Generic placeholder image

Current Smart Materials (Discontinued)

Editor-in-Chief

ISSN (Print): 2405-4658
ISSN (Online): 2405-4666

Review Article

Review of Structural Control Technologies Using Magnetorheological Elastomers

Author(s): J. Yang, S.S. Sun, S.W. Zhang and W.H. Li*

Volume 4, Issue 1, 2019

Page: [22 - 28] Pages: 7

DOI: 10.2174/2405465804666190326152207

Abstract

It is critically important to protect civil structures from unpredictable events, including earthquakes and strong winds, as well as maintaining their structural integrity and serviceability. To this end, considerable attention has been paid on the research and development of aseismic technology. This paper provides a literature review on the recent progress of Magnetorheological Elastomer (MRE) and the development and application of MRE devices on structure control technology. Firstly, this paper reviewed the investigations into the MR effect, mechanical property of MRE and its ingredients during the past decades. Then, research interests arising in the implementation and development of smart devices using MREs on structure control will be systematically reviewed. Basically, MRE base isolation and MRE based tuned mass damper are two major technologies to attenuate structural vibration, which will be the main focus of this paper.

Keywords: Magnetorheological elastomer, structural control, civil structures, aseismic technology, tuned mass damper, structural vibration.

Graphical Abstract
[1]
Abdel-Rohman, M.; Leipholz, H.H.; Quintana, V.H. Optimal control of civil engineering structures. J. Eng. Mech. Div., 1980, 106, 57-73.
[2]
Shinozuka, M.; Samaras, E.; Paliou, C. Active Control of Floating Structures. In: Structural Control, Ed.; Springer: Dordrecht 1987, pp. 651-668.
[3]
Soong, T.; Skinner, G. Experimental study of active structural control. J. Eng. Mech. Div., 1981, 107, 1057-1067.
[4]
Udwadia, F.E.; Tabaie, S. Pulse control of structural and mechanical systems. J. Eng. Mech. Div., 1981, 107, 1011-1028.
[5]
Yang, J.N.; Akbarpour, A.; Ghaemmaghami, P. Optimal control algorithms for earthquake-excited building structures. In: Structural control, Ed: Springer: Drodrecht, 1987, pp. 748-761.
[6]
Yang, J.N. Control of tall building under earthquake excitation. J. Eng. Mech. Div., 1982, 108, 833-849.
[7]
Housner, G.; Bergman, L.A.; Caughey, T.K.; Chassiakos, A.G.; Claus, R.O.; Masri, S.F.; Skelton, R.E.; Soong, T.T.; Spencer, B.F.; Yao, J.T. Structural control: Past, present, and future. J. Eng. Mech., 1997, 123, 897-971.
[8]
Yao, J. Concept of structural control. J. Struct. Div., 1972, 98, 1567-1574.
[9]
Dyke, S.; Spencer, B.; Sain, M.; Carlson, J. Seismic response reduction using magnetorheological dampers. In: Proceedings of the IFAC World Congress, 1996, pp. 145-150.
[10]
Dyke, S.; Spencer, B.; Sain, M.; Carlson, J. Experimental verification of semi-active structural control strategies using acceleration feedback. In: Proceedings of the 3rd International Conference on Motion and Vibration and Control, 1996, pp. 291-296.
[11]
Dyke, S.; Spencer, B.; Sain, M.; Carlson, J. Modeling and control of magnetorheological dampers for seismic response reduction. Smart Mater. Struct., 1996, 5, 565.
[12]
Popp, K.M.; Kröger, M. Hua Li, W.; Zhang, X.Z.; Kosasih, P.B. MRE properties under shear and squeeze modes and applications. J. Intell. Mater. Syst. Struct., 2010, 21, 1471-1477.
[13]
Bonnecaze, R.; Brady, J. Dynamic simulation of an electrorheological fluid. J. Chem. Phys., 1992, 96, 2183-2202.
