Anti-tumor Drug Targets Analysis: Current Insight and Future Prospect

Author(s): Sheng Wang , Dexi Zhou , Zhenyu Xu , Jing Song , Xueyi Qian , Xiongwen Lv * , Jiajie Luan* .

Journal Name: Current Drug Targets

Volume 20 , Issue 11 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The incidence and mortality of malignant tumors are on the rise, which has become the second leading cause of death in the world. At present, anti-tumor drugs are one of the most common methods for treating cancer. In recent years, with the in-depth study of tumor biology and related disciplines, it has been gradually discovered that the essence of cell carcinogenesis is the infinite proliferation of cells caused by the disorder of cell signal transduction pathways, followed by a major shift in the concept of anti-tumor drugs research and development. The focus of research and development is shifting from traditional cytotoxic drugs to a new generation of anti-tumor drugs targeted at abnormal signaling system targets in tumor cells. In this review, we summarize the targets of anti-tumor drugs and analyse the molecular mechanisms of their effects, which lay a foundation for subsequent treatment, research and development.

Keywords: Anti-tumor drug targets, tyrosine kinase, immune checkpoints, cell cycle, histone deacetylase inhibitor, ubiquitin proteasome system, therapeutic strategies, microRNAs.

[1]
Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 2010; 127(12): 2893-917.
[http://dx.doi.org/10.1002/ijc.25516] [PMID: 21351269]
[2]
Takeda S, Maeda H, Okada T, et al. Results of pulmonary resection following neoadjuvant therapy for locally advanced (IIIA-IIIB) lung cancer. Eur J Cardiothorac Surg 2006; 30(1): 184-9.
[http://dx.doi.org/10.1016/j.ejcts.2006.03.054] [PMID: 16730452]
[3]
Demaria S, Formenti SC. Radiotherapy effects on anti-tumor immunity: Implications for cancer treatment. Front Oncol 2013; 3: 128.
[http://dx.doi.org/10.3389/fonc.2013.00128] [PMID: 23734344]
[4]
Choi Y, Lim DH, Lee SH, et al. Role of radiotherapy in the multimodal treatment of ewing sarcoma family tumors. Cancer Res Treat 2015; 47(4): 904-12.
[http://dx.doi.org/10.4143/crt.2014.158] [PMID: 25687849]
[5]
Weltman E, Marta GN, Baraldi HS, et al. Treatment of abdominal tumors using radiotherapyRev Assoc Med Bras (1992) 2015; 61(2): 108-13
[http://dx.doi.org/10.1590/1806-9282.61.02.108] [PMID: 26107357]
[6]
Nair VJ, Pantarotto JR. Treatment of metastatic liver tumors using stereotactic ablative radiotherapy. World J Radiol 2014; 6(2): 18-25.
[http://dx.doi.org/10.4329/wjr.v6.i2.18] [PMID: 24578789]
[7]
de Campos RJ, Palma PV, Leite IC. Quality of life in patients with dysphagia after radiation and chemotherapy treatment for head and neck tumors. J Clin Exp Dent 2013; 5(3): e122-7.
[http://dx.doi.org/10.4317/jced.51092] [PMID: 24455066]
[8]
Chung JH, Yeo HJ, Cho HM, et al. Treatment of pulmonary tumor embolism from choriocarcinoma: Extracorporeal membrane oxygenation as a bridge through chemotherapy. Cancer Res Treat 2017; 49(1): 279-82.
[http://dx.doi.org/10.4143/crt.2016.125] [PMID: 27384162]
[9]
Kerns SL, Kundu S, Oh JH, et al. The prediction of radiotherapy toxicity using single nucleotide polymorphism-based models: A step toward prevention. Semin Radiat Oncol 2015; 25(4): 281-91.
[http://dx.doi.org/10.1016/j.semradonc.2015.05.006] [PMID: 26384276]
[10]
Herskind C, Talbot CJ, Kerns SL, Veldwijk MR, Rosenstein BS, West CM. Radiogenomics: A systems biology approach to understanding genetic risk factors for radiotherapy toxicity? Cancer Lett 2016; 382(1): 95-109.
[http://dx.doi.org/10.1016/j.canlet.2016.02.035] [PMID: 26944314]
[11]
Rattay T, Talbot CJ. Finding the genetic determinants of adverse reactions to radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26(5): 301-8.
[http://dx.doi.org/10.1016/j.clon.2014.02.001] [PMID: 24702740]
[12]
Sibaud V, Lebœuf NR, Roche H, et al. Dermatological adverse events with taxane chemotherapy. Eur J Dermatol 2016; 26(5): 427-43.
[PMID: 27550571]
[13]
Ogawara D, Fukuda M, Ueno S, et al. Drug fever after cancer chemotherapy is most commonly observed on posttreatment days 3 and 4. Support Care Cancer 2016; 24(2): 615-9.
[http://dx.doi.org/10.1007/s00520-015-2820-8] [PMID: 26108172]
[14]
Egron A, Olivier-Abbal P, Gouraud A, et al. Preventable and potentially preventable serious adverse reactions induced by oral protein kinase inhibitors through a database of adverse drug reaction reports. Target Oncol 2015; 10(2): 229-34.
[http://dx.doi.org/10.1007/s11523-014-0328-7] [PMID: 25056801]
[15]
Ding Y, Wang H, Niu J, et al. Induction of ROS overload by alantolactone prompts oxidative DNA damage and apoptosis in colorectal cancer cells. Int J Mol Sci 2016; 17(4): 558.
[http://dx.doi.org/10.3390/ijms17040558] [PMID: 27089328]
[16]
Wei X, Xu Y, Xu FF, et al. RelB expression determines the differential effects of ascorbic acid in normal and cancer cells. Cancer Res 2017; 77(6): 1345-56.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0785] [PMID: 28108513]
[17]
Morel KL, Ormsby RJ, Bezak E, Sweeney CJ, Sykes PJ. Parthenolide selectively sensitizes prostate tumor tissue to radiotherapy while protecting healthy tissues in vivo. Radiat Res 2017; 187(5): 501-12.
[http://dx.doi.org/10.1667/RR14710.1] [PMID: 28398879]
[18]
Endo K, Ueno T, Kondo S, et al. Tumor-targeted chemotherapy with the nanopolymer-based drug NC-6004 for oral squamous cell carcinoma. Cancer Sci 2013; 104(3): 369-74.
[http://dx.doi.org/10.1111/cas.12079] [PMID: 23216802]
[19]
Zhong YJ, Shao LH, Li Y. Cathepsin B-cleavable doxorubicin prodrugs for targeted cancer therapy.(Review). Int J Oncol 2013; 42(2): 373-83.
[http://dx.doi.org/ 10.3892/ijo.2012.1754] [PMID: 23291656]
[20]
Wang H, Yu J, Lu X, He X. Nanoparticle systems reduce systemic toxicity in cancer treatment. Nanomedicine (Lond) 2016; 11(2): 103-6.
[http://dx.doi.org/10.2217/nnm.15.166] [PMID: 26653177]
[21]
Ogbole OO, Segun PA, Adeniji AJ. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement Altern Med 2017; 17(1): 494.
[http://dx.doi.org/10.1186/s12906-017-2005-8] [PMID: 29166892]
[22]
Ndolo RA, Luan Y, Duan S, Forrest ML, Krise JP. Lysosomotropic properties of weakly basic anticancer agents promote cancer cell selectivity in vitro. PLoS One 2012; 7(11)e49366
[http://dx.doi.org/10.1371/journal.pone.0049366] [PMID: 23145164]
[23]
Yaacob NS, Kamal NNNM, Norazmi MN. Synergistic anticancer effects of a bioactive subfraction of Strobilanthes crispus and tamoxifen on MCF-7 and MDA-MB-231 human breast cancer cell lines. BMC Complementary and Alternative Medicine 1-13. 2014.
[24]
Marqus S, Pirogova E, Piva TJ. Evaluation of the use of therapeutic peptides for cancer treatment. J Biomed Sci 2017; 24(1): 21.
[http://dx.doi.org/10.1186/s12929-017-0328-x] [PMID: 28320393]
[25]
Chen MC, Hsu HH, Chu YY, et al. Lupeol alters ER stress-signaling pathway by downregulating ABCG2 expression to induce Oxaliplatin-resistant LoVo colorectal cancer cell apoptosis. Environ Toxicol 2018; 33(5): 587-93.
[http://dx.doi.org/10.1002/tox.22544] [PMID: 29436100]
[26]
Kwak G, Jo SD, Kim D, et al. Synergistic antitumor effects of combination treatment with metronomic doxorubicin and VEGF-targeting RNAi nanoparticles. J Control Release 2017; 267: 203-13.
[http://dx.doi.org/10.1016/j.jconrel.2017.08.015] [PMID: 28823674]
[27]
Quader S, Kataoka K. Nanomaterial-enabled cancer therapy. Mol Ther 2017; 25(7): 1501-13.
[http://dx.doi.org/10.1016/j.ymthe.2017.04.026] [PMID: 28532763]
[28]
Marchetti C, Palaia I, Giorgini M, et al. Targeted drug delivery via folate receptors in recurrent ovarian cancer: A review. OncoTargets Ther 2014; 7: 1223-36.
[http://dx.doi.org/10.2147/OTT.S40947] [PMID: 25031539]
[29]
Chen Y, Zhang L, Hao Q. Olaparib: A promising PARP inhibitor in ovarian cancer therapy. Arch Gynecol Obstet 2013; 288(2): 367-74.
[http://dx.doi.org/10.1007/s00404-013-2856-2] [PMID: 23619942]
[30]
Leung AW, Kalra J, Santos ND, Bally MB, Anglesio MS. Harnessing the potential of lipid-based nanomedicines for type-specific ovarian cancer treatments. Nanomedicine (Lond) 2014; 9(3): 501-22.
[http://dx.doi.org/10.2217/nnm.13.220] [PMID: 24746193]
[31]
Wen F, Li Q. Treatment dilemmas of cetuximab combined with chemotherapy for metastatic colorectal cancer. World J Gastroenterol 2016; 22(23): 5332-41.
[http://dx.doi.org/10.3748/wjg.v22.i23.5332] [PMID: 27340349]
[32]
Bahmani F, Esmaeili S, Bashash D, Dehghan-Nayeri N, Mashati P, Gharehbaghian A. Centaurea albonitens extract enhances the therapeutic effects of vincristine in leukemic cells by inducing apoptosis. Biomed Pharmacother 2018; 99: 598-607.
[http://dx.doi.org/10.1016/j.biopha.2018.01.101] [PMID: 29710458]
[33]
Mun EJ, Babiker HM, Weinberg U, Kirson ED, Von Hoff DD. Tumor-treating fields: A fourth modality in cancer treatment. Clin Cancer Res 2018; 24(2): 266-75.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1117] [PMID: 28765323]
[34]
Li M, Li Z, Yang Y, et al. Thermo-sensitive liposome co-loaded of vincristine and doxorubicin based on their similar physicochemical properties had synergism on tumor treatment. Pharm Res 2016; 33(8): 1881-98.
[http://dx.doi.org/10.1007/s11095-016-1924-2] [PMID: 27075873]
[35]
Anazoeze M, Sunday O, Obike I, Awele C, Kenechi M. Comparison of absolute neutrophil to CD4 lymphocyte values as a marker of immunosuppression in cancer patients on cytotoxic chemotherapy. Afr Health Sci 2015; 15(2): 581-9.
[http://dx.doi.org/10.4314/ahs.v15i2.34] [PMID: 26124806]
[36]
Qiu Y, Zhao R, Yun MM, et al. Immunity enhancement in immunocompromised gastrointestinal cancer patients with allogeneic umbilical cord blood mononuclear cell transfusion. BioMed Res Int 2017.20175945190
[http://dx.doi.org/10.1155/2017/5945190] [PMID: 28529951]
[37]
Grasselly C, Denis M, Bourguignon A, et al. The antitumor activity of combinations of cytotoxic chemotherapy and immune checkpoint inhibitors is model-dependent. Front Immunol 2018; 9: 2100.
