Laponite-based Nanomaterials for Biomedical Applications: A Review

Author(s): Sabya S. Das, Neelam, Kashif Hussain, Sima Singh*, Afzal Hussain, Abdul Faruk, Mike Tebyetekerwa.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 4 , 2019

Become EABM
Become Reviewer

Abstract:

Laponite based nanomaterials (LBNMs) are highly diverse regarding their mechanical, chemical, and structural properties, coupled with shape, size, mass, biodegradability and biocompatibility. These ubiquitous properties of LBNMs make them appropriate materials for extensive applications. These have enormous potential for effective and targeted drug delivery comprised of numerous biodegradable materials which results in enhanced bioavailability. Moreover, the clay material has been explored in tissue engineering and bioimaging for the diagnosis and treatment of various diseases. The material has been profoundly explored for minimized toxicity of nanomedicines. The present review compiled relevant and informative data to focus on the interactions of laponite nanoparticles and application in drug delivery, tissue engineering, imaging, cell adhesion and proliferation, and in biosensors. Eventually, concise conclusions are drawn concerning biomedical applications and identification of new promising research directions.

Keywords: Laponite (LAP), laponite-based nano-materials (LBNMs), applications, composition and characteristics, drug delivery and biosensor.

[1]
Taylor-Pashow KML, Della Rocca J, Huxford RC, Lin W. Hybrid nanomaterials for biomedical applications. Chem Commun (Camb) 2010; 46(32): 5832-49.
[2]
Gómez-Romero P, Sanchez C. Hybrid Materials, Functional Applications. An Introduction, in Functional Hybrid Materials. 2005, Wiley-VCH Verlag GmbH & Co. KGaA. p. 1-14
[3]
Gutierrez MC, Ferrer ML. Tartaj P del Monte F Biomedical Applications of Organic–Inorganic Hybrid Nanoparticles Hybrid Nanocomposites for Nanotechnology: Electronic. Optical, Magnetic and Biomedical Applications 2009; pp. 707-68.
[4]
Torchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev 2006; 58(14): 1532-55.
[5]
Burghardt S, Hirsch A, Schade B, Ludwig K, Böttcher C. Switchable supramolecular organization of structurally defined micelles based on an amphiphilic fullerene. Angew Chem Int Ed Engl 2005; 44(19): 2976-9.
[6]
Brettreich M, Burghardt S, Böttcher C, Bayerl T, Bayerl S, Hirsch A. Globular Amphiphiles: Membrane Forming Hexaadducts of C60. Angewandte Chemie International Edition, 2000.39(10): p. 1845-48
[7]
Klumpp C, Kostarelos K, Prato M, Bianco A. Functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim Biophys Acta 2006; 1758(3): 404-12.
[8]
Kamalha E, Shi X, Mwasiagi JI, Zeng Y. Nanotechnology and carbon nanotubes; A review of potential in drug delivery. Macromol Res 2012; 20(9): 891-8.
[9]
Shi X, Thomas TP, Myc LA, Kotlyar A, Baker JR Jr. Synthesis, characterization, and intracellular uptake of carboxyl-terminated poly(amidoamine) dendrimer-stabilized iron oxide nanoparticles. Phys Chem Chem Phys 2007; 9(42): 5712-20.
[10]
Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 2005; 26(18): 3995-4021.
[11]
Nishiyama N, Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol Ther 2006; 112(3): 630-48.
[12]
Kwon GS, Okano T. Polymeric micelles as new drug carriers. Adv Drug Deliv Rev 1996; 21(2): 107-16.
[13]
Villalonga-Barber C, Micha-Screttas M, Steele BR, Georgopoulos A, Demetzos C. Dendrimers as biopharmaceuticals: synthesis and properties. Curr Top Med Chem 2008; 8(14): 1294-309.
[14]
Svenson S, Tomalia DA. Dendrimers in biomedical applications—reflections on the field. Adv Drug Deliv Rev 2012; 64: 102-15.
[15]
Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008; 41(12): 1842-51.
[16]
Barratt G. Colloidal drug carriers: achievements and perspectives. Cell Mol Life Sci 2003; 60(1): 21-37.
[17]
Wang X, Wang Y, Chen ZG, Shin DM. Advances of cancer therapy by nanotechnology. Cancer Res Treat 2009; 41(1): 1-11.