[14]
Wereley, N.M.; Lindler, J.; Rosenfeld, N.; Choi, Y.T. Biviscous damping behavior in electrorheological shock absorbers. Smart Mater. Struct., 2004, 13, 743.
[15]
Liu, B.; Li, W.; Kosasih, P.B.; Zhang, X. Development of an MR-brake-based haptic device. Smart Mater. Struct., 2006, 15, 1960.
[16]
Padalka, O.; Song, H.; Wereley, N.; Filer, J.; Bell, R. Stiffness and damping in Fe, Co, and Ni nanowire-based magnetorheological elastomeric composites. IEEE Trans. Magn., 2010, 46, 2275-2277.
[17]
Han, Y.; Hong, W.; Faidley, L.E. Field-stiffening effect of magneto-rheological elastomers. Int. J. Solids Struct., 2013, 50, 2281-2288.
[18]
Jacob, R. Magnetic fluid torque and force transmitting device. U.S. Patent 2, 575, 360, 1951.
[19]
Rabinow, J. The magnetic fluid clutch. In: Proceedings of the American Institute of Electrical Engineers, 1948, 67, 1308-1315.
[20]
Rigbi, Z.; Jilken, L. The response of an elastomer filled with soft ferrite to mechanical and magnetic influences. J. Magn. Magn. Mater., 1983, 37, 267-276.
[21]
Jolly, M.R.; Carlson, J.D.; Muñoz, B.C.; Bullions, T.A. The magnetoviscoelastic response of elastomer composites consisting of ferrous particles embedded in a polymer matrix. J. Intell. Mater. Syst. Struct., 1996, 7, 613-622.
[22]
Jolly, M.R.; Carlson, J.D.; Munoz, B.C. A model of the behaviour of magnetorheological materials. Smart Mater. Struct., 1996, 5, 607.
[23]
Davis, L. Model of magnetorheological elastomers. J. Appl. Phys., 1999, 85, 3348-3351.
[24]
Chen, L.; Gong, X.; Li, W. Microstructures and viscoelastic properties of anisotropic magnetorheological elastomers. Smart Mater. Struct., 2007, 16, 2645.
[25]
Borcea, L.; Bruno, O. On the magneto-elastic properties of elastomer-ferromagnet composites. J. Mech. Phys. Solids, 2001, 49, 2877-2919.
[26]
Shiga, T.; Okada, A.; Kurauchi, T. Magnetroviscoelastic behavior of composite gels. J. Appl. Polym. Sci., 1995, 58, 787-792.
[27]
Zhou, G.; Jiang, Z. Deformation in magnetorheological elastomer and elastomer-ferromagnet composite driven by a magnetic field. Smart Mater. Struct., 2004, 13, 309.
[28]
Zhou, G. Shear properties of a magnetorheological elastomer. Smart Mater. Struct., 2003, 12, 139.
[29]
Li, Y.; Li, J.; Tian, T.; Li, W. A highly adjustable magnetorheological elastomer base isolator for applications of real-time adaptive control. Smart Mater. Struct., 2013, 22, 095020.
[30]
Zhou, G.; Li, J. Dynamic behavior of a magnetorheological elastomer under uniaxial deformation: I. Experiment. Smart Mater. Struct., 2003, 12, 859.
[31]
Chen, L.; Gong, X.I.; Li, W.H. Damping of magnetorheological elastomers. Chin. J. Chem. Phys., 2008, 21, 581-585.
[32]
Ginder, J.M.; Schlotter, W.F.; Nichols, M.E. Magnetorheological elastomers in tunable vibration absorbers. In: SPIE’s 8th Annual International Symposium on Smart Structures and Materials, 2001, pp. 103-110.
[33]
Shen, Y.; Golnaraghi, M.F.; Heppler, G. Experimental research and modeling of magnetorheological elastomers. J. Intell. Mater. Syst. Struct., 2004, 15, 27-35.
[34]
Zhang, X.; Li, W.; Gong, X. An effective permeability model to predict field-dependent modulus of magnetorheological elastomers. Commun. Nonlin. Sci. Num. Simulat., 2008, 13, 1910-1916.
[35]
Melenev, P.; Raikher, Y.; Stepanov, G.; Rusakov, V.; Polygalova, L. Modeling of the field-induced plasticity of soft magnetic elastomers. J. Intell. Mater. Syst. Struct.,2011, 1045389X11403819.
[36]