[http://dx.doi.org/10.3389/fimmu.2018.02100] [PMID: 30356816]
[38]
Arrondeau J, Gan HK, Razak AR, Paoletti X, Le Tourneau C. Development of anti-cancer drugs. Discov Med 2010; 10(53): 355-62.
[PMID: 21034677]
[39]
Mak L, Liggi S, Tan L, et al. Anti-cancer drug development: computational strategies to identify and target proteins involved in cancer metabolism. Curr Pharm Des 2013; 19(4): 532-77.
[http://dx.doi.org/10.2174/138161213804581855] [PMID: 23016852]
[40]
Zhuang X, Lv M, Zhong Z, Zhang L, Jiang R, Chen J. Interplay between intergrin-linked kinase and ribonuclease inhibitor affects growth and metastasis of bladder cancer through signaling ILK pathways. J Exp Clin Cancer Res 2016; 35(1): 130.
[http://dx.doi.org/10.1186/s13046-016-0408-x] [PMID: 27576342]
[41]
Jiang T, Ye L, Han Z, et al. miR-19b-3p promotes colon cancer proliferation and oxaliplatin-based chemoresistance by targeting SMAD4: Validation by bioinformatics and experimental analyses. J Exp Clin Cancer Res 2017; 36(1): 131.
[http://dx.doi.org/10.1186/s13046-017-0602-5] [PMID: 28938919]
[42]
Wang LL, Sun KX, Wu DD, et al. DLEU1 contributes to ovarian carcinoma tumourigenesis and development by interacting with miR-490-3p and altering CDK1 expression. J Cell Mol Med 2017; 21(11): 3055-65.
[PMID: 28598010]
[43]
Huang MY, Xuan F, Liu W, Cui HJ. MINA controls proliferation and tumorigenesis of glioblastoma by epigenetically regulating cyclins and CDKs via H3K9me3 demethylation. Oncogene 2017; 36(3): 387-96.
[http://dx.doi.org/10.1038/onc.2016.208] [PMID: 27292258]
[44]
Lin A, Piao HL, Zhuang L, Sarbassov D, Ma L, Gan B. FoxO transcription factors promote AKT Ser473 phosphorylation and renal tumor growth in response to pharmacologic inhibition of the PI3K-AKT pathway. Cancer Res 2014; 74(6): 1682-93.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-1729] [PMID: 24448243]
[45]
Liang DS, Zhang WJ, Wang AT, Su HT, Zhong HJ, Qi XR. Treating metastatic triple negative breast cancer with CD44/neuropilin dual molecular targets of multifunctional nanoparticles. Biomaterials 2017; 137: 23-36.
[http://dx.doi.org/10.1016/j.biomaterials.2017.05.022] [PMID: 28528300]
[46]
Akalu YT, Rothlin CV, Ghosh S. TAM receptor tyrosine kinases as emerging targets of innate immune checkpoint blockade for cancer therapy. Immunol Rev 2017; 276(1): 165-77.
[http://dx.doi.org/10.1111/imr.12522] [PMID: 28258690]
[47]
Zhao S, Yu Q, Pan J, et al. Redox-responsive mesoporous selenium delivery of doxorubicin targets MCF-7 cells and synergistically enhances its anti-tumor activity. Acta Biomater 2017; 54: 294-306.
[http://dx.doi.org/10.1016/j.actbio.2017.02.042] [PMID: 28267598]
[48]
Szabo C, Papapetropoulos A. International union of basic and clinical pharmacology. CII: Pharmacological modulation of H2S levels: H2S donors and H2S biosynthesis inhibitors. Pharmacol Rev 2017; 69(4): 497-564.
[http://dx.doi.org/10.1124/pr.117.014050] [PMID: 28978633]
[49]
Xu YY, Gao P, Sun Y, Duan YR. Development of targeted therapies in treatment of glioblastoma. Cancer Biol Med 2015; 12(3): 223-37.
[PMID: 26487967]
[50]
Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018; 17(1): 25.
[http://dx.doi.org/10.1186/s12943-018-0775-3] [PMID: 29455646]
[51]
Hojjat-Farsangi M. Targeting non-receptor tyrosine kinases using small molecule inhibitors: An overview of recent advances. J Drug Target 2016; 24(3): 192-211.
[http://dx.doi.org/10.3109/1061186X.2015.1068319] [PMID: 26211367]
[52]
Jiao Q, Bi L, Ren Y, Song S, Wang Q, Wang YS. Advances in studies of tyrosine kinase inhibitors and their acquired resistance. Mol Cancer 2018; 17(1): 36.
[http://dx.doi.org/10.1186/s12943-018-0801-5] [PMID: 29455664]
[53]
Zhang Y, Xia M, Jin K, et al. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities. Mol Cancer 2018; 17(1): 45.
[http://dx.doi.org/10.1186/s12943-018-0796-y] [PMID: 29455668]
[54]
Drake JM, Lee JK, Witte ON. Clinical targeting of mutated and wild-type protein tyrosine kinases in cancer. Mol Cell Biol 2014; 34(10): 1722-32.
[http://dx.doi.org/10.1128/MCB.01592-13] [PMID: 24567371]
[55]
Wu D, Zhang X, Liu Z, et al. Decreased expression of protein tyrosine kinase 6 contributes to tumor progression and metastasis in laryngeal squamous cell carcinoma. Biochem Biophys Res Commun 2018; 503(3): 1378-84.
[http://dx.doi.org/10.1016/j.bbrc.2018.07.051] [PMID: 30029880]
[56]
Egile C, Kenigsberg M, Delaisi C, et al. The selective intravenous inhibitor of the MET tyrosine kinase SAR125844 inhibits tumor growth in MET-amplified cancer. Mol Cancer Ther 2015; 14(2): 384-94.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0428] [PMID: 25504634]
[57]
Winkler GC, Barle EL, Galati G, Kluwe WM. Functional differentiation of cytotoxic cancer drugs and targeted cancer therapeutics. Regul Toxicol Pharmacol 2014; 70(1): 46-53.
[http://dx.doi.org/10.1016/j.yrtph.2014.06.012] [PMID: 24956585]
[58]
Giansanti P, Preisinger C, Huber KV, et al. Evaluating the promiscuous nature of tyrosine kinase inhibitors assessed in A431 epidermoid carcinoma cells by both chemical and phosphoproteomics. ACS Chem Biol 2014; 9(7): 1490-8.
[http://dx.doi.org/10.1021/cb500116c] [PMID: 24804581]
[59]
Sanchez-Vega F, Mina M, Armenia J, et al. Oncogenic signaling pathways in the cancer genome atlas Cell 173: 321-37 2018.;
[http://dx.doi.org/10.1016/j.cell.2018.03.035]
[60]
Ganly I, Makarov V, Deraje S, et al. Integrated genomic analysis of hurthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapesCancer Cell 34: 256-70 2018.
[61]
Courtney KD, Corcoran RB, Engelman JA. The PI3K pathway as drug target in human cancer. J Clin Oncol 2010; 28(6): 1075-83.
[http://dx.doi.org/10.1200/JCO.2009.25.3641] [PMID: 20085938]
[62]
Madsen RR, Vanhaesebroeck B, Semple RK. Cancer-associated PIK3CA mutations in overgrowth disorders. Trends Mol Med 2018; 24(10): 856-70.
[http://dx.doi.org/10.1016/j.molmed.2018.08.003] [PMID: 30197175]
[63]
Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell 2017; 170(4): 605-35.
[http://dx.doi.org/10.1016/j.cell.2017.07.029] [PMID: 28802037]
[64]
Pritchard AL, Hayward NK. Molecular pathways: Mitogen-activated protein kinase pathway mutations and drug resistance. Clin Cancer Res 2013; 19(9): 2301-9.
[PMID: 23406774]
[65]
Prior IA, Lewis PD, Mattos C. A comprehensive survey of Ras mutations in cancer. Cancer Res 2012; 72(10): 2457-67.
[http://dx.doi.org/10.1158/0008-5472.CAN-11-2612] [PMID: 22589270]
[66]
Tripathi K, Garg M. Mechanistic regulation of epithelial-to-mesenchymal transition through RAS signaling pathway and therapeutic implications in human cancer. J Cell Commun Signal 2018; 12(3): 513-27.
[http://dx.doi.org/10.1007/s12079-017-0441-3] [PMID: 29330773]
[67]
Hibino K, Shibata T, Yanagida T, Sako Y. Activation kinetics of RAF protein in the ternary complex of RAF, RAS-GTP, and kinase on the plasma membrane of living cells: single-molecule imaging analysis. J Biol Chem 2011; 286(42): 36460-8.
[http://dx.doi.org/10.1074/jbc.M111.262675] [PMID: 21862573]
[68]
van de Laar L, Coffer PJ, Woltman AM. Regulation of dendritic cell development by GM-CSF: Molecular control and implications for immune homeostasis and therapy. Blood 2012; 119(15): 3383-93.
[http://dx.doi.org/10.1182/blood-2011-11-370130] [PMID: 22323450]
[69]
Neuzillet C, Hammel P, Tijeras-Raballand A, Couvelard A, Raymond E. Targeting the Ras-ERK pathway in pancreatic adenocarcinoma. Cancer Metastasis Rev 2013; 32(1-2): 147-62.
[http://dx.doi.org/10.1007/s10555-012-9396-2] [PMID: 23085856]
[70]
Ríos-Arrabal S, Artacho-Cordón F, León J, et al. Involvement of free radicals in breast cancer. Springerplus 2013; 2: 404.
[http://dx.doi.org/10.1186/2193-1801-2-404] [PMID: 24024092]
[71]
Zhang L, Li J, Zong L, et al. Reactive oxygen species and targeted therapy for pancreatic cancer. Oxid Med Cell Longev 2016.20161616781
[http://dx.doi.org/10.1155/2016/1616781] [PMID: 26881012]
[72]
Wang P, Zeng Y, Liu T, et al. Chloride intracellular channel 1 regulates colon cancer cell migration and invasion through ROS/ERK pathway. World J Gastroenterol 2014; 20(8): 2071-8.
[http://dx.doi.org/10.3748/wjg.v20.i8.2071] [PMID: 24587680]
[73]
Schroyer AL, Stimes NW, Abi Saab WF, Chadee DN. MLK3 phosphorylation by ERK1/2 is required for oxidative stress-induced invasion of colorectal cancer cells. Oncogene 2018; 37(8): 1031-40.
[http://dx.doi.org/10.1038/onc.2017.396] [PMID: 29084209]
[74]
Zhao W, Lu M, Zhang Q. Chloride intracellular channel 1 regulates migration and invasion in gastric cancer by triggering the ROS-mediated p38 MAPK signaling pathway. Mol Med Rep 2015; 12(6): 8041-7.
[http://dx.doi.org/10.3892/mmr.2015.4459] [PMID: 26497050]
[75]
Chikara S, Nagaprashantha LD, Singhal J, Horne D, Awasthi S, Singhal SS. Oxidative stress and dietary phytochemicals: Role in cancer chemoprevention and treatment. Cancer Lett 2018; 413: 122-34.
[http://dx.doi.org/10.1016/j.canlet.2017.11.002] [PMID: 29113871]
[76]
Zhang R, Kang KA, Kim KC, et al. Oxidative stress causes epigenetic alteration of CDX1 expression in colorectal cancer cells. Gene 2013; 524(2): 214-9.
[http://dx.doi.org/10.1016/j.gene.2013.04.024] [PMID: 23618814]
[77]
Ma-On C, Sanpavat A, Whongsiri P, et al. Oxidative stress indicated by elevated expression of Nrf2 and 8-OHdG promotes hepatocellular carcinoma progression. Med Oncol 2017; 34(4): 57.
