Statistical Modelling Outcome of In Vitro Fertilization and Intracytoplasmic Sperm Injection: A Single Centre Study

Author(s): Boyun Xu, Chang Liu, Lianfen Qian, Yue Qu, Weijue Su, Jialing Xu, Junzhao Zhao*.

Journal Name: Combinatorial Chemistry & High Throughput Screening
Accelerated Technologies for Biotechnology, Bioassays, Medicinal Chemistry and Natural Products Research

Volume 22 , Issue 4 , 2019

Become EABM
Become Reviewer

Abstract:

Background: Assisted reproductive techniques (ART) have been extensively used to treat infertility. Inaccurate prediction of a couple’s fertility often leads to lowered self-esteem for patients seeking ART treatment and causes fertility distress.

Objective: This prospective study aimed to statistically analyze patient data from a single reproductive medical center over a period of 18 months, and to establish mathematical models that might facilitate accurate prediction of successful pregnancy when ART are used.

Methods: In the present study, we analyzed clinical data prospectively collected from 760 infertile patients visiting the second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University between June 1, 2016 and December 31, 2017. Various advanced statistical methods, including broken-line regression, were employed to analyze the data.

Results: Age remained the most important factor affecting the outcome of IVF/ICSI. Using the broken-line regression model, the fastest clinical pregnancy declining age was between 25 and 32. Female infertility type was found to be a key predictor for the number of good-quality embryos and successful pregnancy, along with the antral follicle count (AFC), total number of embryos, recombinant follicle stimulating hormones (rFSH) dosage, estradiol (E2) on the trigger day, and total number of oocytes retrieved. rFSH dosage was also significantly associated with the number of oocytes retrieved and the number of frozen embryos.

Conclusion: The fastest clinical pregnancy declining age is ranged between 25 and 32, and female infertility type is evidenced as another key predictive factor for the cumulative outcome of ART.

Keywords: IVF/ICSI outcome, clinical pregnancy, predictive factors, age, female infertility type, broken-line regression model.