Galipeau, E.; Castañeda, P.P. A finite-strain constitutive model for magnetorheological elastomers: Magnetic torques and fiber rotations. J. Mech. Phys. Solids, 2013, 61, 1065-1090.
[37]
Koo, J.H.; Khan, F.; Jang, D.D.; Jung, H.J. Dynamic characterization and modeling of magneto-rheological elastomers under compressive loadings. Smart Mater. Struct., 2010, 19, 117002.
[38]
Li, W.; Zhou, Y.; Tian, T. Viscoelastic properties of MR elastomers under harmonic loading. Rheol. Acta, 2010, 49, 733-740.
[39]
Qiao, X.; Lu, X.; Li, W.; Chen, J.; Gong, X.; Yang, T.; Li, W.; Sun, K.; Chen, X. Microstructure and magnetorheological properties of the thermoplastic magnetorheological elastomer composites containing modified carbonyl iron particles and poly (styrene-b-ethylene-ethylenepropylene-b-styrene) matrix. Smart Mater. Struct., 2012, 21, 115028.
[40]
Li, W.; Nakano, M. Fabrication and characterization of PDMS based magnetorheological elastomers. Smart Mater. Struct., 2013, 22, 055035.
[41]
Collette, C.; Kroll, G.; Saive, G.; Guillemier, V.; Avraam, M. On magnetorheologic elastomers for vibration isolation, damping and stress reduction in mass-varying structures. J. Intell. Mater. Syst. Struct., 2010.
[42]
Liao, G.; Gong, X.; Kang, C.; Xuan, S. The design of an active-adaptive tuned vibration absorber based on magnetorheological elastomer and its vibration attenuation performance. Smart Mater. Struct., 2011, 20, 075015.
[43]
Li, Y.; Li, J.; Li, W.; Samali, B. Development and characterization of a magnetorheological elastomer based adaptive seismic isolator. Smart Mater. Struct., 2013, 22, 035005.
[44]
Fu, J.; Yu, M.; Dong, X.; Zhu, L. Magnetorheological elastomer and its application on impact buffer. In:Journal of Physics; Conference Series, 2013, p. 012032.
[45]
Gong, X.; Zhang, X.; Zhang, P. Fabrication and characterization of isotropic magnetorheological elastomers. Polym. Test., 2005, 24, 669-676.
[46]
Deng, H.; Gong, X. Adaptive tuned vibration absorber based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct., 2007, 18, 1205-1210.
[47]
Gong, X.; Li, J.; Chen, L. Study on a dynamic stiffness-tuning absorber with squeeze-strain enhanced magnetorheological elastomer. J. Intell. Mater. Syst. Struct., 2009.
[48]
Sinko, R.; Karnes, M.; Koo, J.H.; Kim, Y.K.; Kim, K.S. Design and test of an adaptive vibration absorber based on magnetorheological elastomers and a hybrid electromagnet. J. Intell. Mater. Syst. Struct.,2012, 1045389X12463461.
[49]
Sun, S.Y.; Chen, J.; Yang, T.; Tian, H.; Deng, W.; Li, W.; Du, H.; Alici, G. The development of an adaptive tuned magnetorheological elastomer absorber working in squeeze mode. Smart Mater. Struct., 2014, 23, 075009.
[50]
Liao, G.; Gong, X.; Xuan, S.; Kang, C.; Zong, L. Development of a real-time tunable stiffness and damping vibration isolator based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct., 2012, 23, 25-33.
[51]
Eem, S.H.; Jung, H.J.; Koo, J.H. Application of MR elastomers for improving seismic protection of base-isolated structures. IEEE Trans. Magn., 2011, 47, 2901-2904.
[52]
Kim, Y.K.; Bae, H.I.; Koo, J.H.; Kim, K.S.; Kim, S. Note: Real time control of a tunable vibration absorber based on magnetorheological elastomer for suppressing tonal vibrations. Rev. Sci. Instrum., 2012, 83, 046108.
[53]
Li, J.; Li, Y.; Li, W.; Samali, B. Development of adaptive seismic isolators for ultimate seismic protection of civil structures. In:SPIE Smart Structures and Materials+; Nondestructive Evaluation and Health Monitoring, 2013, pp. 86920H-86920H, 12.
[54]