[http://dx.doi.org/10.1007/s12032-017-0914-5] [PMID: 28281193]
[78]
Ma Y, Zhang L, Rong S, et al. Relation between gastric cancer and protein oxidation, DNA damage, and lipid peroxidation. Oxid Med Cell Longev 2013.2013543760
[http://dx.doi.org/10.1155/2013/543760] [PMID: 24454985]
[79]
Joshi S, Kumar S, Ponnusamy MP, Batra SK. Hypoxia-induced oxidative stress promotes MUC4 degradation via autophagy to enhance pancreatic cancer cells survival. Oncogene 2016; 35(45): 5882-92.
[http://dx.doi.org/10.1038/onc.2016.119] [PMID: 27109098]
[80]
Jezierska-Drutel A, Rosenzweig SA, Neumann CA. Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res 2013; 119: 107-25.
[http://dx.doi.org/10.1016/B978-0-12-407190-2.00003-4] [PMID: 23870510]
[81]
Mahalingaiah PKS, Ponnusamy L, Singh KP. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells. Oncotarget 2017; 8(7): 11127-43.
[http://dx.doi.org/10.18632/oncotarget.12091] [PMID: 27655674]
[82]
Gocek E, Moulas AN, Studzinski GP. Non-receptor protein tyrosine kinases signaling pathways in normal and cancer cells. Crit Rev Clin Lab Sci 2014; 51(3): 125-37.
[http://dx.doi.org/10.3109/10408363.2013.874403] [PMID: 24446827]
[83]
Socinski MA. Multitargeted receptor tyrosine kinase inhibition: An antiangiogenic strategy in non-small cell lung cancer. Cancer Treat Rev 2011; 37(8): 611-7.
[http://dx.doi.org/10.1016/j.ctrv.2011.04.003] [PMID: 21641723]
[84]
Pons-Tostivint E, Thibault B, Guillermet-Guibert J. Targeting PI3K signaling in combination cancer therapy. Trends Cancer 2017; 3(6): 454-69.
[http://dx.doi.org/10.1016/j.trecan.2017.04.002] [PMID: 28718419]
[85]
Dasgupta S, Putluri N, Long W, et al. Coactivator SRC-2-dependent metabolic reprogramming mediates prostate cancer survival and metastasis. J Clin Invest 2015; 125(3): 1174-88.
[http://dx.doi.org/10.1172/JCI76029] [PMID: 25664849]
[86]
Xiao Y, Yang X, Miao Y, He X, Wang M, Sha W. Inhibition of cell proliferation and tumor growth of colorectal cancer by inhibitors of Wnt and Notch signaling pathways. Oncol Lett 2016; 12(5): 3695-700.
[http://dx.doi.org/10.3892/ol.2016.5175] [PMID: 27900056]
[87]
Serini S, Calviello G. Modulation of Ras/ERK and phosphoinositide signaling by long-chain n-3 PUFA in breast cancer and their potential complementary role in combination with targeted drugs. Nutrients 2017; 9(3): 9.
[http://dx.doi.org/10.3390/nu9030185] [PMID: 28241486]
[88]
Strumberg D. Sorafenib for the treatment of renal cancer. Expert Opin Pharmacother 2012; 13(3): 407-19.
[http://dx.doi.org/10.1517/14656566.2012.654776] [PMID: 22263843]
[89]
Ramakrishnan V, Timm M, Haug JL, et al. Sorafenib, a dual Raf kinase/vascular endothelial growth factor receptor inhibitor has significant anti-myeloma activity and synergizes with common anti-myeloma drugs. Oncogene 2010; 29(8): 1190-202.
[http://dx.doi.org/10.1038/onc.2009.403] [PMID: 19935717]
[90]
Markowitz JN, Fancher KM. Cabozantinib: A multitargeted oral tyrosine kinase inhibitor. Pharmacotherapy 2018; 38(3): 357-69.
[http://dx.doi.org/10.1002/phar.2076] [PMID: 29283440]
[91]
Sun Y, Niu W, Du F, et al. Safety, pharmacokinetics, and antitumor properties of anlotinib, an oral multi-target tyrosine kinase inhibitor, in patients with advanced refractory solid tumors. J Hematol Oncol 2016; 9(1): 105.
[http://dx.doi.org/10.1186/s13045-016-0332-8] [PMID: 27716285]
[92]
Xu F, Jin T, Zhu Y, Dai C. Immune checkpoint therapy in liver cancer. J Exp Clin Cancer Res 2018; 37(1): 110.
[http://dx.doi.org/10.1186/s13046-018-0777-4] [PMID: 29843754]
[93]
Jang JE, Hajdu CH, Liot C, Miller G, Dustin ML, Bar-Sagi D. Crosstalk between regulatory T cells and tumor-associated dendritic cells negates anti-tumor immunity in pancreatic cancer. Cell Rep 2017; 20(3): 558-71.
[http://dx.doi.org/10.1016/j.celrep.2017.06.062] [PMID: 28723561]
[94]
Shih K, Arkenau H-T, Infante JR. Clinical impact of checkpoint inhibitors as novel cancer therapies. Drugs 2014; 74(17): 1993-2013.
[http://dx.doi.org/10.1007/s40265-014-0305-6] [PMID: 25344022]
[95]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[96]
Levi-Schaffer F, Mandelboim O. Inhibitory and coactivating receptors recognising the same ligand: Immune homeostasis exploited by pathogens and tumours. Trends Immunol 2018; 39(2): 112-22.
[http://dx.doi.org/10.1016/j.it.2017.10.001] [PMID: 29066058]
[97]
Li J, Ni L, Dong C. Immune checkpoint receptors in cancer: Redundant by design? Curr Opin Immunol 2017; 45: 37-42.
[http://dx.doi.org/10.1016/j.coi.2017.01.001] [PMID: 28189879]
[98]
Hamanishi J, Mandai M, Konishi I. Immune checkpoint inhibition in ovarian cancer. Int Immunol 2016; 28(7): 339-48.
[http://dx.doi.org/10.1093/intimm/dxw020] [PMID: 27055470]
[99]
Korman AJ, Peggs KS, Allison JP. Checkpoint blockade in cancer immunotherapy. 2006; 90: 297-339.
[http://dx.doi.org/10.1016/S0065-2776(06)90008-X]
[100]
Dalgleish AG, Mudan S, Fusi A. Enhanced effect of checkpoint inhibitors when given after or together with IMM-101: Significant responses in four advanced melanoma patients with no additional major toxicity. J Transl Med 2018; 16(1): 227.
[http://dx.doi.org/10.1186/s12967-018-1602-8] [PMID: 30107850]
[101]
Gulley JL, Rajan A, Spigel DR, et al. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): Dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol 2017; 18(5): 599-610.
[http://dx.doi.org/10.1016/S1470-2045(17)30240-1] [PMID: 28373005]
[102]
Apolo AB, Infante JR, Balmanoukian A, et al. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: Results from a multicenter, phase Ib study. J Clin Oncol 2017; 35(19): 2117-24.
[http://dx.doi.org/10.1200/JCO.2016.71.6795] [PMID: 28375787]
[103]
Heery CR, O’Sullivan-Coyne G, Madan RA, et al. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): A phase 1a, multicohort, dose-escalation trial. Lancet Oncol 2017; 18(5): 587-98.
[http://dx.doi.org/10.1016/S1470-2045(17)30239-5] [PMID: 28373007]
[104]
Massard C, Gordon MS, Sharma S, et al. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 2016; 34(26): 3119-25.
[http://dx.doi.org/10.1200/JCO.2016.67.9761] [PMID: 27269937]
[105]
Antonia S, Goldberg SB, Balmanoukian A, et al. Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: A multicentre, phase 1b study. Lancet Oncol 2016; 17(3): 299-308.
[http://dx.doi.org/10.1016/S1470-2045(15)00544-6] [PMID: 26858122]
[106]
Frenel J-S, Tourneau CL, Neil BO. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: Results from the phase Ib KEYNOTE-028 trial. J Clin Oncol 35: 4035-41.2017
[107]
Ott PA, Bang Y-J, Berton-Rigaud D. Safety and efficacy of pembrolizumab in advanced, programmed death ligand 1-positive cervical cancer: Results from the phase Ib KEYNOTE-028 trial. J Clin Oncol 35: 4035-41.2017; [107] Ott PA, Bang Y-J, Berton-Rigaud D. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1- positive endometrial cancer: Results from the KEYNOTE-028 study. J Clin Oncol 35: 2535-41. 2017.
[108]
Hsu C, Lee S-H, Ejadi S, et al. Safety and antitumor activity of pembrolizumab in patients with programmed death-ligand 1-positive nasopharyngeal carcinoma: Results of the KEYNOTE-028 study. J Clin Oncol 2017; 35(36): 4050-6.
[http://dx.doi.org/10.1200/JCO.2017.73.3675] [PMID: 28837405]
[109]
Ott PA, Piha-Paul SA, Munster P, et al. Safety and antitumor activity of the anti-PD-1 antibody pembrolizumab in patients with recurrent carcinoma of the anal canal. Ann Oncol 2017; 28(5): 1036-41.
[http://dx.doi.org/10.1093/annonc/mdx029] [PMID: 28453692]
[110]
Doi T, Piha-Paul SA, Jalal SI, et al. Safety and antitumor activity of the anti-programmed death-1 antibody pembrolizumab in patients with advanced esophageal carcinoma. J Clin Oncol. 2018; 36: 61-7. J Clin Oncol 2018; 36: 61-7.
[http://dx.doi.org/10.1200/JCO.2017.74.9846] [PMID: 29116900]
[111]
Ott PA, Elez E, Hiret S, et al. Pembrolizumab in patients with extensive-stage small-cell lung cancer: Results from the phase Ib KEYNOTE-028 study. J Clin Oncol 2017; 35(34): 3823-9.
[http://dx.doi.org/10.1200/JCO.2017.72.5069] [PMID: 28813164]
[112]
Hansen AR, Massard C, Ott PA, et al. Pembrolizumab for advanced prostate adenocarcinoma: Findings of the KEYNOTE-028 study. Ann Oncol 2018; 29(8): 1807-13.
[http://dx.doi.org/10.1093/annonc/mdy232] [PMID: 29992241]
[113]
Cohen RB, Delord JP, Doi T, et al. Pembrolizumab for the treatment of advanced salivary gland carcinoma: Findings of the phase 1b KEYNOTE-028 study. Am J Clin Oncol 2018.
[http://dx.doi.org/10.1097/COC.0000000000000429] [PMID: 29462123]
[114]
Tawbi HA, Burgess M, Bolejack V, et al. Pembrolizumab in advanced soft-tissue sarcoma and bone sarcoma (SARC028): a multicentre, two-cohort, single-arm, open-label, phase 2 trial. Lancet Oncol 2017; 18(11): 1493-501.
[http://dx.doi.org/10.1016/S1470-2045(17)30624-1] [PMID: 28988646]
[115]
Necchi A, Joseph RW, Loriot Y, et al. Atezolizumab in platinum-treated locally advanced or metastatic urothelial carcinoma: post-progression outcomes from the phase II IMvigor210 study. Ann Oncol 2017; 28: 3044-50.
[http://dx.doi.org/10.1093/annonc/mdx518] [PMID: 28950298]
[116]
Powles T, Durán I, van der Heijden MS, et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018; 391(10122): 748-57.
[http://dx.doi.org/10.1016/S0140-6736(17)33297-X] [PMID: 29268948]
[117]
Balar AV, Galsky MD, Rosenberg JE, et al. Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: A single-arm, multicentre, phase 2 trial. Lancet 2017; 389(10064): 67-76.
[http://dx.doi.org/10.1016/S0140-6736(16)32455-2] [PMID: 27939400]
[118]
Kang Y-K, Boku N, Satoh T, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017; 390(10111): 2461-71.