[18]
Davis ME, Chen ZG, Shin DM. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 2008; 7(9): 771-82.
[19]
Ferrari M. Cancer nanotechnology: opportunities and challenges. Nat Rev Cancer 2005; 5(3): 161-71.
[20]
Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharm 2008; 5(4): 505-15.
[21]
Li S-D, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm 2008; 5(4): 496-504.
[22]
Wu X, Zhu W. Stability enhancement of fluorophores for lighting up practical application in bioimaging. Chem Soc Rev 2015; 44(13): 4179-84.
[23]
Yu Z, Schmaltz RM, Bozeman TC, et al. Selective tumor cell targeting by the disaccharide moiety of bleomycin. J Am Chem Soc 2013; 135(8): 2883-6.
[24]
Ji D-K, Zhang Y, Zhang Y, et al. Receptor-targeting fluorescence imaging and theranostics using a graphene oxide based supramolecular glycocomposite. J Mater Chem B Mater Biol Med 2015; 3(47): 9182-5.
[25]
Balducci A, Wen Y, Zhang Y, et al. A novel probe for the non-invasive detection of tumor-associated inflammation. OncoImmunology 2013; 2(2): e23034.
[26]
Choy J-H, Jung JS, Oh JM, et al. Layered double hydroxide as an efficient drug reservoir for folate derivatives. Biomaterials 2004; 25(15): 3059-64.
[27]
Park T-U, Jung H, Kim H-M, Choy J-H, Lee C-W. Hybrid of itraconazole, cyclosporine or carvedilol with a layered silicate and a process for preparing the same 2003 Patent no WO2004009120A1
[28]
Bergaya F, Lagaly G. General introduction: clays, clay minerals, and clay science Handbook of clay science. 2006. . 1: p. 1-18.
[29]
Dawson JI, Oreffo RO. Clay: new opportunities for tissue regeneration and biomaterial design. Adv Mater 2013; 25(30): 4069-86.
[30]
Ruiz-Hitzky E. Molecular access to intracrystalline tunnels of sepioliteBasis of a presentation given at Materials Discussion No. 3, 24–26 September 2000, University of Cambridge, UK. J Mater Chem 2001; 11(1): 86-91.
[31]
Ding L, Hu Y, Luo Y, et al. LAPONITE®-stabilized iron oxide nanoparticles for in vivo MR imaging of tumors. Biomater Sci 2016; 4(3): 474-82.
[32]
Ruzicka B, Zaccarelli E. A fresh look at the Laponite phase diagram. Soft Matter 2011; 7(4): 1268-86.
[33]
Tawari SL, Koch DL, Cohen C. Electrical double-layer effects on the brownian diffusivity and aggregation rate of laponite clay particles. J Colloid Interface Sci 2001; 240(1): 54-66.
[34]
Carrow JK, Gaharwar AK. Bioinspired polymeric nanocomposites for regenerative medicine. Macromol Chem Phys 2015; 216(3): 248-64.
[35]
Gaharwar AK, Peppas NA, Khademhosseini A. Nanocomposite hydrogels for biomedical applications. Biotechnol Bioeng 2014; 111(3): 441-53.
[36]
Chimene D, Alge DL, Gaharwar AK. Two-Dimensional Nanomaterials for Biomedical Applications: Emerging Trends and Future Prospects. Adv Mater 2015; 27(45): 7261-84.
[37]
Herrera NN, Letoffe J, Putaux J, David L, Bourgeat-Lami E. Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites. Langmuir 2004; 20(5): 1564-71.
[38]
Loiseau A, Tassin J-F. Model nanocomposites based on laponite and poly (ethylene oxide): preparation and rheology. Macromolecules 2006; 39(26): 9185-91.
[39]
Cocard S, Tassin JF, Nicolai T. Dynamical mechanical properties of gelling colloidal disks 2000.
[40]
Mourchid A, Lecolier E, Van Damme H, Levitz P. On viscoelastic, birefringent, and swelling properties of Laponite clay suspensions: revisited phase diagram. Langmuir 1998; 14(17): 4718-23.
[41]
Ramsay J. Colloidal properties of synthetic hectorite clay dispersions: I. Rheology. J Colloid Interface Sci 1986; 109(2): 441-7.
[42]
Lezhnina MM, Grewe T, Stoehr H, Kynast U. Laponite blue: dissolving the insoluble. Angew Chem Int Ed Engl 2012; 51(42): 10652-5.
