http://dx.doi.org/10.1016/j.peptides.2008.06.019]. [PMID: 18647630].
[23]
Zou, P.; Ding, Y.; Sha, Y.; Hu, B.; Nie, S. Humanin peptides block calcium influx of rat hippocampal neurons by altering fibrogenesis of Abeta(1-40). Peptides, 2003, 24(5), 679-685. [http://dx.doi.org/10.1016/S0196-9781(03)00131-1]. [PMID: 12895653].
[24]
Njomen, E.; Evans, H.G.; Gedara, S.H.; Heyl, D.L. Humanin peptide binds to insulin-like growth factor-binding protein 3 (IGFBP3) and regulates its interaction with importin-β. Protein Pept. Lett., 2015, 22(10), 869-876. [http://dx.doi.org/10.2174/0929866522666150728114955]. [PMID: 26216267].
[25]
Muterspaugh, R.; Price, D.; Esckilsen, D.; McEachern, S.; Guthrie, J.; Heyl, D.; Evans, H.G. Interaction of insulin-like growth factor-binding protein 3 with hyaluronan and its regulation by humanin and CD44. Biochemistry, 2018, 57(39), 5726-5737. [http://dx.doi.org/10.1021/acs.biochem.8b00635]. [PMID: 30184438].
[26]
Ying, G.; Iribarren, P.; Zhou, Y.; Gong, W.; Zhang, N.; Yu, Z-X.; Le, Y.; Cui, Y.; Wang, J.M. Humanin, a newly identified neuroprotective factor, uses the G protein-coupled formylpeptide receptor-like-1 as a functional receptor. J. Immunol., 2004, 172(11), 7078-7085. [http://dx.doi.org/10.4049/jimmunol.172.11.7078]. [PMID: 15153530].
[27]
Xiao, J.; Kim, S-J.; Cohen, P.; Yen, K. Humanin: Functional Interfaces with IGF-I. Growth Horm. IGF Res., 2016, 29, 21-27. [http://dx.doi.org/10.1016/j.ghir.2016.03.005]. [PMID: 27082450].
[28]
Benaki, D.; Zikos, C.; Evangelou, A.; Livaniou, E.; Vlassi, M.; Mikros, E.; Pelecanou, M. Solution structure of humanin, a peptide against Alzheimer’s disease-related neurotoxicity. Biochem. Biophys. Res. Commun., 2005, 329(1), 152-160. [http://dx.doi.org/10.1016/j.bbrc.2005.01.100]. [PMID: 15721287].
[29]
Maftei, M.; Tian, X.; Manea, M.; Exner, T.E.; Schwanzar, D.; von Arnim, C.A.F.; Przybylski, M. Interaction structure of the complex between neuroprotective factor humanin and Alzheimer’s β-amyloid peptide revealed by affinity mass spectrometry and molecular modeling. J. Pept. Sci., 2012, 18(6), 373-382. [http://dx.doi.org/10.1002/psc.2404]. [PMID: 22522311].
[30]
Kawasumi, M.; Hashimoto, Y.; Chiba, T.; Kanekura, K.; Yamagishi, Y.; Ishizaka, M. Molecular mechanisms for neuronal cell death by Alzheimer’s amyloid precursor protein-relevant insults. Neurosignals, 2002, 11(5), 236-250. [http://dx.doi.org/10.1159/000067424]. [PMID: 12566925].
[31]
Uhlig, T.; Kyprianou, T.; Martinelli, F.G.; Oppici, C.A.; Heiligers, D.; Hills, D. The emergence of peptides in the pharmaceutical business: From exploration to exploitation. EuPA Open Proteom., 2014, 4, 58-69. [http://dx.doi.org/10.1016/j.euprot.2014.05.003].
[32]
Groß, A.; Hashimoto, C.; Sticht, H.; Eichler, J. Synthetic peptides as protein mimics. Front. Bioeng. Biotechnol., 2016, 3, 211. [http://dx.doi.org/10.3389/fbioe.2015.00211]. [PMID: 26835447].
[33]
Terashita, K.; Hashimoto, Y.; Niikura, T.; Tajima, H.; Yamagishi, Y.; Ishizaka, M.; Kawasumi, M.; Chiba, T.; Kanekura, K.; Yamada, M.; Nawa, M.; Kita, Y.; Aiso, S.; Nishimoto, I. Two serine residues distinctly regulate the rescue function of Humanin, an inhibiting factor of Alzheimer’s disease-related neurotoxicity: Functional potentiation by isomerization and dimerization. J. Neurochem., 2003, 85(6), 1521-1538. [http://dx.doi.org/10.1046/j.1471-4159.2003.01797.x]. [PMID: 12787071].
