Turning to Computer-aided Drug Design in the Treatment of Diffuse Large B-cell Lymphoma: Has it been Helpful?

Author(s): Aimen K. Aljoundi, Clement Agoni, Fisayo A. Olotu, Mahmoud E.S. Soliman*.

Journal Name: Anti-Cancer Agents in Medicinal Chemistry
(Formerly Current Medicinal Chemistry - Anti-Cancer Agents)

Volume 19 , Issue 11 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Introduction: Amidst the numerous effective therapeutic options available for the treatment of Diffuse Large B-cell Lymphoma (DLBCL), about 30-40% of patients treated with first-line chemoimmunotherapy still experience a relapse or refractory DLBCL. This has necessitated a continuous search for new therapeutic agents to augment the existing therapeutic arsenal.

Methods: The dawn of Computer-Aided Drug Design (CADD) in the drug discovery process has accounted for persistency in the application of computational approaches either alone or in combinatorial strategies with experimental methods towards the identification of potential hit compounds with high therapeutic efficacy in abrogating DLBCL.

Results: This review showcases the interventions of structure-based and ligand-based computational approaches which have led to the identification of numerous small molecule inhibitors against implicated targets in DLBCL therapy, even though many of these potential inhibitors are piled-up awaiting further experimental validation and exploration.

Conclusion: We conclude that a successful and a conscious amalgamation of CADD and experimental approaches could pave the way for the discovery of the next generation potential leads in DLBCL therapy with improved activities and minimal toxicities.

Keywords: Diffuse large B-cell lymphoma, computer-aided drug design, small molecule inhibitors, CADD interventions, henry rappaport classification system, lymphoma.

Rights & PermissionsPrintExport Cite as

Article Details

Year: 2019
Page: [1325 - 1339]
Pages: 15
DOI: 10.2174/1871520619666190405111526
Price: $58

Article Metrics

PDF: 6