[43]
Elzbieciak M, Wodka D, Zapotoczny S, Nowak P, Warszynski P. Characteristics of model polyelectrolyte multilayer films containing laponite clay nanoparticles. Langmuir 2010; 26(1): 277-83.
[44]
Wang S, Wu Y, Guo R, et al. Laponite nanodisks as an efficient platform for Doxorubicin delivery to cancer cells. Langmuir 2013; 29(16): 5030-6.
[45]
Li K, Wang S, Wen S, et al. Enhanced in vivo antitumor efficacy of doxorubicin encapsulated within laponite nanodisks. ACS Appl Mater Interfaces 2014; 6(15): 12328-34.
[46]
Wang G, Maciel D, Wu Y, et al. Amphiphilic polymer-mediated formation of laponite-based nanohybrids with robust stability and pH sensitivity for anticancer drug delivery. ACS Appl Mater Interfaces 2014; 6(19): 16687-95.
[47]
Mustafa R, Luo Y, Wu Y, Guo R, Shi X. Dendrimer-Functionalized Laponite Nanodisks as a Platform for Anticancer Drug Delivery. Nanomaterials (Basel) 2015; 5(4): 1716-31.
[48]
Wu Y, Guo R, Wen S. Folic acid-modified laponite nanodisks for targeted anticancer drug delivery. J Mater Chem B Mater Biol Med 2014; 2(42): 7410-8.
[49]
Chen G, Li D, Li J. Targeted doxorubicin delivery to hepatocarcinoma cells by lactobionic acid-modified laponite nanodisks. New J Chem 2015; 39(4): 2847-55.
[50]
de Melo JV, Cosnier S, Mousty C, Martelet C, Jaffrezic-Renault N. Urea biosensors based on immobilization of urease into two oppositely charged clays (laponite and Zn-Al layered double hydroxides). Anal Chem 2002; 74(16): 4037-43.
[51]
Mousty C. Biosensing applications of clay-modified electrodes: a review. Anal Bioanal Chem 2010; 396(1): 315-25.
[52]
Poyard S, Jaffrezic-Renault N, Martelet C, Cosnier S, Labbé P, Besombes JL. A new method for the controlled immobilization of enzyme in inorganic gels (laponite) for amperometric glucose biosensing. Sens Actuators B Chem 1996; 33(1): 44-9.
[53]
Coche-Guerente L, Labbé P, Mengeaud V. Amplification of amperometric biosensor responses by electrochemical substrate recycling. 3. Theoretical and experimental study of the phenol-polyphenol oxidase system immobilized in Laponite hydrogels and layer-by-layer self-assembled structures. Anal Chem 2001; 73(14): 3206-18.
[54]
Shan D, Mousty C, Cosnier S, Mu S. A new polyphenol oxidase biosensor mediated by Azure B in laponite clay matrix. Electroanalysis 2003; 15(19): 1506-12.
[55]
Aihara N, Torigoe K, Esumi K. Preparation and Characterization of Gold and Silver Nanoparticles in Layered Laponite Suspensions. Langmuir 1998; 14(17): 4945-9.
[56]
Lambert Y, Le Dantec R, Mugnier Y, et al. Second-Harmonic Generation Imaging of LiIO 3 /Laponite Nanocomposite Waveguides. Jpn J Appl Phys 2006; 45(9S): 7525.
[57]
Szabó T, Bakandritsos A, Tzitzios V, et al. Magnetic iron oxide/clay composites: effect of the layer silicate support on the microstructure and phase formation of magnetic nanoparticles. Nanotechnology 2007; 18(28): 285602.
[58]
Lambert Y, Le Dantec R, Mugnier Y, et al. Second-harmonic generation imaging of LiIO3/laponite nanocomposite waveguides. Jpn J Appl Phys 2006; 45(9S): 7525.
[59]
Gaharwar AK, Schexnailder PJ, Kline BP, Schmidt G. Assessment of using laponite cross-linked poly(ethylene oxide) for controlled cell adhesion and mineralization. Acta Biomater 2011; 7(2): 568-77.
[60]
Viseras C, Cerezo P, Sanchez R, Salcedo I, Aguzzi C. Current challenges in clay minerals for drug delivery. Appl Clay Sci 2010; 48(3): 291-5.