Behrooz, M.; Wang, X.; Gordaninejad, F. Performance of a new magnetorheological elastomer isolation system. Smart Mater. Struct., 2014, 23, 045014.
[55]
Kavlicoglu, B.; Wallis, B.; Sahin, H.; Liu, Y. Magnetorheological elastomer mount for shock and vibration isolation. In:SPIE Smart Structures and Materials+; Nondestructive Evaluation and Health Monitoring, 2011, pp. 79770Y-79770Y, 7.
[56]
Ying, Z.; Ni, Y. Micro-vibration response of a stochastically excited sandwich beam with a magnetorheological elastomer core and mass. Smart Mater. Struct., 2009, 18, 095005.
[57]
Nayak, B.; Dwivedy, S.; Murthy, K. Multi-frequency excitation of magnetorheological elastomer-based sandwich beam with conductive skins. Int. J. Non-Lin. Mech., 2012, 47, 448-460.
[58]
Dwivedy, S.; Mahendra, N.; Sahu, K. Parametric instability regions of a soft and magnetorheological elastomer cored sandwich beam. J. Sound Vibrat., 2009, 325, 686-704.
[59]
Miedzinska, D.; Boczkowska, A.; Zubko, K. Numerical verification of three point bending experiment of Magnetorheological Elastomer (MRE) in magnetic field. In: Journal of Physics: Conference Series, 2010, p. 012158.
[60]
Nayak, B.; Dwivedy, S.; Murthy, K. Dynamic analysis of magnetorheological elastomer-based sandwich beam with conductive skins under various boundary conditions. J. Sound Vibrat., 2011, 330, 1837-1859.
[61]
Naeim, F.; Kelly, J.M. Design of Seismic Isolated Structures: From Theory to Practice; John Wiley & Sons: Los Angeles, CA, 1999.
[62]
Lui, E.M. Seismic isolation for earthquake resistant structures. J. Struct. Eng., 2001, 127, 1117-1118.
[63]
Pan, P.; Zamfirescu, D.; Nakashima, M.; Nakayasu, N.; Kashiwa, H. Base-isolation design practice in Japan: Introduction to the post-Kobe approach. J. Earthquake Eng., 2005, 9, 147-171.
[64]
Ramallo, J.; Johnson, E.; Spencer, Jr, B. “Smart” base isolation systems. J. Eng. Mech., 2002, 128, 1088-1099.
[65]
Yoshioka, H.; Ramallo, J.; Spencer, Jr, B. “Smart” base isolation strategies employing magnetorheological dampers. J. Eng. Mech., 2002, 128, 540-551.
[66]
Yang, J.N.; Agrawal, A.K. Semi-active hybrid control systems for nonlinear buildings against near-field earthquakes. Eng. Struct., 2002, 24, 271-280.
[67]
Wongprasert, N.; Symans, M. Experimental evaluation of adaptive elastomeric base-isolated structures using variable-orifice fluid dampers. J. Struct. Eng., 2005, 131, 867-877.
[68]
Lin, P.Y.; Roschke, P.; Loh, C. Hybrid base isolation with magnetorheological damper and fuzzy control. Struct. Contr. Health Monit., 2007, 14, 384-405.
[69]
Hwang, I.H.; Lim, J.H.; Lee, J.S. A study on base isolation performance of magneto-sensitive rubbers. J. Earthquake Eng. Soc. Korea, 2006, 10, 77-84.
[70]
Usman, M.; Sung, S.; Jang, D.; Jung, H.; Koo, J. Numerical investigation of smart base isolation system employing MR elastomer. In:Journal of Physics; Conference Series, 2009, p. 012099.
[71]
Behrooz, M.; Wang, X.; Gordaninejad, F. Modeling of a new semi-active/passive magnetorheological elastomer isolator. Smart Mater. Struct., 2014, 23, 045013.
[72]
Gu, X.; Yu, Y.; Li, Y.; Li, J.; Askari, M.; Samali, B. Experimental study of semi-active magnetorheological elastomer base isolation system using optimal neuro fuzzy logic control. Mech. Syst. Signal Process., 2019, 119, 380-398.
[73]
Chen, X.; Li, Y.; Li, J.; Gu, X. A dual-loop adaptive control for minimizing time response delay in real-time structural vibration control with Magnetorheological (MR) devices. Smart Mater. Struct., 2017, 27, 015005.
[74]
