First example of antiparasitic activity influenced by thermochromism: Leishmanicidal evaluation of 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine metal complexes

(E-pub Abstract Ahead of Print)

Author(s): José M. Méndez-Arriaga*, Itziar Oyarzabal, Álvaro Martín-Montes, Judith García-Rodríguez, Miguel Quirós, Manuel Sánchez-Moreno.

Journal Name: Medicinal Chemistry

Submit Manuscript
Submit Proposal

Abstract:

Background: The World Health Organization catalogues illnesses such as Leishmaniasis as neglected diseases, due to the low investment in new drugs to fight them. The search of novel and non-side effects anti-parasitic compounds is one of the urgent needs for the Third World. The use of triazolopyrimidines and their metallic complexes have demonstrated hopeful results in this field.

Objective: This work studies the antiparasitic efficacy against three leishmania spp. strains of a series of 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine first row transition metal complexes.

Method: The in vitro antiproliferation of promastigote forms of different strains of leishmania spp. (L. infantum, L. braziliensis and L donovani) and the cytotoxicity in macrophage host cells are reported here. The antiparasitic assays have been complemented with enzymatic tests to elucidate the mechanisms of action. New crystal structure description, thermal analysis, magnetic susceptibility and magnetization experiments have also been carried out in order to present a whole characterization of the studied compounds and interesting physical properties besides the biological tests.

Results: The results of antiproliferation screening and cytotoxicity show a great antiparasitic efficacy in the studied complexes. The superoxide dismutase enzymatic assays exhibit a different behaviour according to the thermochromic triazolopyrimidine form tested.

Conclusion: Antiproliferative assays and enzymatic tests corroborate the synergetic leishmanicidal effect present in coordination triazolopyrimidine complexes. The changes in coordination sphere derived from thermocromism affect the physical properties as well as the biological efficacy.

Keywords: Leishmaniasis, anti-parasitic activity, enzymatic inhibition, bioinorganic chemistry, magnetism, triazolopyrimidine metal complexes.

Rights & PermissionsPrintExport Cite as


Article Details

(E-pub Abstract Ahead of Print)
DOI: 10.2174/1573406415666190401120607
Price: $95