[http://dx.doi.org/10.1016/S0140-6736(17)31827-5] [PMID: 28993052]
[119]
Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): An open-label, multicentre, phase 2 study. Lancet Oncol 2017; 18(9): 1182-91.
[http://dx.doi.org/10.1016/S1470-2045(17)30422-9] [PMID: 28734759]
[120]
El-Khoueiry AB, Sangro B, Yau T, et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): an open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017; 389(10088): 2492-502.
[http://dx.doi.org/10.1016/S0140-6736(17)31046-2] [PMID: 28434648]
[121]
Tawbi HA, Forsyth PA, Algazi A, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N Engl J Med 2018; 379(8): 722-30.
[http://dx.doi.org/10.1056/NEJMoa1805453] [PMID: 30134131]
[122]
Wolchok JD, Chiarion-Sileni V, Gonzalez R, et al. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med 2017; 377(14): 1345-56.
[http://dx.doi.org/10.1056/NEJMoa1709684] [PMID: 28889792]
[123]
Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus Ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018; 378(14): 1277-90.
[http://dx.doi.org/10.1056/NEJMoa1712126] [PMID: 29562145]
[124]
Raposo AE, Piller SC. Protein arginine methylation: An emerging regulator of the cell cycle. Cell Div 2018; 13: 3.
[http://dx.doi.org/10.1186/s13008-018-0036-2] [PMID: 29568320]
[125]
Otto T, Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat Rev Cancer 2017; 17(2): 93-115.
[http://dx.doi.org/10.1038/nrc.2016.138] [PMID: 28127048]
[126]
Kamenz J, Ferrell JE Jr. The temporal ordering of cell-cycle phosphorylation. Mol Cell 2017; 65(3): 371-3.
[http://dx.doi.org/10.1016/j.molcel.2017.01.025] [PMID: 28157499]
[127]
Gérard C, Tyson JJ, Coudreuse D, Novák B. Cell cycle control by a minimal Cdk network. PLOS Comput Biol 2015; 11(2)e1004056
[http://dx.doi.org/10.1371/journal.pcbi.1004056] [PMID: 25658582]
[128]
Swaffer MP, Jones AW, Flynn HR, et al. DK substrate phosphorylation and ordering the cell cycleCell 167: 1750-61 2016.;
[http://dx.doi.org/10.1016/j.cell.2016.11.034]
[129]
Lim S, Kaldis P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development 2013; 140(15): 3079-93.
[http://dx.doi.org/10.1242/dev.091744] [PMID: 23861057]
[130]
Magiera MM, Gueydon E, Schwob E. DNA replication and spindle checkpoints cooperate during S phase to delay mitosis and preserve genome integrity. J Cell Biol 2014; 204(2): 165-75.
[http://dx.doi.org/10.1083/jcb.201306023] [PMID: 24421333]
[131]
Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov 2015; 14(2): 130-46.
[http://dx.doi.org/10.1038/nrd4504] [PMID: 25633797]
[132]
De Witt Hamer PC, Mir SE, Noske D, Van Noorden CJ, Würdinger T. WEE1 kinase targeting combined with DNA-damaging cancer therapy catalyzes mitotic catastrophe. Clin Cancer Res 2011; 17(13): 4200-7.
[http://dx.doi.org/10.1158/1078-0432.CCR-10-2537] [PMID: 21562035]
[133]
Lu JW, Lin YM, Chang JG, et al. Clinical implications of deregulated CDK4 and Cyclin D1 expression in patients with human hepatocellular carcinoma. Med Oncol 2013; 30(1): 379.
[http://dx.doi.org/10.1007/s12032-012-0379-5] [PMID: 23292829]
[134]
Broustas CG, Lieberman HB. DNA damage response genes and the development of cancer metastasis. Radiat Res 2014; 181(2): 111-30.
[http://dx.doi.org/10.1667/RR13515.1] [PMID: 24397478]
[135]
Gabrielli B, Brooks K, Pavey S. Defective cell cycle checkpoints as targets for anti-cancer therapies. Front Pharmacol 2012; 3: 9.
[http://dx.doi.org/10.3389/fphar.2012.00009] [PMID: 22347187]
[136]
Zhang J, Bu X, Wang H, et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 2018; 553(7686): 91-5.
[http://dx.doi.org/10.1038/nature25015] [PMID: 29160310]
[137]
Goel S, DeCristo MJ, Watt AC, et al. CDK4/6 inhibition triggers anti-tumour immunity. Nature 2017; 548(7668): 471-5.
[http://dx.doi.org/10.1038/nature23465] [PMID: 28813415]
[138]
Gupta P, Zhang YK, Zhang XY, et al. Voruciclib, a potent CDK4/6 inhibitor, antagonizes ABCB1 and ABCG2-mediated multi-drug resistance in cancer cells. Cell Physiol Biochem 2018; 45(4): 1515-28.
[PMID: 29486476]
[139]
Geoerger B, Bourdeaut F, DuBois SG, et al. A phase I study of the CDK4/6 inhibitor ribociclib (LEE011) in pediatric patients with malignant rhabdoid tumors, neuroblastoma, and other solid tumors. Clin Cancer Res 2017; 23(10): 2433-41.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2898] [PMID: 28432176]
[140]
Chen EX, Hotte S, Hirte H, et al. A Phase I study of cyclin-dependent kinase inhibitor, AT7519, in patients with advanced cancer: NCIC Clinical Trials Group IND 177. Br J Cancer 2014; 111(12): 2262-7.
[http://dx.doi.org/10.1038/bjc.2014.565] [PMID: 25393368]
[141]
Seftel MD, Kuruvilla J, Kouroukis T, et al. The CDK inhibitor AT7519M in patients with relapsed or refractory chronic lymphocytic leukemia (CLL) and mantle cell lymphoma. A Phase II study of the Canadian Cancer Trials Group. Leuk Lymphoma 2017; 58(6): 1358-65.
[http://dx.doi.org/10.1080/10428194.2016.1239259] [PMID: 27750483]
[142]
Cassaday RD, Goy A, Advani S, et al. A phase II, single-arm, open-label, multicenter study to evaluate the efficacy and safety of P276-00, a cyclin-dependent kinase inhibitor, in patients with relapsed or refractory mantle cell lymphoma. Clin Lymphoma Myeloma Leuk 2015; 15(7): 392-7.
[http://dx.doi.org/10.1016/j.clml.2015.02.021] [PMID: 25816934]
[143]
Matheson CJ, Backos DS, Reigan P. Targeting WEE1 Kinase in Cancer. Trends Pharmacol Sci 2016; 37(10): 872-81.
[http://dx.doi.org/10.1016/j.tips.2016.06.006] [PMID: 27427153]
[144]
Do K, Wilsker D, Ji J, et al. Phase I study of single-agent AZD1775 (MK-1775), a WEE1 kinase inhibitor, in patients with refractory solid tumors. J Clin Oncol 2015; 33(30): 3409-15.
[http://dx.doi.org/10.1200/JCO.2014.60.4009] [PMID: 25964244]
[145]
Leijen S, van Geel RM, Pavlick AC, et al. Phase I study evaluating WEE1 inhibitor AZD1775 as monotherapy and in combination with gemcitabine, cisplatin, or carboplatin in patients with advanced solid tumors. J Clin Oncol 2016; 34(36): 4371-80.
[http://dx.doi.org/10.1200/JCO.2016.67.5991] [PMID: 27601554]
[146]
Méndez E, Rodriguez CP, Kao MC, et al. A phase I clinical trial of AZD1775 in combination with neoadjuvant weekly docetaxel and cisplatin before definitive therapy in head and neck squamous cell carcinoma. Clin Cancer Res 2018; 24(12): 2740-8.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-3796] [PMID: 29535125]
[147]
Leijen S, van Geel RM, Sonke GS, et al. Phase II study of WEE1 inhibitor AZD1775 plus carboplatin in patients with TP53-mutated ovarian cancer refractory or resistant to first-line therapy within 3 months. J Clin Oncol 2016; 34(36): 4354-61.
[http://dx.doi.org/10.1200/JCO.2016.67.5942] [PMID: 27998224]
[148]
Italiano A, Infante JR, Shapiro GI, et al. Phase I study of the checkpoint kinase 1 inhibitor GDC-0575 in combination with gemcitabine in patients with refractory solid tumors. Ann Oncol 2018.
[http://dx.doi.org/10.1093/annonc/mdy076] [PMID: 29788155]
[149]
Infante JR, Hollebecque A, Postel-Vinay S, et al. Phase I study of GDC-0425, a checkpoint kinase 1 inhibitor, in combination with gemcitabine in patients with refractory solid tumors. Clin Cancer Res 2017; 23(10): 2423-32.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1782] [PMID: 27815358]
[150]
Hong D, Infante J, Janku F, et al. Phase I study of LY2606368, a checkpoint kinase 1 inhibitor, in patients with advanced cancer. J Clin Oncol 2016; 34(15): 1764-71.
[http://dx.doi.org/10.1200/JCO.2015.64.5788] [PMID: 27044938]
[151]
Calvo E, Braiteh F, Von Hoff D, et al. Phase I study of CHK1 inhibitor LY2603618 in combination with gemcitabine in patients with solid tumors. Oncology 2016; 91(5): 251-60.
[http://dx.doi.org/10.1159/000448621] [PMID: 27598338]
[152]
Scagliotti G, Kang JH, Smith D, et al. Phase II evaluation of LY2603618, a first-generation CHK1 inhibitor, in combination with pemetrexed in patients with advanced or metastatic non-small cell lung cancer. Invest New Drugs 2016; 34(5): 625-35.
[http://dx.doi.org/10.1007/s10637-016-0368-1] [PMID: 27350064]
[153]
Schuijers J, Manteiga JC, Weintraub AS, et al. Transcriptional dysregulation of MYC reveals common enhancer-docking mechanism. Cell Rep 2018; 23(2): 349-60.
[http://dx.doi.org/10.1016/j.celrep.2018.03.056] [PMID: 29641996]
[154]
Shen J, Xiang X, Chen L, et al. JMJD5 cleaves monomethylated histone H3 N-tail under DNA damaging stress. EMBO Rep 2017; 18(12): 2131-43.
[http://dx.doi.org/10.15252/embr.201743892] [PMID: 28982940]
[155]
Shen Y, Wei W, Zhou DX. Histone acetylation enzymes coordinate metabolism and gene expression. Trends Plant Sci 2015; 20(10): 614-21.
[http://dx.doi.org/10.1016/j.tplants.2015.07.005] [PMID: 26440431]
[156]
Zhang X, Xiong G, Zhou Y, et al. Expression of HDAC4 in hepatocellular carcinoma and its correlation with prognosis. Int J Clin Exp Pathol 2016; 9: 12171-7.
[157]
Wang L-T, Liou J-P, Li Y-H, et al. A novel class I HDAC inhibitor, MPT0G030, induces cell apoptosis and differentiation in human colorectal cancer cells via HDAC1/ PKCδ and E-cadherin. Oncotarget 5: 5651-62. 2014.
[158]
Song SH, Han SW, Bang YJ. Epigenetic-based therapies in cancer: progress to date. Drugs 2011; 71(18): 2391-403.
[http://dx.doi.org/10.2165/11596690-000000000-00000] [PMID: 22141383]
[159]
Fujiki R, Sato A, Fujitani M, Yamashita T. A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons Cell Death Dis 2013; 4e677
[http://dx.doi.org/10.1038/cddis.2013.205] [PMID: 23788034]
[160]
Vancurova I, Uddin MM, Zou Y, Vancura A. Combination Therapies Targeting HDAC and IKK in Solid Tumors. Trends Pharmacol Sci 2018; 39(3): 295-306.
[http://dx.doi.org/10.1016/j.tips.2017.11.008] [PMID: 29233541]
[161]
Cycon KA, Mulvaney K, Rimsza LM, Persky D, Murphy SP. Histone deacetylase inhibitors activate CIITA and MHC class II antigen expression in diffuse large B-cell lymphoma. Immunology 2013; 140(2): 259-72.