[61]
Lotsch BV, Ozin GA. Clay Bragg Stack Optical Sensors. Adv Mater 2008; 20(21): 4079-84.
[62]
Dey D, Bhattacharjee D, Chakraborty S, Hussain SA. Development of hard water sensor using fluorescence resonance energy transfer. Sens Actuators B Chem 2013; 184: 268-73.
[63]
Ramamurthy V, Schanze KS. Solid state and surface photochemistry. J Am Chem Soc 2001; 123(22): 5384-84.
[64]
Jung H, Kim HM, Choy YB, Hwang SJ, Choy JH. Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. Int J Pharm 2008; 349(1-2): 283-90.
[65]
Gaharwar AK, Kishore V, Rivera C, et al. Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol Biosci 2012; 12(6): 779-93.
[66]
Calabrese I, Gelardi G, Merli M, Liveri ML, Sciascia L. Clay-biosurfactant materials as functional drug delivery systems: Slowing down effect in the in vitro release of cinnamic acid. Appl Clay Sci 2017; 135: 567-74.
[67]
Liu Y, Meng H, Konst S, Sarmiento R, Rajachar R, Lee BP. Injectable dopamine-modified poly(ethylene glycol) nanocomposite hydrogel with enhanced adhesive property and bioactivity. ACS Appl Mater Interfaces 2014; 6(19): 16982-92.
[68]
Stempfle B, Große A, Ferse B, Arndt KF, Wöll D. Anomalous diffusion in thermoresponsive polymer-clay composite hydrogels probed by wide-field fluorescence microscopy. Langmuir 2014; 30(46): 14056-61.
[69]
Ghadiri M, Chrzanowski W, Rohanizadeh R. Antibiotic eluting clay mineral (Laponite®) for wound healing application: an in vitro study. J Mater Sci Mater Med 2014; 25(11): 2513-26.
[70]
Fraile JM, Garcia-Martin E, Gil C, et al. Laponite as carrier for controlled in vitro delivery of dexamethasone in vitreous humor models. Eur J Pharm Biopharm 2016; 108: 83-90.
[71]
Gibbs DM, Black CR, Hulsart-Billstrom G, et al. Bone induction at physiological doses of BMP through localization by clay nanoparticle gels. Biomaterials 2016; 99: 16-23.
[72]
Golafshan N, Rezahasani R, Tarkesh Esfahani M, Kharaziha M, Khorasani SN. Nanohybrid hydrogels of laponite: PVA-Alginate as a potential wound healing material. Carbohydr Polym 2017; 176: 392-401.
[73]
Koshy ST, Zhang DKY, Grolman JM, Stafford AG, Mooney DJ. Injectable nanocomposite cryogels for versatile protein drug delivery. Acta Biomater 2018; 65: 36-43.
[74]
Boyer C, Figueiredo L, Pace R, et al. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Acta Biomater 2018; 65: 112-22.
[75]
Mahdavinia GR, Soleymani M, Etemadi H, Sabzi M, Atlasi Z. Model protein BSA adsorption onto novel magnetic chitosan/PVA/laponite RD hydrogel nanocomposite beads. Int J Biol Macromol 2018; 107(Pt A): 719-29.
[76]
Park JK, Choy YB, Oh JM, Kim JY, Hwang SJ, Choy JH. Controlled release of donepezil intercalated in smectite clays. Int J Pharm 2008; 359(1-2): 198-204.
[77]
Ruiz-Hitzky E, Aranda P, Darder M, Rytwo G. Hybrid materials based on clays for environmental and biomedical applications. J Mater Chem 2010; 20(42): 9306-21.
[78]
Aguzzi C, Cerezo P, Viseras C, Caramella C. Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 2007; 36(1): 22-36.
[79]
Viseras C, Aguzzi C, Cerezo P, Bedmar MC. Biopolymer–clay nanocomposites for controlled drug delivery. Mater Sci Technol 2008; 24(9): 1020-6.
[80]
Wheeler PA, Wang J, Baker J, Mathias LJ. Synthesis and characterization of covalently functionalized laponite clay. Chem Mater 2005; 17(11): 3012-8.
[81]
Bujdák J, Danko M, Chorvát Jr D., Czímerová A, Sýkora J, Lang K. Selective modification of layered silicate nanoparticle edges with fluorophores. Appl Clay Sci 2012; 65: 152-7.
