An Improved Scatter Search Algorithm for Parameter Estimation in Large-Scale Kinetic Models of Biochemical Systems

Author(s): Muhammad Akmal Remli, Mohd Saberi Mohamad*, Safaai Deris, Richard Sinnott, Suhaimi Napis.

Journal Name: Current Proteomics

Volume 16 , Issue 5 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Mathematical models play a central role in facilitating researchers to better understand and comprehensively analyze various processes in biochemical systems. Their usage is beneficial in metabolic engineering as they help predict and improve desired products. However, one of the primary challenges in model building is parameter estimation. It is the process to find nearoptimal values of kinetic parameters which may culminate in the best fit of model prediction to experimental data.

Methods: This paper proposes an improved scatter search algorithm to address the challenging parameter estimation problem. The improved algorithm is based on hybridization of quasi opposition-based learning in enhanced scatter search (QOBLESS) method. The algorithm is tested using a large-scale metabolic model of Chinese Hamster Ovary (CHO) cells.

Results: The experimental result shows that the proposed algorithm performs better than other algorithms in terms of convergence speed and the minimum value of the objective function (loglikelihood). The estimated parameters from the experiment produce a better model by means of obtaining a reasonable good fit of model prediction to the experimental data.

Conclusion: The kinetic parameters’ value obtained from our work was able to result in a reasonable best fit of model prediction to the experimental data, which contributes to a better understanding and produced more accurate model. Based on the results, the QOBLESS method can be used as an efficient parameter estimation method in large-scale kinetic model building.

Keywords: Systems biology, scatter search, opposition-based learning, bioinformatics, artificial intelligence, metabolic engineering.