[http://dx.doi.org/10.1111/imm.12136] [PMID: 23789844]
[162]
Hrgovic I, Doll M, Kleemann J, et al. The histone deacetylase inhibitor trichostatin a decreases lymphangiogenesis by inducing apoptosis and cell cycle arrest via p21-dependent pathways. BMC Cancer 2016; 16(1): 763.
[http://dx.doi.org/10.1186/s12885-016-2807-y] [PMID: 27716272]
[163]
Yee AJ, Bensinger WI, Supko JG, et al. Ricolinostat plus lenalidomide, and dexamethasone in relapsed or refractory multiple myeloma: a multicentre phase 1b trial. Lancet Oncol 2016; 17(11): 1569-78.
[http://dx.doi.org/10.1016/S1470-2045(16)30375-8] [PMID: 27646843]
[164]
Vogl DT, Raje N, Jagannath S, et al. Ricolinostat, the First Selective Histone Deacetylase 6 Inhibitor, in Combination with Bortezomib and Dexamethasone for Relapsed or Refractory Multiple Myeloma. Clin Cancer Res 2017; 23(13): 3307-15.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2526] [PMID: 28053023]
[165]
Evens AM, Balasubramanian S, Vose JM, et al. A Phase I/II Multicenter, Open-Label Study of the Oral Histone Deacetylase Inhibitor Abexinostat in Relapsed/Refractory Lymphoma. Clin Cancer Res 2016; 22(5): 1059-66.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-0624] [PMID: 26482040]
[166]
Morschhauser F, Terriou L, Coiffier B, et al. Phase 1 study of the oral histone deacetylase inhibitor abexinostat in patients with Hodgkin lymphoma, non-Hodgkin lymphoma, or chronic lymphocytic leukaemia. Invest New Drugs 2015; 33(2): 423-31.
[http://dx.doi.org/10.1007/s10637-015-0206-x] [PMID: 25600050]
[167]
Ribrag V, Kim WS, Bouabdallah R, et al. Safety and efficacy of abexinostat, a pan-histone deacetylase inhibitor, in non-Hodgkin lymphoma and chronic lymphocytic leukemia: results of a phase II study. Haematologica 2017; 102(5): 903-9.
[http://dx.doi.org/10.3324/haematol.2016.154377] [PMID: 28126962]
[168]
Aggarwal R, Thomas S, Pawlowska N, et al. Inhibiting Histone Deacetylase as a Means to Reverse Resistance to Angiogenesis Inhibitors: Phase I Study of Abexinostat Plus Pazopanib in Advanced Solid Tumor Malignancies. J Clin Oncol 2017; 35(11): 1231-9.
[http://dx.doi.org/10.1200/JCO.2016.70.5350] [PMID: 28221861]
[169]
Younes A, Berdeja JG, Patel MR, et al. Safety, tolerability, and preliminary activity of CUDC-907, a first-in-class, oral, dual inhibitor of HDAC and PI3K, in patients with relapsed or refractory lymphoma or multiple myeloma: an open-label, dose-escalation, phase 1 trial. Lancet Oncol 2016; 17(5): 622-31.
[http://dx.doi.org/10.1016/S1470-2045(15)00584-7] [PMID: 27049457]
[170]
Oki Y, Kelly KR, Flinn I, et al. CUDC-907 in relapsed/refractory diffuse large B-cell lymphoma, including patients with MYC-alterations: results from an expanded phase I trial. Haematologica 2017; 102(11): 1923-30.
[http://dx.doi.org/10.3324/haematol.2017.172882] [PMID: 28860342]
[171]
Connolly RM, Li H, Jankowitz RC, et al. A Phase I/II Multicenter, Open-Label Study of the Oral Histone Deacetylase Inhibitor Abexinostat in Relapsed/Refractory Lymphoma. Clin Cancer Res 2017; 23(11): 2691-701.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-1729] [PMID: 27979916]
[172]
Pili R, Quinn DI, Hammers HJ, et al. A Phase I/II Multicenter, Open-Label Study of the Oral Histone Deacetylase Inhibitor Abexinostat in Relapsed/Refractory Lymphoma. Clin Cancer Res 2017; 23(23): 7199-208.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-1178] [PMID: 28939740]
[173]
De Boeck M, ten Dijke P. Key role for ubiquitin protein modification in TGFβ signal transduction. Ups J Med Sci 2012; 117(2): 153-65.
[http://dx.doi.org/10.3109/03009734.2012.654858] [PMID: 22335355]
[174]
Mejía-García A, González-Barbosa E, Martínez-Guzmán C, et al. Activation of AHR mediates the ubiquitination and proteasome degradation of c-Fos through the induction of Ubcm4 gene expression. Toxicology 2015; 337: 47-57.
[http://dx.doi.org/10.1016/j.tox.2015.08.008] [PMID: 26318284]
[175]
Schröter F, Adjaye J. The proteasome complex and the maintenance of pluripotency: sustain the fate by mopping up? Stem Cell Res Ther 2014; 5(1): 24.
[http://dx.doi.org/10.1186/scrt413] [PMID: 25127410]
[176]
Johnson DE. The ubiquitin-proteasome system: opportunities for therapeutic intervention in solid tumors. Endocr Relat Cancer 2015; 22(1): T1-T17.
[http://dx.doi.org/10.1530/ERC-14-0005] [PMID: 24659480]
[177]
Lee CS, Lee C, Hu T, et al. Loss of nuclear factor E2-related factor 1 in the brain leads to dysregulation of proteasome gene expression and neurodegeneration. Proc Natl Acad Sci USA 2011; 108(20): 8408-13.
[http://dx.doi.org/10.1073/pnas.1019209108] [PMID: 21536885]
[178]
Vriend J, Marzban H. The ubiquitin-proteasome system and chromosome 17 in cerebellar granule cells and medulloblastoma subgroups. Cell Mol Life Sci 2017; 74(3): 449-67.
[http://dx.doi.org/10.1007/s00018-016-2354-3] [PMID: 27592301]
[179]
Wang D, Ma L, Wang B, Liu J, Wei W. E3 ubiquitin ligases in cancer and implications for therapies. Cancer Metastasis Rev 2017; 36(4): 683-702.
[http://dx.doi.org/10.1007/s10555-017-9703-z] [PMID: 29043469]
[180]
Wang Z, Inuzuka H, Zhong J, et al. Tumor suppressor functions of FBW7 in cancer development and progression. FEBS Lett 2012; 586(10): 1409-18.
[http://dx.doi.org/10.1016/j.febslet.2012.03.017] [PMID: 22673505]
[181]
Soave CL, Guerin T, Liu J, Dou QP. Targeting the ubiquitin-proteasome system for cancer treatment: discovering novel inhibitors from nature and drug repurposing. Cancer Metastasis Rev 2017; 36(4): 717-36.
[http://dx.doi.org/10.1007/s10555-017-9705-x] [PMID: 29047025]
[182]
Shen Q, Hu T, Bao M, et al. Tobacco RING E3 Ligase NtRFP1 Mediates Ubiquitination and Proteasomal Degradation of a Geminivirus- Encoded βC1. Mol Plant 2016; 9(6): 911-25.
[http://dx.doi.org/10.1016/j.molp.2016.03.008] [PMID: 27018391]
[183]
Ceccarelli DF, Tang X, Pelletier B, et al. An allosteric inhibitor of the human Cdc34 ubiquitin-conjugating enzyme. Cell 2011; 145(7): 1075-87.
[http://dx.doi.org/10.1016/j.cell.2011.05.039] [PMID: 21683433]
[184]
Mansour MA. Ubiquitination: Friend and foe in cancer. Int J Biochem Cell Biol 2018; 101: 80-93.
[http://dx.doi.org/10.1016/j.biocel.2018.06.001] [PMID: 29864543]
[185]
Katz C, Low-Calle AM, Choe JH, et al. Wild-type and cancer-related p53 proteins are preferentially degraded by MDM2 as dimers rather than tetramers. Genes Dev 2018; 32(5-6): 430-47.
[http://dx.doi.org/10.1101/gad.304071.117] [PMID: 29549180]
[186]
Xie X, Wang X, Liao W, et al. MYL6B, a myosin light chain, promotes MDM2-mediated p53 degradation and drives HCC development. J Exp Clin Cancer Res 2018; 37(1): 28.
[http://dx.doi.org/10.1186/s13046-018-0693-7] [PMID: 29439719]
[187]
Wu H, Leng RP. MDM2 mediates p73 ubiquitination: a new molecular mechanism for suppression of p73 function. Oncotarget 2015; 6(25): 21479-92.
[http://dx.doi.org/10.18632/oncotarget.4086] [PMID: 26025930]
[188]
Zheng T, Yin D, Lu Z, et al. Nutlin-3 overcomes arsenic trioxide resistance and tumor metastasis mediated by mutant p53 in Hepatocellular Carcinoma. Mol Cancer 2014; 13: 133.
[http://dx.doi.org/10.1186/1476-4598-13-133] [PMID: 24884809]
[189]
Zhi X, Chen C. WWP1: a versatile ubiquitin E3 ligase in signaling and diseases. Cell Mol Life Sci 2012; 69(9): 1425-34.
[http://dx.doi.org/10.1007/s00018-011-0871-7] [PMID: 22051607]
[190]
Richardson PG, Zimmerman TM, Hofmeister CC, et al. Phase 1 study of marizomib in relapsed or relapsed and refractory multiple myeloma: NPI-0052-101 Part 1. Blood 2016; 127(22): 2693-700.
[http://dx.doi.org/10.1182/blood-2015-12-686378] [PMID: 27009059]
[191]
Levin N, Spencer A, Harrison SJ, et al. Marizomib irreversibly inhibits proteasome to overcome compensatory hyperactivation in multiple myeloma and solid tumour patients. Br J Haematol 2016; 174(5): 711-20.
[http://dx.doi.org/10.1111/bjh.14113] [PMID: 27161872]
[192]
Spencer A, Harrison S, Zonder J, et al. A phase 1 clinical trial evaluating marizomib, pomalidomide and low-dose dexamethasone in relapsed and refractory multiple myeloma (NPI-0052-107): final study results. Br J Haematol 2018; 180(1): 41-51.
[http://dx.doi.org/10.1111/bjh.14987] [PMID: 29076150]
[193]
Harrison SJ, Mainwaring P, Price T, et al. Phase I Clinical Trial of Marizomib (NPI-0052) in Patients with Advanced Malignancies Including Multiple Myeloma: Study NPI-0052-102 Final Results. Clin Cancer Res 2016; 22(18): 4559-66.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-2616] [PMID: 27117181]
[194]
Vogl DT, Martin TG, Vij R, et al. Phase I/II study of the novel proteasome inhibitor delanzomib (CEP-18770) for relapsed and refractory multiple myeloma. Leuk Lymphoma 2017; 58(8): 1872-9.
[http://dx.doi.org/10.1080/10428194.2016.1263842] [PMID: 28140719]
[195]
Infante JR, Mendelson DS. , III HAB, et al. A first-in-human doseescalation study of the oral proteasome inhibitor oprozomib in patients with advanced solid tumors. Invest New Drugs 34: 216- 24. 2016.
[196]
Yoshida GJ, Saya H. Therapeutic strategies targeting cancer stem cells. Cancer Sci 2016; 107(1): 5-11.
[http://dx.doi.org/10.1111/cas.12817] [PMID: 26362755]
[197]
Pan Y, Shu X, Sun L, et al. miR-196a-5p modulates gastric cancer stem cell characteristics by targeting Smad4. Int J Oncol 2017; 50(6): 1965-76.