[82]
de Paiva LB, Morales AR, Díaz FRV. Organoclays: properties, preparation and applications. Appl Clay Sci 2008; 42(1): 8-24.
[83]
Takahashi T, Yamada Y, Kataoka K, Nagasaki Y. Preparation of a novel PEG-clay hybrid as a DDS material: dispersion stability and sustained release profiles. J Control Release 2005; 107(3): 408-16.
[84]
Mongondry P, Nicolai T, Tassin J-F. Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions. J Colloid Interface Sci 2004; 275(1): 191-6.
[85]
Gonçalves M, Figueira P, Maciel D, et al. Antitumor efficacy of doxorubicin-loaded laponite/alginate hybrid hydrogels. Macromol Biosci 2014; 14(1): 110-20.
[86]
Jung H, Kim HM, Choy YB, Hwang SJ, Choy JH. Itraconazole–Laponite: Kinetics and mechanism of drug release. Appl Clay Sci 2008; 40(1–4): 99-107.
[87]
De Beule K, Van Gestel J. Pharmacology of itraconazole. Drugs 2001; 61(Suppl. 1): 27-37.
[88]
Jain S, Sehgal VN. Itraconazole: an effective oral antifungal for onychomycosis. Int J Dermatol 2001; 40(1): 1-5.
[89]
Xiao S, Castro R, Maciel D, et al. Fine tuning of the pH-sensitivity of laponite-doxorubicin nanohybrids by polyelectrolyte multilayer coating. Mater Sci Eng C 2016; 60: 348-56.
[90]
Nair BP, Sharma CP. Poly(lactide-co-glycolide)-laponite-F68 nanocomposite vesicles through a single-step double-emulsion method for the controlled release of doxorubicin. Langmuir 2012; 28(9): 4559-64.
[91]
Li K, Wang S, Wen S, et al. Enhanced in vivo antitumor efficacy of doxorubicin encapsulated within laponite nanodisks. ACS Appl Mater Interfaces 2014; 6(15): 12328-34.
[92]
Roozbahani M, Kharaziha M, Emadi R. pH sensitive dexamethasone encapsulated laponite nanoplatelets: Release mechanism and cytotoxicity. Int J Pharm 2017; 518(1-2): 312-9.
[93]
Gonçalves M, Figueira P, Maciel D, et al. pH-sensitive Laponite(®)/doxorubicin/alginate nanohybrids with improved anticancer efficacy. Acta Biomater 2014; 10(1): 300-7.
[94]
Qi R, Guo R, Shen M, et al. Electrospun poly (lactic-co-glycolic acid)/halloysite nanotube composite nanofibers for drug encapsulation and sustained release. J Mater Chem 2010; 20(47): 10622-9.
[95]
Sowmya S, Bumgardener JD, Chennazhi KP, Nair SV, Jayakumar R. Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Prog Polym Sci 2013; 38(10): 1748-72.
[96]
Varghese S, Theprungsirikul P, Ferran A, Hwang N, Canver A, Elisseeff J. Chondrogenic differentiation of human embryonic germ cell derived cells in hydrogels. In 2006 International Conference of the IEEE Engineering in Medicine and Biology Society 2006 Aug 30 (pp. 2643-2646). IEEE.
[97]
Nuttelman CR, Tripodi MC, Anseth KS. Synthetic hydrogel niches that promote hMSC viability. Matrix Biol 2005; 24(3): 208-18.
[98]
Ahearne M, Yang Y, Liu K. Mechanical characterisation of hydrogels for tissue engineering applications. Tissue Eng 2008; 4: 1-16.
[99]
Parlato M, Reichert S, Barney N, Murphy WL. Poly(ethylene glycol) hydrogels with adaptable mechanical and degradation properties for use in biomedical applications. Macromol Biosci 2014; 14(5): 687-98.
[100]
Ambre AH, Katti KS, Katti DR. Nanoclay based composite scaffolds for bone tissue engineering applications. J Nanotechnol Eng Med 2010; 1(3): 031013.
[101]
Frydrych M, Wan C, Stengler R, O’Kelly KU, Chen B. Structure and mechanical properties of gelatin/sepiolite nanocomposite foams. J Mater Chem 2011; 21(25): 9103-11.
[102]
Baker KC, Manitiu M, Bellair R, Gratopp CA, Herkowitz HN, Kannan RM. Supercritical carbon dioxide processed resorbable polymer nanocomposite bone graft substitutes. Acta Biomater 2011; 7(9): 3382-9.