[34]
Yamagishi, Y.; Hashimoto, Y.; Niikura, T.; Nishimoto, I. Identification of essential amino acids in Humanin, a neuroprotective factor against Alzheimer’s disease-relevant insults. Peptides, 2003, 24(4), 585-595. [http://dx.doi.org/10.1016/S0196-9781(03)00106-2]. [PMID: 12860203].
[35]
LeVine, H. III Thioflavine T interaction with synthetic Alzheimer’s disease beta-amyloid peptides: Detection of amyloid aggregation in solution. Protein Sci., 1993, 2(3), 404-410. [http://dx.doi.org/10.1002/pro.5560020312]. [PMID: 8453378].
[36]
Armas, A.; Sonois, V.; Mothes, E.; Mazarguil, H.; Faller, P. Zinc(II) binds to the neuroprotective peptide humanin. J. Inorg. Biochem., 2006, 100(10), 1672-1678. [http://dx.doi.org/10.1016/j.jinorgbio.2006.06.002]. [PMID: 16844225].
[37]
Yen, K.; Wan, J.; Mehta, H.H.; Miller, B.; Christensen, A.; Levine, M.E.; Salomon, M.P.; Brandhorst, S.; Xiao, J.; Kim, S.J.; Navarrete, G.; Campo, D.; Harry, G.J.; Longo, V.; Pike, C.J.; Mack, W.J.; Hodis, H.N.; Crimmins, E.M.; Cohen, P. Humanin prevents age-related cognitive decline in mice and is associated with improved cognitive age in humans. Sci. Rep., 2018, 8(1), 14212. [http://dx.doi.org/10.1038/s41598-018-32616-7]. [PMID: 30242290].
[38]
Stine, W.B.; Jungbauer, L.; Yu, C.; LaDu, M.J. Preparing synthetic Aβ in different aggregation states. Methods Mol. Biol., 2011, 670, 13-32. [http://dx.doi.org/10.1007/978-1-60761-744-0_2]. [PMID: 20967580].
[39]
Frenzel, D.; Glück, J.M.; Brener, O.; Oesterhelt, F.; Nagel-Steger, L.; Willbold, D. Immobilization of homogeneous monomeric, oligomeric and fibrillar Aβ species for reliable SPR measurements. PLoS One, 2014, 9(3)e89490 [http://dx.doi.org/10.1371/journal.pone.0089490]. [PMID: 24594736].
[40]
Nag, S.; Sarkar, B.; Bandyopadhyay, A.; Sahoo, B.; Sreenivasan, V.K.A.; Kombrabail, M.; Muralidharan, C.; Maiti, S. Nature of the amyloid-beta monomer and the monomer-oligomer equilibrium. J. Biol. Chem., 2011, 286(16), 13827-13833. [http://dx.doi.org/10.1074/jbc.M110.199885]. [PMID: 21349839].
[41]
Garai, K.; Frieden, C. Quantitative analysis of the time course of Aβ oligomerization and subsequent growth steps using tetramethylrhodamine-labeled Aβ. Proc. Natl. Acad. Sci. USA, 2013, 110(9), 3321-3326. [http://dx.doi.org/10.1073/pnas.1222478110]. [PMID: 23401512].
[42]
Romeo, M.; Stravalaci, M.; Beeg, M.; Rossi, A.; Fiordaliso, F.; Corbelli, A.; Salmona, M.; Gobbi, M.; Cagnotto, A.; Diomede, L. Humanin specifically interacts with amyloid-β oligomers and counteracts their in vivo toxicity. J. Alzheimers Dis., 2017, 57(3), 857-871. [http://dx.doi.org/10.3233/JAD-160951]. [PMID: 28282805].
[43]
Liu, R.; McAllister, C.; Lyubchenko, Y.; Sierks, M.R. Residues 17-20 and 30-35 of beta-amyloid play critical roles in aggregation. J. Neurosci. Res., 2004, 75(2), 162-171. [http://dx.doi.org/10.1002/jnr.10859]. [PMID: 14705137].


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 7
Year: 2019
Page: [502 - 511]
Pages: 10
DOI: 10.2174/0929866526666190405122117
Price: $65

Article Metrics

PDF: 25
HTML: 7
EPUB: 2
PRC: 2