[http://dx.doi.org/10.3892/ijo.2017.3965] [PMID: 28440445]
[198]
Ren F, Sheng WQ, Du X. CD133: a cancer stem cells marker, is used in colorectal cancers. World J Gastroenterol 2013; 19(17): 2603-11.
[http://dx.doi.org/10.3748/wjg.v19.i17.2603] [PMID: 23674867]
[199]
Zhou J, Li P, Xue X, et al. Salinomycin induces apoptosis in cisplatin-resistant colorectal cancer cells by accumulation of reactive oxygen species. Toxicol Lett 2013; 222(2): 139-45.
[http://dx.doi.org/10.1016/j.toxlet.2013.07.022] [PMID: 23916687]
[200]
Katoh M. Canonical and non-canonical WNT signaling in cancer stem cells and their niches: Cellular heterogeneity, omics reprogramming, targeted therapy and tumor plasticity.(Review). Int J Oncol 2017; 51(5): 1357-69. [Review].
[http://dx.doi.org/10.3892/ijo.2017.4129] [PMID: 29048660]
[201]
Domingo-Domenech J, Vidal SJ, Rodriguez-Bravo V, et al. Suppression of acquired docetaxel resistance in prostate cancer through depletion of notch- and hedgehog-dependent tumor-initiating cells. Cancer Cell 2012; 22(3): 373-88.
[http://dx.doi.org/10.1016/j.ccr.2012.07.016] [PMID: 22975379]
[202]
Chakraborty C, Chin KY, Das S. miRNA-regulated cancer stem cells: understanding the property and the role of miRNA in carcinogenesis. Tumour Biol 2016; 37(10): 13039-48.
[http://dx.doi.org/10.1007/s13277-016-5156-1] [PMID: 27468722]
[203]
Plaks V, Kong N, Werb Z. The cancer stem cell niche: how essential is the niche in regulating stemness of tumor cells? Cell Stem Cell 2015; 16(3): 225-38.
[http://dx.doi.org/10.1016/j.stem.2015.02.015] [PMID: 25748930]
[204]
Zakaria N, Satar NA, Abu Halim NH, et al. Targeting lung cancer stem cells: Research and clinical impacts. Front Oncol 2017; 7: 80.
[http://dx.doi.org/10.3389/fonc.2017.00080] [PMID: 28529925]
[205]
Flaveny CA, Griffett K. El-Gendy Bel-D, et al. Broad Anti-tumor Activity of a Small Molecule that Selectively Targets the Warburg Effect and Lipogenesis. Cancer Cell 2015; 28(1): 42-56.
[http://dx.doi.org/10.1016/j.ccell.2015.05.007] [PMID: 26120082]
[206]
Zhong X, Tian S, Zhang X, et al. CUE domain-containing protein 2 promotes the Warburg effect and tumorigenesis. EMBO Rep 2017; 18(5): 809-25.
[http://dx.doi.org/10.15252/embr.201643617] [PMID: 28325773]
[207]
Szarek E, Ball ER, Imperiale A, et al. Carney triad, SDH-deficient tumors, and Sdhb+/- mice share abnormal mitochondria. Endocr Relat Cancer 2015; 22(3): 345-52.
[http://dx.doi.org/10.1530/ERC-15-0069] [PMID: 25808178]
[208]
Chourasia AH, Tracy K, Frankenberger C, et al. Mitophagy defects arising from BNip3 loss promote mammary tumor progression to metastasis. EMBO Rep 2015; 16(9): 1145-63.
[http://dx.doi.org/10.15252/embr.201540759] [PMID: 26232272]
[209]
Seo JH, Agarwal E, Bryant KG, et al. Syntaphilin Ubiquitination Regulates Mitochondrial Dynamics and Tumor Cell Movements. Cancer Res 2018; 78(15): 4215-28.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-0595] [PMID: 29898993]
[210]
Li C, Zhang Y, Cheng X, et al. PINK1 and PARK2 suppress pancreatic tumorigenesis through control of mitochondrial iron-mediated immunometabolism Dev Cell 441-55 2018.;
[http://dx.doi.org/10.1016/j.devcel.2018.07.012]
[211]
Zhu P, Liu Y, Zhang F, et al. Human elongation factor 4 regulates cancer bioenergetics by acting as a mitochondrial translation switch. Cancer Res 2018; 78(11): 2813-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2059] [PMID: 29572227]
[212]
Zhang X, Zhao H, Li Y, et al. The role of YAP/TAZ activity in cancer metabolic reprogramming. Mol Cancer 2018; 17(1): 134.
[http://dx.doi.org/10.1186/s12943-018-0882-1] [PMID: 30176928]
[213]
Kung C, Hixon J, Choe S, et al. Small molecule activation of PKM2 in cancer cells induces serine auxotrophy. Chem Biol 2012; 19(9): 1187-98.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.021] [PMID: 22999886]
[214]
Anastasiou D, Yu Y, Israelsen WJ, et al. Pyruvate kinase M2 activators promote tetramer formation and suppress tumorigenesis. Nat Chem Biol 2012; 8(10): 839-47.
[http://dx.doi.org/10.1038/nchembio.1060] [PMID: 22922757]
[215]
Parnell KM, Foulks JM, Nix RN, et al. Pharmacologic activation of PKM2 slows lung tumor xenograft growth. Mol Cancer Ther 2013; 12(8): 1453-60.
[http://dx.doi.org/10.1158/1535-7163.MCT-13-0026] [PMID: 23720766]
[216]
Zhang Y, Yu G, Chu H, et al. Macrophage-Associated PGK1 Phosphorylation Promotes Aerobic Glycolysis and Tumorigenesis Mol Cell 201-15 2018.;
[http://dx.doi.org/10.1016/j.molcel.2018.06.023]
[217]
Li L, Liang Y, Kang L, et al. Transcriptional Regulation of the Warburg Effect in Cancer by SIX1Cancer Cell 33: 368-85 2018.;
[http://dx.doi.org/10.1016/j.ccell.2018.01.010]
[218]
Carracedo A, Cantley LC, Pandolfi PP. Cancer metabolism: fatty acid oxidation in the limelight. Nat Rev Cancer 2013; 13(4): 227-32.
[http://dx.doi.org/10.1038/nrc3483] [PMID: 23446547]
[219]
O’Neill LA, Kishton RJ, Rathmell J. A guide to immunometabolism for immunologists. Nat Rev Immunol 2016; 16(9): 553-65.
[http://dx.doi.org/10.1038/nri.2016.70] [PMID: 27396447]
[220]
Beloribi-Djefaflia S, Vasseur S, Guillaumond F. Lipid metabolic reprogramming in cancer cells Oncogenesis 2016; 5e189
[http://dx.doi.org/10.1038/oncsis.2015.49] [PMID: 26807644]
[221]
Nieman KM, Romero IL, Van Houten B, Lengyel E. Adipose tissue and adipocytes support tumorigenesis and metastasis. Biochim Biophys Acta 2013; 1831(10): 1533-41.
[http://dx.doi.org/10.1016/j.bbalip.2013.02.010] [PMID: 23500888]
[222]
Netea-Maier RT, Smit JWA, Netea MG. Metabolic changes in tumor cells and tumor-associated macrophages: A mutual relationship. Cancer Lett 2018; 413: 102-9.
[http://dx.doi.org/10.1016/j.canlet.2017.10.037] [PMID: 29111350]
[223]
Droege KD, Keithly ME, Sanders CR, Armstrong RN, Thompson MK. Structural Dynamics of 15-Lipoxygenase-2 via Hydrogen-Deuterium Exchange. Biochemistry 2017; 56(38): 5065-74.
[http://dx.doi.org/10.1021/acs.biochem.7b00559] [PMID: 28809482]
[224]
Calder PC. Omega-3 fatty acids and inflammatory processes. Nutrients 2010; 2(3): 355-74.
[http://dx.doi.org/10.3390/nu2030355] [PMID: 22254027]
[225]
Shoeb M, Ramana KV. Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. Free Radic Biol Med 2012; 52(1): 182-90.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.444] [PMID: 22067901]
[226]
Bruno F, Spaziano G, Liparulo A, et al. Recent advances in the search for novel 5-lipoxygenase inhibitors for the treatment of asthma. Eur J Med Chem 2018; 153: 65-72.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.020] [PMID: 29133059]
[227]
Yui K, Imataka G, Nakamura H, Ohara N, Naito Y. Eicosanoids Derived From Arachidonic Acid and Their Family Prostaglandins and Cyclooxygenase in Psychiatric Disorders. Curr Neuropharmacol 2015; 13(6): 776-85.
[http://dx.doi.org/10.2174/1570159X13666151102103305] [PMID: 26521945]
[228]
Yarla NS, Bishayee A, Sethi G, et al. Targeting arachidonic acid pathway by natural products for cancer prevention and therapy. Semin Cancer Biol 2016; 40-41: 48-81.
[http://dx.doi.org/10.1016/j.semcancer.2016.02.001] [PMID: 26853158]
[229]
Ding X-Z, Talamonti MS, Bell RH Jr, Adrian TE. A novel anti-pancreatic cancer agent, LY293111. Anticancer Drugs 2005; 16(5): 467-73.
[http://dx.doi.org/10.1097/00001813-200506000-00001] [PMID: 15846111]
[230]
Baetz T, Eisenhauer E, Siu L, et al. A phase I study of oral LY293111 given daily in combination with irinotecan in patients with solid tumours. Invest New Drugs 2007; 25(3): 217-25.
[http://dx.doi.org/10.1007/s10637-006-9021-8] [PMID: 17146732]
[231]
Wang D, Dubois RN. Eicosanoids and cancer. Nat Rev Cancer 2010; 10(3): 181-93.
[http://dx.doi.org/10.1038/nrc2809] [PMID: 20168319]
[232]
Yarla NS, Bishayee A, Vadlakonda L, et al. Phospholipase A2 Isoforms as Novel Targets for Prevention and Treatment of Inflammatory and Oncologic Diseases. Curr Drug Targets 2016; 17(16): 1940-62.
[http://dx.doi.org/10.2174/1389450116666150727122501] [PMID: 26212262]
[233]
Allison SE, Petrovic N, Mackenzie PI, Murray M. Pro-migratory actions of the prostacyclin receptor in human breast cancer cells that over-express cyclooxygenase-2. Biochem Pharmacol 2015; 96(4): 306-14.
[PMID: 26067757]
[234]
Li C, Wang J, Wang Q, et al. Qishen granules inhibit myocardial inflammation injury through regulating arachidonic acid metabolism. Sci Rep 2016; 6: 36949.
[http://dx.doi.org/10.1038/srep36949] [PMID: 27833128]
[235]
Zhao Y, Cui L, Pan Y, et al. Berberine inhibits the chemotherapy-induced repopulation by suppressing the arachidonic acid metabolic pathway and phosphorylation of FAK in ovarian cancer. Cell Prolif 2017; 50(6): 50.
[http://dx.doi.org/10.1111/cpr.12393] [PMID: 28990249]
[236]
Li J, Li O, Kan M, et al. Berberine induces apoptosis by suppressing the arachidonic acid metabolic pathway in hepatocellular carcinoma. Mol Med Rep 2015; 12(3): 4572-7.
[http://dx.doi.org/10.3892/mmr.2015.3926] [PMID: 26081696]
[237]
Storniolo CE, Moreno JJ. Resveratrol analogs with antioxidant activity inhibit intestinal epithelial cancer Caco-2 cell growth by modulating arachidonic acid cascade. J Agric Food Chem 2018.
[PMID: 30575383]
[238]
Deng R, Zhang K, Li J. Isothermal Amplification for MicroRNA Detection: From the Test Tube to the Cell. Acc Chem Res 2017; 50(4): 1059-68.
[http://dx.doi.org/10.1021/acs.accounts.7b00040] [PMID: 28355077]
[239]
Shenouda SK, Alahari SK. MicroRNA function in cancer: oncogene or a tumor suppressor? Cancer Metastasis Rev 2009; 28(3-4): 369-78.