[103]
Haraguchi K. Nanocomposite hydrogels. Curr Opin Solid State Mater Sci 2007; 11(3): 47-54.
[104]
Haraguchi K, Takehisa T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 2002; 14(16): 1120.
[105]
Okay O, Oppermann W. Polyacrylamide-clay nanocomposite hydrogels: Rheological and light scattering characterization. Macromolecules 2007; 40(9): 3378-87.
[106]
Xu K, Wang J, Xiang S, Chen Q, Zhang W, Wang P. Study on the synthesis and performance of hydrogels with ionic monomers and montmorillonite. Appl Clay Sci 2007; 38(1): 139-45.
[107]
Chang CW, van Spreeuwel A, Zhang C, Varghese S. PEG/clay nanocomposite hydrogel: a mechanically robust tissue engineering scaffold. Soft Matter 2010; 6(20): 5157-64.
[108]
Wang J, Lin L, Cheng Q, Jiang L. A strong bio-inspired layered PNIPAM-clay nanocomposite hydrogel. Angew Chem Int Ed Engl 2012; 51(19): 4676-80.
[109]
Wang C, Wang S, Li K, et al. Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One 2014; 9(6): e99585.
[110]
Nair BP, Sindhu M, Nair PD. Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surf B Biointerfaces 2016; 143: 423-30.
[111]
Gao T, Wang W, Wang A. A pH-sensitive composite hydrogel based on sodium alginate and medical stone: synthesis, swelling, and heavy metal ions adsorption properties. Macromol Res 2011; 19(7): 739-48.
[112]
Wang W, Wang J, Wang A. pH-Responsive nanocomposites from methylcellulose and attapulgite nanorods: Synthesis, swelling and absorption performance on heavy metal ions. Journal of Macromolecular Science. Part A 2012; 49(4): 306-15.
[113]
Pacelli S, Paolicelli P, Moretti G, et al. Gellan gum methacrylate and laponite as an innovative nanocomposite hydrogel for biomedical applications. Eur Polym J 2016; 77: 114-23.
[114]
Osmałek T, Froelich A, Tasarek S. Application of gellan gum in pharmacy and medicine. Int J Pharm 2014; 466(1-2): 328-40.
[115]
Gaharwar AK, Schexnailder P, Kaul V, et al. Highly Extensible Bio‐Nanocomposite Films with Direction‐Dependent Properties. Adv Funct Mater 2010; 20(3): 429-36.
[116]
Nair BP, Sindhu M, Nair PD. Polycaprolactone-laponite composite scaffold releasing strontium ranelate for bone tissue engineering applications. Colloids Surf B Biointerfaces 2016; 143: 423-30.
[117]
Wu CJ, Wilker JJ, Schmidt G. Robust and adhesive hydrogels from cross-linked poly(ethylene glycol) and silicate for biomedical use. Macromol Biosci 2013; 13(1): 59-66.
[118]
Ordikhani F, Dehghani M, Simchi A. Antibiotic-loaded chitosan-Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies. J Mater Sci Mater Med 2015; 26(12): 269.
[119]
Min J, Braatz RD, Hammond PT. Tunable staged release of therapeutics from layer-by-layer coatings with clay interlayer barrier. Biomaterials 2014; 35(8): 2507-17.
[120]
Wang C, Wang S, Li K, et al. Preparation of laponite bioceramics for potential bone tissue engineering applications. PLoS One 2014; 9(6): e99585.
[121]
Li C. A targeted approach to cancer imaging and therapy. Nat Mater 2014; 13(2): 110-5.
[122]
Lee N, Hyeon T. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents. Chem Soc Rev 2012; 41(7): 2575-89.
[123]
Estelrich J, Escribano E, Queralt J, Busquets MA. Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. Int J Mol Sci 2015; 16(4): 8070-101.
[124]
Degen CL, Poggio M, Mamin HJ, Rettner CT, Rugar D. Nanoscale magnetic resonance imaging. Proc Natl Acad Sci USA 2009; 106(5): 1313-7.
[125]
Kuehn S, Hickman SA, Marohn JA. Advances in mechanical detection of magnetic resonance. J Chem Phys 2008; 128(5): 052208.
[126]
Weissleder R, Nahrendorf M, Pittet MJ. Imaging macrophages with nanoparticles. Nat Mater 2014; 13(2): 125-38.