[1]
Goldstein, J.L. Laskers for 2001: Knockout mice and test-tube babies. Nat. Med., 2001, 7(10), 1079-1080.
[2]
Teixeira, D.M.; Dassuncao, L.A.; Vieira, C.V.; Barbosa, M.A.; Coelho Neto, M.A.; Nastri, C.O.; Martins, W.P. Ultrasound guidance during embryo transfer: A systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet. Gynecol., 2015, 45(2), 139-148.
[3]
Martins, W.P.; Vieira, C.V.; Teixeira, D.M.; Barbosa, M.A.; Dassuncao, L.A.; Nastri, C.O. Ultrasound for monitoring controlled ovarian stimulation: A systematic review and meta-analysis of randomized controlled trials. Ultrasound Obstet. Gynecol., 2014, 43(1), 25-33.
[4]
Coelho Neto, M.A.; Martins, W.P.; Lima, M.L.; Barbosa, M.A.; Nastri, C.O.; Ferriani, R.A.; Navarro, P.A. Ovarian response is a better predictor of clinical pregnancy rate following embryo transfer than is thin endometrium or presence of an endometrioma. Ultrasound Obstet. Gynecol., 2015, 46(4), 501-505.
[5]
Stern, J.E.; Brown, M.B.; Wantman, E.; Kalra, S.K.; Luke, B. Live birth rates and birth outcomes by diagnosis using linked cycles from the SART CORS database. J. Assist. Reprod. Genet., 2013, 30(11), 1445-1450.
[6]
Nastri, C.O.; Ferriani, R.A.; Raine-Fenning, N.; Martins, W.P. Endometrial scratching performed in the non-transfer cycle and outcome of assisted reproduction: a randomized controlled trial. Ultrasound Obstet. Gynecol., 2013, 42(4), 375-382.
[7]
Sunkara, S.K.; Rittenberg, V.; Raine-Fenning, N.; Bhattacharya, S.; Zamora, J.; Coomarasamy, A. Association between the number of eggs and live birth in IVF treatment: An analysis of 400 135 treatment cycles. Hum. Reprod., 2011, 26(7), 1768-1774.
[8]
Karlstrom, P.O.; Bergh, C. Reducing the number of embryos transferred in Sweden-impact on delivery and multiple birth rates. Hum. Reprod., 2007, 22(8), 2202-2207.
[9]
Hunault, C.C.; Eijkemans, M.J.; Pieters, M.H.; te Velde, E.R.; Habbema, J.D.; Fauser, B.C.; Macklon, N.S. A prediction model for selecting patients undergoing in vitro fertilization for elective single embryo transfer. Fertil. Steril., 2002, 77(4), 725-732.
[10]
Ledger, W.L.; Anumba, D.; Marlow, N.; Thomas, C.M.; Wilson, E.C. The costs to the NHS of multiple births after IVF treatment in the UK. BJOG, 2006, 113(1), 21-25.
[11]
Ottosen, L.D.; Kesmodel, U.; Hindkjaer, J.; Ingerslev, H.J. Pregnancy prediction models and eSET criteria for IVF patients--do we need more information? J. Assist. Reprod. Genet., 2007, 24(1), 29-36.
[12]
Templeton, A.; Morris, J.K.; Parslow, W. Factors that affect outcome of in-vitro fertilisation treatment. Lancet, 1996, 348(9039), 1402-1406.
[13]
Cai, Q.F.; Wan, F.; Huang, R.; Zhang, H.W. Factors predicting the cumulative outcome of IVF/ICSI treatment: A multivariable analysis of 2450 patients. Hum. Reprod., 2011, 26(9), 2532-2540.
[14]
Elizur, S.E.; Lerner-Geva, L.; Levron, J.; Shulman, A.; Bider, D.; Dor, J. Factors predicting IVF treatment outcome: A multivariate analysis of 5310 cycles. Reprod. Biomed. Online, 2005, 10(5), 645-649.
[15]
Rhodes, T.L.; McCoy, T.P.; Higdon, H.L. 3rd; Boone, W.R. Factors affecting assisted reproductive technology (ART) pregnancy rates: A multivariate analysis. J. Assist. Reprod. Genet., 2005, 22(9-10), 335-346.
[16]
Roberts, S.A.; Hirst, W.M.; Brison, D.R.; Vail, A. Embryo and uterine influences on IVF outcomes: An analysis of a UK multi-centre cohort. Hum. Reprod., 2010, 25(11), 2792-2802.
[17]
Lintsen, A.M.; Eijkemans, M.J.; Hunault, C.C.; Bouwmans, C.A.; Hakkaart, L.; Habbema, J.D.; Braat, D.D. Predicting ongoing pregnancy chances after IVF and ICSI: A national prospective study. Hum. Reprod., 2007, 22(9), 2455-2462.
[18]
Hu, L.; Du, J.; Lv, H.; Zhao, J.; Chen, M.; Wang, Y.; Wu, F.; Liu, F.; Chen, X.; Zhang, J.; Ma, H.; Jin, G.; Shen, H.; Chen, L.; Ling, X.; Hu, Z. Influencing factors of pregnancy loss and survival probability of clinical pregnancies conceived through assisted reproductive technology. Reprod. Biol. Endocrinol., 2018, 16(1), 74.
[19]
van Loendersloot, L.L.; van Wely, M.; Repping, S.; Bossuyt, P.M.; van der Veen, F. Individualized decision-making in IVF: Calculating the chances of pregnancy. Hum. Reprod., 2013, 28(11), 2972-2980.
[20]