[http://dx.doi.org/10.1007/s10555-009-9188-5] [PMID: 20012925]
[240]
Park K, Tan E-H, O’Byrne K. Afatinib versus gefitinib as fi rst-line treatment of patients with EGFR mutation-positive non-small-cell lung cancer (LUX-Lung 7): a phase 2B, open-label, randomised. Lancet Oncol 577-89. 2016.
[241]
Soria JC, Ohe Y, Vansteenkiste J, et al. Osimertinib in Untreated EGFR-Mutated Advanced Non-Small-Cell Lung Cancer. N Engl J Med 2018; 378(2): 113-25.
[http://dx.doi.org/10.1056/NEJMoa1713137] [PMID: 29151359]
[242]
Thakur MK, Wozniak AJ. Spotlight on necitumumab in the treatment of non-small-cell lung carcinoma. Lung Cancer (Auckl) 2017; 8: 13-9.
[http://dx.doi.org/10.2147/LCTT.S104207] [PMID: 28293124]
[243]
Sohal DPS, Mangu PB, Khorana AA, et al. Metastatic Pancreatic Cancer: American Society of Clinical Oncology Clinical Practice Guideline. J Clin Oncol 2016; 34(23): 2784-96.
[http://dx.doi.org/10.1200/JCO.2016.67.1412] [PMID: 27247222]
[244]
Azambuja Ed, Holmes AP, Piccart-Gebhart M. Lapatinib with trastuzumab for HER2-positive early breast cancer (NeoALTTO): survival outcomes of a randomised, open-label, multicentre, phase 3 trial and their association with pathological complete response. Lancet Oncology 15: 1137-46.2014;
[245]
Price TJ, Peeters M, Kim TW, et al. Panitumumab versus cetuximab in patients with chemotherapy-refractory wild-type KRAS exon 2 metastatic colorectal cancer (ASPECCT): a randomised, multicentre, open-label, non-inferiority phase 3 study. Lancet Oncol 2014; 15(6): 569-79.
[PMID: 24739896]
[246]
Cortes JE, Kantarjian H, Shah NP, et al. Ponatinib in refractory Philadelphia chromosome-positive leukemias. N Engl J Med 2012; 367(22): 2075-88.
[http://dx.doi.org/10.1056/NEJMoa1205127] [PMID: 23190221]
[247]
Arrieta O, Zatarain-Barrón ZL, Cardona AF, Carmona A, Lopez-Mejia M. Ramucirumab in the treatment of non-small cell lung cancer. Expert Opin Drug Saf 2017; 16(5): 637-44.
[http://dx.doi.org/10.1080/14740338.2017.1313226] [PMID: 28395526]
[248]
Rosen LS, Jacobs IA, Burkes RL. Bevacizumab in Colorectal Cancer: Current Role in Treatment and the Potential of Biosimilars. Target Oncol 2017; 12(5): 599-610.
[http://dx.doi.org/10.1007/s11523-017-0518-1] [PMID: 28801849]
[249]
Cortes JE, Kim DW, Pinilla-Ibarz J, et al. A phase 2 trial of ponatinib in Philadelphia chromosome-positive leukemias. N Engl J Med 2013; 369(19): 1783-96.
[http://dx.doi.org/10.1056/NEJMoa1306494] [PMID: 24180494]
[250]
Bikas A, Vachhani S, Jensen K, Vasko V, Burman KD. Targeted therapies in thyroid cancer: an extensive review of the literature. Expert Rev Clin Pharmacol 2016; 9(10): 1299-313.
[http://dx.doi.org/10.1080/17512433.2016.1204230] [PMID: 27367142]
[251]
Zarrabi K, Fang C, Wu S. New treatment options for metastatic renal cell carcinoma with prior anti-angiogenesis therapy. J Hematol Oncol 2017; 10(1): 38.
[http://dx.doi.org/10.1186/s13045-016-0374-y] [PMID: 28153029]
[252]
Ferraro D, Zalcberg J. Regorafenib in gastrointestinal stromal tumors: clinical evidence and place in therapy. Ther Adv Med Oncol 2014; 6(5): 222-8.
[http://dx.doi.org/10.1177/1758834014544892] [PMID: 25342989]
[253]
Mulet-Margalef N, Garcia-Del-Muro X. Sunitinib in the treatment of gastrointestinal stromal tumor: patient selection and perspectives. OncoTargets Ther 2016; 9: 7573-82.
[http://dx.doi.org/10.2147/OTT.S101385] [PMID: 28008275]
[254]
Graaf WTAvd, Blay J-Y, Chawla SP. Pazopanib for metastatic soft-tissue sarcoma (PALETTE): a randomised, double-blind, placebo- controlled phase 3 trial. Lancet 379: 1879-86. 2012.
[255]
Grothey A, Van Cutsem E, Sobrero A, et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): an international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013; 381(9863): 303-12.
[http://dx.doi.org/10.1016/S0140-6736(12)61900-X] [PMID: 23177514]
[256]
Hochhaus A, Larson RA, Guilhot F, et al. Long-Term Outcomes of Imatinib Treatment for Chronic Myeloid Leukemia. N Engl J Med 2017; 376(10): 917-27.
[http://dx.doi.org/10.1056/NEJMoa1609324] [PMID: 28273028]
[257]
Pitoia F, Jerkovich F. Selective use of sorafenib in the treatment of thyroid cancer. Drug Des Devel Ther 2016; 10: 1119-31.
[http://dx.doi.org/10.2147/DDDT.S82972] [PMID: 27042004]
[258]
Yang Q, Modi P, Newcomb T, Quéva C, Gandhi V. Idelalisib: First-in-Class PI3K Delta Inhibitor for the Treatment of Chronic Lymphocytic Leukemia, Small Lymphocytic Leukemia, and Follicular Lymphoma. Clin Cancer Res 2015; 21(7): 1537-42.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-2034] [PMID: 25670221]
[259]
Blair HA. Duvelisib: First Global Approval. Drugs 2018; 78(17): 1847-53.
[http://dx.doi.org/10.1007/s40265-018-1013-4] [PMID: 30430368]
[260]
Dreyling M, Santoro A, Mollica L, et al. Phosphatidylinositol 3- Kinase Inhibition by Copanlisib in Relapsed or Refractory Indolent Lymphoma. J Clin Oncol 2017; 35(35): 3898-905.
[http://dx.doi.org/10.1200/JCO.2017.75.4648] [PMID: 28976790]
[261]
Dorris JR III, Jones S. Everolimus in Breast Cancer: The Role of the Pharmacist. Ann Pharmacother 2014; 48(9): 1194-201.
[http://dx.doi.org/10.1177/1060028014542415] [PMID: 25007922]
[262]
Zanardi E, Verzoni E, Grassi P, et al. Clinical experience with temsirolimus in the treatment of advanced renal cell carcinoma. Ther Adv Urol 2015; 7(3): 152-61.
[http://dx.doi.org/10.1177/1756287215574457] [PMID: 26161146]
[263]
Landi L, Tiseo M, Chiari R, et al. Activity of the EGFR-HER2 dual inhibitor afatinib in EGFR-mutant lung cancer patients with acquired resistance to reversible EGFR tyrosine kinase inhibitors. Clin Lung Cancer 2014; 15(6): 411-417.e4.
[http://dx.doi.org/10.1016/j.cllc.2014.07.002] [PMID: 25242668]
[264]
Gunturu KS, Woo Y, Beaubier N, Remotti HE, Saif MW. Gastric cancer and trastuzumab: first biologic therapy in gastric cancer. Ther Adv Med Oncol 2013; 5(2): 143-51.
[http://dx.doi.org/10.1177/1758834012469429] [PMID: 23450234]
[265]
Chan A. Neratinib in HER-2-positive breast cancer: results to date and clinical usefulness. Ther Adv Med Oncol 2016; 8(5): 339-50.
[http://dx.doi.org/10.1177/1758834016656494] [PMID: 27583026]
[266]
Lugowska I, Koseła-Paterczyk H, Kozak K, Rutkowski P. Trametinib: a MEK inhibitor for management of metastatic melanoma. OncoTargets Ther 2015; 8: 2251-9.
[PMID: 26347206]
[267]
Boespflug A, Thomas L. Cobimetinib and vemurafenib for the treatment of melanoma. Expert Opin Pharmacother 2016; 17(7): 1005-11.
[http://dx.doi.org/10.1517/14656566.2016.1168806] [PMID: 26999478]
[268]
Rutkowski P, Van Glabbeke M, Rankin CJ, et al. Imatinib mesylate in advanced dermatofibrosarcoma protuberans: pooled analysis of two phase II clinical trials. J Clin Oncol 2010; 28(10): 1772-9.
[http://dx.doi.org/10.1200/JCO.2009.25.7899] [PMID: 20194851]
[269]
Abdelaziz A, Vaishampayan U. Cabozantinib for the treatment of kidney cancer. Expert Rev Anticancer Ther 2017; 17(7): 577-84.
[http://dx.doi.org/10.1080/14737140.2017.1344553] [PMID: 28633552]
[270]
Mutlu H, Büyükçelik A, Akça Z, Kaya N. Sunitinib-induced reversible purpuric rash in a patient with gastrointestinal stromal tumor. J Oncol Pharm Pract 2014; 20(4): 298-301.
[http://dx.doi.org/10.1177/1078155213495286] [PMID: 23929730]
[271]
Sullivan I, Planchard D. ALK inhibitors in non-small cell lung cancer: the latest evidence and developments. Ther Adv Med Oncol 2016; 8(1): 32-47.
[http://dx.doi.org/10.1177/1758834015617355] [PMID: 26753004]
[272]
Kallam A, Armitage JO. Venetoclax in chronic lymphocytic leukaemia: a possible cure? Lancet Oncol 2018; 19(9): 1143-4.
[PMID: 30115595]
[273]
Banzi M, De Blasio S, Lallas A, et al. Dabrafenib: a new opportunity for the treatment of BRAF V600-positive melanoma. OncoTargets Ther 2016; 9: 2725-33.
[PMID: 27226731]
[274]
Patel A, Sun W. Ziv-aflibercept in metastatic colorectal cancer. Biologics 2014; 8: 13-25.
[PMID: 24368879]
[275]
Gover-Proaktor A, Granot G, Pasmanik-Chor M, et al. Bosutinib, dasatinib, imatinib, nilotinib, and ponatinib differentially affect the vascular molecular pathways and functionality of human endothelial cells. Leuk Lymphoma 2018; 1-11.
[PMID: 29741440]
[276]
Kapoor P, Ansell SM. Acalabrutinib in mantle cell lymphoma. Lancet 2018; 391(10121): 633-4.
[http://dx.doi.org/10.1016/S0140-6736(17)33256-7] [PMID: 29241978]
[277]
Verstovsek S, Mesa RA, Gotlib J, et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N Engl J Med 2012; 366(9): 799-807.
[http://dx.doi.org/10.1056/NEJMoa1110557] [PMID: 22375971]
[278]
Aoki D, Chiyoda T. PARP inhibitors and quality of life in ovarian cancer. Lancet Oncol 2018; 19(8): 1012-4.
[http://dx.doi.org/10.1016/S1470-2045(18)30435-2] [PMID: 30026001]
[279]
Marcus R, Davies A, Ando K, et al. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma. N Engl J Med 2017; 377(14): 1331-44.
[http://dx.doi.org/10.1056/NEJMoa1614598] [PMID: 28976863]
[280]
James DF, Kipps TJ. Rituximab in chronic lymphocytic leukemia. Adv Ther 2011; 28(7): 534-54.
[http://dx.doi.org/10.1007/s12325-011-0032-2] [PMID: 21725721]
[281]
Sandhu S, Mulligan SP. Ofatumumab and its role as immunotherapy in chronic lymphocytic leukemia. Haematologica 2015; 100(4): 411-4.