[127]
Mulder WJ, Jaffer FA, Fayad ZA, Nahrendorf M. Imaging and nanomedicine in inflammatory atherosclerosis. Sci Transl Med 2014; 6(239): 239-9.
[128]
Felbeck T, Hoffmann K, Lezhnina MM, Kynast UH, Resch-Genger U. Fluorescent Nanoclays: Covalent Functionalization with Amine Reactive Dyes from Different Fluorophore Classes and Surface Group Quantification. J Phys Chem C 2015; 119(23): 12978-87.
[129]
Tzitzios V, Basina G, Bakandritsos A, et al. Immobilization of magnetic iron oxide nanoparticles on laponite discs - an easy way to biocompatible ferrofluids and ferrogels. J Mater Chem 2010; 20(26): 5418-28.
[130]
Haraguchi K, Takehisa T, Ebato M. Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels. Biomacromolecules 2006; 7(11): 3267-75.
[131]
Takezawa T, Mori Y, Yoshizato K. Cell culture on a thermo-responsive polymer surface. Biotechnology (N Y) 1990; 8(9): 854-6.
[132]
Akiyama Y, Kikuchi A, Yamato M, Okano T. Ultrathin poly(N-isopropylacrylamide) grafted layer on polystyrene surfaces for cell adhesion/detachment control. Langmuir 2004; 20(13): 5506-11.
[133]
Gaharwar AK, Schexnailder PJ, Jin Q, Wu CJ, Schmidt G. Addition of chitosan to silicate cross-linked PEO for tuning osteoblast cell adhesion and mineralization. ACS Appl Mater Interfaces 2010; 2(11): 3119-27.
[134]
Schexnailder PJ, Gaharwar AK, Bartlett RL II, Seal BL, Schmidt G. Tuning cell adhesion by incorporation of charged silicate nanoparticles as cross-linkers to polyethylene oxide. Macromol Biosci 2010; 10(12): 1416-23.
[135]
Giannelis EP. Polymer layered silicate nanocomposites. Adv Mater 1996; 8(1): 29-35.
[136]
Winey KI, Vaia RA. Nanocomposites. MRS BULLETIN 2007; 32
[137]
LeBaron PC, Wang Z, Pinnavaia TJ. Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 1999; 15(1): 11-29.
[138]
Eric TL, Richard AM. Integrated genetic analysis microsystems. J Phys D Appl Phys 2004; 37(23): R245.
[139]
Blyth DJ, Poynter SJ, Russell DA. Calcium biosensing with a sol-gel immobilized photoprotein. Analyst (Lond) 1996; 121(12): 1975-8.
[140]
Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S. Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 2011; 111(9): 5610-37.
[141]
Walkey CD, Chan WCW. Understanding and controlling the interaction of nanomaterials with proteins in a physiological environment. Chem Soc Rev 2012; 41(7): 2780-99.
[142]
Gunawan C, Lim M, Marquis CP, Amal R. Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. J Mater Chem B Mater Biol Med 2014; 2(15): 2060-83.
[143]
Felbeck T, Lezhnina MM, Resch-Genger U, Kynast UH. Red emissive nanoclay hybrids in transparent aqueous dispersion—towards optical applications in biophotonics. J Luminescence 2016; 169(Part B): 728-32
[144]
Sackett DL, Wolff J. Nile red as a polarity-sensitive fluorescent probe of hydrophobic protein surfaces. Anal Biochem 1987; 167(2): 228-34.
[145]
Murugan NA, Kongsted J, Rinkevicius Z, Ågren H. Color modeling of protein optical probes. Phys Chem Chem Phys 2012; 14(3): 1107-12.
[146]
Anand U, Jash C, Mukherjee S. Protein unfolding and subsequent refolding: a spectroscopic investigation. Phys Chem Chem Phys 2011; 13(45): 20418-26.
[147]
Lourenço AVS, Kodaira CA, Ramos-Sanchez EM, et al. Luminescent material based on the [Eu(TTA)3(H2O)2] complex incorporated into modified silica particles for biological applications. J Inorg Biochem 2013; 123: 11-7.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 4
Year: 2019
Page: [424 - 443]
Pages: 20
DOI: 10.2174/1381612825666190402165845
Price: $65

Article Metrics

PDF: 29
HTML: 6