[1]
Chakrabarti, A.; Miskovic, L.; Soh, K.C.; Hatzimanikatis, V. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints. Biotechnol. J., 2013, 8, 1043-1057.
[2]
Cvijovic, M.; Bordel, S.; Nielsen, J. Mathematical models of cell factories: moving towards the core of industrial biotechnology. Microb. Biotechnol., 2011, 4(5), 572-584.
[3]
Almquist, J.; Cvijovic, M.; Hatzimanikatis, V.; Nielsen, J.; Jirstrand, M. Kinetic models in industrial biotechnology - improving cell factory performance. Metab. Eng., 2014, 24, 38-60.
[4]
Song, H.S.; DeVilbiss, F.; Ramkrishna, D. Modeling metabolic systems: the need for dynamics. Curr. Opin. Chem. Eng., 2013, 2(4), 373-382.
[5]
Link, H.; Christodoulou, D.; Sauer, U. Advancing metabolic models with kinetic information. Curr. Opin. Biotechnol., 2014, 29, 8-14.
[6]
Langemann, D.; Nesteruk, I. Comparison of mathematical models for the dynamics of the Chernivtsi children disease. Math. Comput. Simul., 2016, 123, 68-79.
[7]
Garg, P.; Sharma, P. Computational approaches for enzyme functional class prediction: a review. Curr. Proteomics, 2014, 11(1), 17-22.
[8]
Sanjeev, A.; Mattaparthi, V.S.K. Computational investigation on tyrosine to alanine mutations delaying the early stage of α-synuclein aggregation. Curr. Proteomics, 2017, 14(1), 31-41.
[9]
Balsa-Canto, E.; Alonso, A.; Banga, J.R. An Iterative identification procedure for dynamic modeling of biochemical networks. BMC Syst. Biol., 2010, 4, 11.
[10]
Yadav, V.G.; De Mey, M.; Giaw-Lim, C.; Kumaran, A.P.; Stephanopoulos, G. The future of metabolic engineering and synthetic biology: towards a systematic practice. Metab. Eng., 2012, 14(3), 233-241.
[11]
Smallbone, K.; Mendes, P. Large-scale metabolic models: from reconstruction to differential equations. Ind. Biotechnol., 2013, 9(4), 179-184.
[12]
Stanford, N.J.; Lubitz, T.; Smallbone, K.; Klipp, E.; Mendes, P.; Liebermeister, W. Systematic construction of kinetic models from genome-scale metabolic networks. PLoS One, 2013, 8(11)e79195
[13]
Dobson, P.D.; Smallbone, K.; Jameson, D.; Simeonidis, E.; Lanthaler, K.; Pir, P.; Lu, C.; Swainston, N.; Dunn, W.B.; Fisher, P.; Hull, D.; Brown, M.; Oshota, O.; Stanford, N.J.; Kell, D.B.; King, R.D.; Oliver, S.G.; Stevens, R.D.; Mendes, P. Further developments towards a genome-scale metabolic model of yeast. BMC Syst. Biol., 2010, 4, 145.
[14]
Smallbone, K.; Simeonidis, E.; Swainston, N.; Mendes, P. Towards a genome-scale kinetic model of cellular metabolism. BMC Syst. Biol., 2010, 4, 6.
[15]
Mendes, P.; Kell, D. Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics, 1998, 14(10), 869-883.
[16]
Johnson, M.L.; Faunt, L.M. Parameter estimation by least-squares methods. Methods Enzymol., 1992, 210, 1-37.
[17]
Moles, C.G.; Mendes, P.; Banga, J.R. Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res., 2003, 13(11), 2467-2474.
[18]
Banga, J.R.; Balsa-Canto, E. Parameter estimation and optimal experimental design. Essays Biochem., 2008, 45, 195-209.
[19]
Chong, C.; Mohamad, M.; Deris, S.; Shamsir, M.; Chai, L.; Choon, Y. Parameter estimation by using an improved bee memory differential evolution algorithm (IBMDE) to simulate biochemical pathways. Curr. Bioinform., 2014, 9(1), 65-75.
[20]
Xu, Q.; Wang, L.; Wang, N.; Hei, X.; Zhao, L. A review of opposition-based learning from 2005 to 2012. Eng. Appl. Artif. Intell., 2014, 29, 1-12.
[21]
Kazimipour, B.; Li, X.; Qin, A.K. Initialization methods for large scale global optimization. In, IEEE Congr. Evolut. Comput., 2013, pp. 2750-2757.
[22]
Egea, J.; Balsa-Canto, E. Dynamic optimization of nonlinear processes with an enhanced scatter search method. Ind. Eng. Chem. Res., 2009, 48(9), 4388-4401.
[23]
Egea, J.; Vazquez, E.; Banga, J.R.; Martí, R. Improved scatter search for the global optimization of computationally expensive dynamic models. J. Glob. Optim., 2009, 43(2-3), 175-190.
[24]
Egea, J.; Henriques, D.; Cokelaer, T.; Villaverde, A.F.; MacNamara, A.; Danciu, D.; Banga, J.R.; Saez-Rodriguez, J. MEIGO: an open-source software suite based on metaheuristics for global optimization in systems biology and bioinformatics. BMC Bioinformatics, 2014, 15, 136.
[25]
Glover, F. A template for scatter search and path relinking. Artif. Evol, 1998, 1363, 3-51.
[26]
Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Quasi-oppositional differential evolution. In, IEEE Congr. Evolut. Comput. CEC, 2007, pp. 2229-2236.
[27]
Egea, J.; Martí, R.; Banga, J.R. An evolutionary method for complex-process optimization. Comput. Oper. Res., 2010, 37(2), 315-324.
[28]
Michalewicz, Z. Genetic algorithms + data structures = evolution programs, 3rd ed; Springer-Verlag: London, UK, 1996.
[29]
Storn, R.; Price, K. Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim., 1997, 11(4), 341-359.
[30]
Maciel, L.; Gomide, F.; Ballini, R. A differential evolution algorithm for yield curve estimation. Math. Comput. Simul., 2016, 129, 10-30.
[31]
Villaverde, A.F.; Henriques, D.; Smallbone, K.; Bongard, S.; Schmid, J.; Cicin-Sain, D.; Crombach, A.; Saez-Rodriguez, J.; Mauch, K.; Balsa-Canto, E.; Mendes, P.; Jaeger, J.; Banga, J.R. BioPreDyn-Bench: a suite of benchmark problems for dynamic modelling in systems biology. BMC Syst. Biol., 2015, 9(8), 1-15.
[32]
Villaverde, A.F.; Bongard, S.; Mauch, K.; Muller, D.; Balsa-Canto, E.; Schmid, J.; Banga, J.R. High-confidence predictions in systems biology dynamic models. Adv. Intell. Syst. Comput., 2014, 294(AISC), 161-171.
[33]
Villaverde, A.F.; Bongard, S.; Mauch, K.; Müller, D.; Balsa-Canto, E.; Schmid, J.; Banga, J.R. A consensus approach for estimating the predictive accuracy of dynamic models in biology. Comput. Methods Programs Biomed., 2015, 119(1), 17-28.
[34]
Ahn, W.S.; Antoniewicz, M.R. Towards dynamic metabolic flux analysis in CHO cell cultures. Biotechnol. J., 2012, 7(1), 61-74.
[35]
Xie, W.; Yu, W.; Zou, X. Diversity-maintained differential evolution embedded with gradient-based local search. Soft Comput., 2013, 17(8), 1511-1535.
[36]
Liu, Y.; Zou, X. Mathematical modeling and quantitative analysis of HIV-1 Gag trafficking and polymerization [J]. PLOS Comput. Biol., 2017, 13(9)e1005733


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 5
Year: 2019
Page: [427 - 438]
Pages: 12
DOI: 10.2174/1570164616666190401203128
Price: $58

Article Metrics

PDF: 44
HTML: 2