[http://dx.doi.org/10.3324/haematol.2015.124107] [PMID: 25828085]
[282]
Iagaru A, Mittra ES, Ganjoo K, Knox SJ, Goris ML. 131I-Tositumomab (Bexxar) vs. 90Y-Ibritumomab (Zevalin) therapy of low-grade refractory/relapsed non-Hodgkin lymphoma. Mol Imaging Biol 2010; 12(2): 198-203.
[http://dx.doi.org/10.1007/s11307-009-0245-9] [PMID: 19543946]
[283]
Merli M, Ferrario A, Maffioli M, et al. New uses for brentuximab vedotin and novel antibody drug conjugates in lymphoma. Expert Rev Hematol 2016; 9(8): 767-80.
[http://dx.doi.org/10.1080/17474086.2016.1205949] [PMID: 27416486]
[284]
Portell CA, Advani AS. Antibody therapy for acute lymphoblastic leukemia. Curr Hematol Malig Rep 2012; 7(2): 153-9.
[http://dx.doi.org/10.1007/s11899-012-0120-7] [PMID: 22422550]
[285]
Touzeau C, Moreau P. Daratumumab for the treatment of multiple myeloma. Expert Opin Biol Ther 2017; 17(7): 887-93.
[http://dx.doi.org/10.1080/14712598.2017.1322578] [PMID: 28434255]
[286]
Hellmann MD, Ciuleanu TE, Pluzanski A, et al. Nivolumab plus Ipilimumab in Lung Cancer with a High Tumor Mutational Burden. N Engl J Med 2018; 378(22): 2093-104.
[http://dx.doi.org/10.1056/NEJMoa1801946] [PMID: 29658845]
[287]
Goldberg SB, Gettinger SN, Mahajan A, et al. A Phase II trial of pembrolizumab for patients with melanoma or non-small cell lung cancer and untreated brain metastases. Lancet Oncol 2016; 17: 976-83.
[http://dx.doi.org/10.1016/S1470-2045(16)30053-5] [PMID: 27267608]
[288]
Migden MR, Rischin D, Schmults CD, et al. PD-1 blockade with cemiplimab in advanced cutaneous squamous-cell carcinoma. N Engl J Med 2018; 379(4): 341-51.
[http://dx.doi.org/10.1056/NEJMoa1805131] [PMID: 29863979]
[289]
Socinski MA, Jotte RM, Cappuzzo F, et al. Atezolizumab for first-line treatment of metastatic nonsquamous NSCLC. N Engl J Med 2018; 378(24): 2288-301.
[http://dx.doi.org/10.1056/NEJMoa1716948] [PMID: 29863955]
[290]
Antonia SJ, Villegas A, Daniel D, et al. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med 2017; 377(20): 1919-29.
[http://dx.doi.org/10.1056/NEJMoa1709937] [PMID: 28885881]
[291]
Mezquita L, Planchard D. Durvalumab for the treatment of non-small cell lung cancer. Expert Rev Respir Med 2018; 12(8): 627-39.
[http://dx.doi.org/10.1080/17476348.2018.1494575] [PMID: 29958099]
[292]
Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 2010; 363(8): 711-23.
[http://dx.doi.org/10.1056/NEJMoa1003466] [PMID: 20525992]
[293]
Calabrò L, Morra A, Fonsatti E, et al. Tremelimumab for patients with chemotherapy-resistant advanced malignant mesothelioma: an open-label, single-arm, phase 2 trial. Lancet Oncol 2013; 14(11): 1104-11.
[http://dx.doi.org/10.1016/S1470-2045(13)70381-4] [PMID: 24035405]
[294]
Laderian B, Fojo T. CDK4/6 Inhibition as a therapeutic strategy in breast cancer: palbociclib, ribociclib, and abemaciclib. Semin Oncol 2017; 44(6): 395-403.
[http://dx.doi.org/10.1053/j.seminoncol.2018.03.006] [PMID: 29935901]
[295]
Neri P, Bahlis NJ, Lonial S. Panobinostat for the treatment of multiple myeloma. Expert Opin Investig Drugs 2012; 21(5): 733-47.
[http://dx.doi.org/10.1517/13543784.2012.668883] [PMID: 22404247]
[296]
Moskowitz AJ, Horwitz SM. Targeting histone deacetylases in T-cell lymphoma. Leuk Lymphoma 2017; 58(6): 1306-19.
[http://dx.doi.org/10.1080/10428194.2016.1247956] [PMID: 27813438]
[297]
Yazbeck V, Shafer D, Perkins EB, et al. A phase ii trial of bortezomib and vorinostat in mantle cell lymphoma and diffuse large b-cell lymphoma. Clin Lymphoma Myeloma Leuk 2018; 18(9): 569-75.
[298]
Jelinek T, Kryukova E, Kufova Z, Kryukov F, Hajek R. Proteasome inhibitors in AL amyloidosis: focus on mechanism of action and clinical activity. Hematol Oncol 2017; 35(4): 408-19.
[http://dx.doi.org/10.1002/hon.2351] [PMID: 27647123]
[299]
Xia X, Li Y, Wang W, et al. MicroRNA-1908 functions as a glioblastoma oncogene by suppressing PTEN tumor suppressor pathway. Mol Cancer 2015; 14: 154.
[http://dx.doi.org/10.1186/s12943-015-0423-0] [PMID: 26265437]
[300]
Jiang M, Zhou LY, Xu N, An Q. Down-regulation of miR-500 and miR-628 suppress non-small cell lung cancer proliferation, migration and invasion by targeting ING1. Biomed Pharmacother 2018; 108: 1628-39.
[http://dx.doi.org/10.1016/j.biopha.2018.09.145] [PMID: 30372865]
[301]
Floros KV, Lochmann TL, Hu B, et al. Coamplification of miR-4728 protects HER2-amplified breast cancers from targeted therapy. Proc Natl Acad Sci USA 2018; 115(11): E2594-603.
[http://dx.doi.org/10.1073/pnas.1717820115] [PMID: 29476008]
[302]
Bao L, Zhang M, Han S, et al. MicroRNA-500a promotes the progression of hepatocellular carcinoma by post-transcriptionally targeting BID. Cell Physiol Biochem 2018; 47(5): 2046-55.
[http://dx.doi.org/10.1159/000491472] [PMID: 29969781]
[303]
Guanen Q, Junjie S, Baolin W, et al. MiR-214 promotes cell meastasis and inhibites apoptosis of esophageal squamous cell carcinoma via PI3K/AKT/mTOR signaling pathway. Biomed Pharmacother 2018; 105: 350-61.
[http://dx.doi.org/10.1016/j.biopha.2018.05.149] [PMID: 29864623]
[304]
Sun GL, Li Z, Wang WZ, et al. miR-324-3p promotes gastric cancer development by activating Smad4-mediated Wnt/beta-catenin signaling pathway. J Gastroenterol 2018; 53(6): 725-39.
[http://dx.doi.org/10.1007/s00535-017-1408-0] [PMID: 29103082]
[305]
Ding J, Yeh CR, Sun Y, et al. Estrogen receptor β promotes renal cell carcinoma progression via regulating LncRNA HOTAIR-miR-138/200c/204/217 associated CeRNA network. Oncogene 2018; 37(37): 5037-53.
[http://dx.doi.org/10.1038/s41388-018-0175-6] [PMID: 29789714]
[306]
Shelton PM, Duran A, Nakanishi Y, et al. The Secretion of miR-200s by a PKCζ/ADAR2 Signaling Axis Promotes Liver Metastasis in Colorectal Cancer. Cell Rep 2018; 23(4): 1178-91.
[http://dx.doi.org/10.1016/j.celrep.2018.03.118] [PMID: 29694894]
[307]
Yuan Y, Niu F, Nolte IM, et al. MicroRNA high throughput loss-of-function screening reveals an oncogenic role for miR-21-5p in hodgkin lymphoma. Cell Physiol Biochem 2018; 49(1): 144-59.
[http://dx.doi.org/10.1159/000492850] [PMID: 30184526]
[308]
Croset M, Pantano F, Kan CWS, et al. miRNA-30 family members inhibit breast cancer invasion, osteomimicry, and bone destruction by directly targeting multiple bone metastasis-associated genes. Cancer Res 2018; 78(18): 5259-73.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-3058] [PMID: 30042152]
[309]
Yan S, Tang Z, Chen K, et al. Long noncoding RNA MIR31HG inhibits hepatocellular carcinoma proliferation and metastasis by sponging microRNA-575 to modulate ST7L expression. J Exp Clin Cancer Res 2018; 37(1): 214.
[http://dx.doi.org/10.1186/s13046-018-0853-9] [PMID: 30176933]
[310]
Wang Z, Zhao Z, Yang Y, et al. MiR-99b-5p and miR-203a-3p function as tumor suppressors by targeting IGF-1R in gastric cancer. Sci Rep 2018; 8(1): 10119.
[http://dx.doi.org/10.1038/s41598-018-27583-y] [PMID: 29973668]
[311]
Yang F, Wei K, Qin Z, et al. MiR-598 suppresses invasion and migration by negative regulation of Derlin-1 and epithelial-mesenchymal transition in non-small cell lung cancer. Cell Physiol Biochem 2018; 47(1): 245-56.
[http://dx.doi.org/10.1159/000489803] [PMID: 29768262]
[312]
He X, Chen SY, Yang Z, et al. miR-4317 suppresses non-small cell lung cancer (NSCLC) by targeting fibroblast growth factor 9 (FGF9) and cyclin D2 (CCND2). J Exp Clin Cancer Res 2018; 37(1): 230.
[http://dx.doi.org/10.1186/s13046-018-0882-4] [PMID: 30227870]
[313]
Meng L, Liu F, Ju Y, et al. Tumor suppressive miR-6775-3p inhibits ESCC progression through forming a positive feedback loop with p53 via MAGE-A family proteins. Cell Death Dis 2018; 9(11): 1057.
[http://dx.doi.org/10.1038/s41419-018-1119-3] [PMID: 30333480]
[314]
He Z, Yi J, Liu X, et al. MiR-143-3p functions as a tumor suppressor by regulating cell proliferation, invasion and epithelial-mesenchymal transition by targeting QKI-5 in esophageal squamous cell carcinoma. Mol Cancer 2016; 15(1): 51.
[http://dx.doi.org/10.1186/s12943-016-0533-3] [PMID: 27358073]
[315]
Wei DM, Dang YW, Feng ZB, et al. Biological Effect and Mechanism of the miR-23b-3p/ANXA2 Axis in Pancreatic Ductal Adenocarcinoma. Cell Physiol Biochem 2018; 50(3): 823-40.
[http://dx.doi.org/10.1159/000494468] [PMID: 30355917]
[316]
Zhang Q, Miao S, Han X, et al. MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting β-catenin and CDK2 and activating p21. Cell Death Dis 2018; 9(10): 960.
[http://dx.doi.org/10.1038/s41419-018-0986-y] [PMID: 30237499]
[317]
Li SM, Wu HL, Yu X, et al. The putative tumour suppressor miR-1-3p modulates prostate cancer cell aggressiveness by repressing E2F5 and PFTK1. J Exp Clin Cancer Res 2018; 37(1): 219.
[http://dx.doi.org/10.1186/s13046-018-0895-z] [PMID: 30185212]
[318]
Peres J, Kwesi-Maliepaard EM, Rambow F, Larue L, Prince S. The tumour suppressor, miR-137, inhibits malignant melanoma migration by targetting the TBX3 transcription factor. Cancer Lett 2017; 405: 111-9.
[http://dx.doi.org/10.1016/j.canlet.2017.07.018] [PMID: 28757416]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 20
ISSUE: 11
Year: 2019
Page: [1180 - 1202]
Pages: 23
DOI: 10.2174/1389450120666190402145325
Price: $58

Article Metrics

PDF: 27
HTML: 2
EPUB: 1
PRC: 1