van Loendersloot, L.L.; van Wely, M.; Limpens, J.; Bossuyt, P.M.; Repping, S.; van der Veen, F. Predictive factors in in vitro fertilization (IVF): A systematic review and meta-analysis. Hum. Reprod., 2010, 16(6), 577-589.
[21]
Belle, G.V.; Fisher, L.D.; Heagerty, P.J.; Lumley, T. Biostatistics: A Methodology for the Health Sciences, 2nd ed; Wiley-Interscience, 1994, pp. 467-467.
[22]
Lockitch, G. Clinical biochemistry of pregnancy. Crit. Rev. Clin. Lab. Sci., 1997, 34(1), 67-139.
[23]
Kresowik, J.D.; Sparks, A.E.; Van Voorhis, B.J. Clinical factors associated with live birth after single embryo transfer. Fertil. Steril., 2012, 98(5), 1152-1156.
[24]
Ziebe, S.; Loft, A.; Petersen, J.H.; Andersen, A.G.; Lindenberg, S.; Petersen, K.; Andersen, A.N. Embryo quality and developmental potential is compromised by age. Acta Obstet. Gynecol. Scand., 2001, 80(2), 169-174.
[25]
Baird, D.T.; Collins, J.; Egozcue, J.; Evers, L.H.; Gianaroli, L.; Leridon, H.; Sunde, A.; Templeton, A.; Van Steirteghem, A.; Cohen, J.; Crosignani, P.G.; Devroey, P.; Diedrich, K.; Fauser, B.C.; Fraser, L.; Glasier, A.; Liebaers, I.; Mautone, G.; Penney, G.; Tarlatzis, B. Fertility and ageing. Hum. Reprod., 2005, 11(3), 261-276.
[26]
Ulug, U.; Ben-Shlomo, I.; Turan, E.; Erden, H.F.; Akman, M.A.; Bahceci, M. Conception rates following assisted reproduction in poor responder patients: a retrospective study in 300 consecutive cycles. Reprod. Biomed. Online, 2003, 6(4), 439-443.
[27]
Broekmans, F.J.; Knauff, E.A.; te Velde, E.R.; Macklon, N.S.; Fauser, B.C. Female reproductive ageing: Current knowledge and future trends. Trends Endocrinol. Metab., 2007, 18(2), 58-65.
[28]
Franasiak, J.M.; Forman, E.J.; Hong, K.H.; Werner, M.D.; Upham, K.M.; Treff, N.R.; Scott, R.T., Jr The nature of aneuploidy with increasing age of the female partner: A review of 15,169 consecutive trophectoderm biopsies evaluated with comprehensive chromosomal screening. Fertil. Steril., 2014, 101(3), 656-663.e1.
[29]
Vaegter, K.K.; Lakic, T.G.; Olovsson, M.; Berglund, L.; Brodin, T.; Holte, J. Which factors are most predictive for live birth after in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI) treatments? Analysis of 100 prospectively recorded variables in 8,400 IVF/ICSI single-embryo transfers. Fertil. Steril., 2017, 107(3), 641-648.e2.
[30]
Lee, T.H.; Chen, C.D.; Tsai, Y.Y.; Chang, L.J.; Ho, H.N.; Yang, Y.S. Embryo quality is more important for younger women whereas age is more important for older women with regard to in vitro fertilization outcome and multiple pregnancy. Fertil. Steril., 2006, 86(1), 64-69.
[31]
Terriou, P.; Sapin, C.; Giorgetti, C.; Hans, E.; Spach, J.L.; Roulier, R. Embryo score is a better predictor of pregnancy than the number of transferred embryos or female age. Fertil. Steril., 2001, 75(3), 525-531.
[32]
Beck-Fruchter, R.; Lavee, M.; Weiss, A.; Geslevich, Y.; Shalev, E. Rescue intracytoplasmic sperm injection: A systematic review. Fertil. Steril., 2014, 101(3), 690-698.
[33]
Nahum, R.; Shifren, J.L.; Chang, Y.; Leykin, L.; Isaacson, K.; Toth, T.L. Antral follicle assessment as a tool for predicting outcome in IVF--is it a better predictor than age and FSH? J. Assist. Reprod. Genet., 2001, 18(3), 151-155.
[34]
Klinkert, E.R.; Broekmans, F.J.; Looman, C.W.; Habbema, J.D.; te Velde, E.R. The antral follicle count is a better marker than basal follicle-stimulating hormone for the selection of older patients with acceptable pregnancy prospects after in vitro fertilization. Fertil. Steril., 2005, 83(3), 811-814.
[35]
Maseelall, P.B.; Hernandez-Rey, A.E.; Oh, C.; Maagdenberg, T.; McCulloh, D.H.; McGovern, P.G. Antral follicle count is a significant predictor of livebirth in in vitro fertilization cycles. Fertil. Steril., 2009, 91(4)(Suppl.), 1595-1597.
[36]
Stolwijk, A.M.; Zielhuis, G.A.; Hamilton, C.J.; Straatman, H.; Hollanders, J.M.; Goverde, H.J.; van Dop, P.A.; Verbeek, A.L. Prognostic models for the probability of achieving an ongoing pregnancy after in-vitro fertilization and the importance of testing their predictive value. Hum. Reprod., 1996, 11(10), 2298-2303.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 22
ISSUE: 4
Year: 2019
Page: [225 - 231]
Pages: 7
DOI: 10.2174/1386207322666190404145448
Price: $58

Article Metrics

PDF: 35
HTML: 4

Special-new-year-discount