Gu, X.; Yu, Y.; Li, J.; Li, Y. Semi-active control of magnetorheological elastomer base isolation system utilising learning-based inverse model. J. Sound Vibrat., 2017, 406, 346-362.
[75]
Yang, J.; Sun, S.; Du, H.; Li, W.; Alici, G.; Deng, H. A novel magnetorheological elastomer isolator with negative changing stiffness for vibration reduction. Smart Mater. Struct., 2014, 23, 105023.
[76]
Yang, J.; Sun, S.; Tian, T.; Li, W.; Du, H.; Alici, G.; Nakano, M. Development of a novel multi-layer MRE isolator for suppression of building vibrations under seismic events. Mech. Syst. Signal Process., 2016, 70, 811-820.
[77]
Sun, S.S.; Yang, J.; Deng, H.X.; Du, H.; Li, W.H.; Alici, G.; Nakano, M. Horizontal vibration reduction of a seat suspension using negative changing stiffness magnetorheological elastomer isolators. Int. J. Veh. Des., 2015, 68, 104-118.
[78]
Ormondroyd, J. Theory of the dynamic vibration absorber. In: Transaction of the ASME, 1928, pp. 9-22.
[79]
Matta, E. Performance of tuned mass dampers against near-field earthquakes. Struct. Eng. Mech., 2011, 39, 621-642.
[80]
Schramm, S.; Sihler, C.; Song-Manguelle, J.; Rotondo, P. Damping torsional interharmonic effects of large drives. In: IEEE Trans. on Power Electron., 2010, 25, 1090-1098.
[81]
Qin, L.; Yan, W.; Li, Y. Design of frictional pendulum TMD and its wind control effectiveness. J. Earthquake Eng. Eng. Vibrat.,2009, 5, 020.
[82]
Walsh, P.; Lamancusa, J. A variable stiffness vibration absorber for minimization of transient vibrations. J. Sound Vibrat., 1992, 158, 195-211.
[83]
Fisco, N.; Adeli, H. Smart structures: Part I-active and semi-active control. Sci. Iran., 2011, 18, 275-284.
[84]
Fisco, N.; Adeli, H. Smart structures: Part II-hybrid control systems and control strategies. Sci. Iran., 2011, 18, 285-295.
[85]
Chang, J.C.; Soong, T.T. Structural control using active tuned mass dampers. J. Eng. Mech. Div., 1980, 106, 1091-1098.
[86]
Gsell, D.; Feltrin, G.; Motavalli, M. Adaptive tuned mass damper based on pre-stressable leaf-springs. J. Intell. Mater. Syst. Struct., 2017, 18, 845-851.
[87]
Nagarajaiah, S.; Sonmez, E. Structures with semiactive variable stiffness single/multiple tuned mass dampers. J. Struct. Eng., 2007, 133, 67-77.
[88]
Xu, Z.; Gong, X.; Chen, X. Development of a mechanical semi-active vibration absorber. Adv. Vib. Eng., 2011, 10, 229-238.
[89]
Weber, F.; Maślanka, M. Frequency and damping adaptation of a TMD with controlled MR damper. Smart Mater. Struct., 2012, 21, 055011.
[90]
Weber, F.; Boston, C.; Maślanka, M. An adaptive tuned mass damper based on the emulation of positive and negative stiffness with an MR damper. Smart Mater. Struct., 2011, 20, 015012.
[91]
Sun, S.; Deng, H.; Yang, J.; Li, W.; Du, H.; Alici, G. Performance evaluation and comparison of magnetorheological elastomer absorbers working in shear and squeeze modes. J. Intell. Mater. Syst. Struct.,2015, 1045389X14568819.
[92]
Lin, P.; Chung, L.; Loh, C. Semiactive control of building structures with semiactive tuned mass damper. Comput. Aided Civ. Infrastruct. Eng., 2005, 20, 35-51.
[93]
Sun, S.; Yang, J.; Du, H.; Zhang, S.; Yan, T.; Nakano, M.; Li, W. Development of magnetorheological elastomers-based tuned mass damper for building protection from seismic events. J. Intell. Mater. Syst. Struct., 2018, 29, 1777-1789.
[94]
Sun, S.; Yang, J.; Yildirim, T.; Du, H.; Alici, G.; Zhang, S.; Li, W. Development of a nonlinear adaptive absorber based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct., 2018, 29, 194-204.

© 2024 Bentham Science Publishers | Privacy Policy