Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Hepatocyte Growth Factor and Macrophage-stimulating Protein “Hinge” Analogs to Treat Pancreatic Cancer

Author(s): John W. Wright*, Kevin J. Church and Joseph W. Harding

Volume 19, Issue 10, 2019

Page: [782 - 795] Pages: 14

DOI: 10.2174/1568009619666190326130008

Price: $65

Abstract

Pancreatic cancer (PC) ranks twelfth in frequency of diagnosis but is the fourth leading cause of cancer related deaths with a 5 year survival rate of less than 7 percent. This poor prognosis occurs because the early stages of PC are often asymptomatic. Over-expression of several growth factors, most notably vascular endothelial growth factor (VEGF), has been implicated in PC resulting in dysfunctional signal transduction pathways and the facilitation of tumor growth, invasion and metastasis. Hepatocyte growth factor (HGF) acts via the Met receptor and has also received research attention with ongoing efforts to develop treatments to block the Met receptor and its signal transduction pathways. Macrophage-stimulating protein (MSP), and its receptor Ron, is also recognized as important in the etiology of PC but is less well studied. Although the angiotensin II (AngII)/AT1 receptor system is best known for mediating blood pressure and body water/electrolyte balance, it also facilitates tumor vascularization and growth by stimulating the expression of VEGF. A metabolite of AngII, angiotensin IV (AngIV) has sequence homology with the “hinge regions” of HGF and MSP, key structures in the growth factor dimerization processes necessary for Met and Ron receptor activation. We have developed AngIV-based analogs designed to block dimerization of HGF and MSP and thus receptor activation. Norleual has shown promise as tested utilizing PC cell cultures. Results indicate that cell migration, invasion, and pro-survival functions were suppressed by this analog and tumor growth was significantly inhibited in an orthotopic PC mouse model.

Keywords: Pancreatic cancer, angiotensin IV, hepatocyte growth factor, met receptor, macrophage stimulating protein, Ron receptor.

Graphical Abstract
[1]
Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark, W.; Bandera, E.V.; Gapstur, S.; Patel, A.V.; Andrews, K.; Gansler, T. American Cancer Society 2010 nutrition and physical activity guidelines advisory committee. Cancer J. Clin., 2012, 62(1), 30-67.
[2]
Holohan, C.; Van-Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[3]
Galli, F.; Ruspi, L.; Marzorati, A.; Lavazza, M.; DiRocco, G.; Boni, L.; Dionigi, G.; Rausei, S.N. Staging system: Tumor-node-metastasis and future perspectives. Transl. Gastroenterol. Hepatol., 2017.
[http://dx.doi.org/10.21037/tgh.2016.12.07]
[4]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[5]
Wegman-Ostrosky, T.; Sotoll-Reyes, E.; Vidal-Millan, S.; Sanchez-Corona, S. The renin-angiotensin system meets the hallmarks of cancer. J. Renin Angiotensin Aldosterone Syst., 2015, 16(2), 227-233.
[6]
Borzillo, G.V.; Lippa, B. The hedgehog signaling pathway as a target for anticancer drug discovery. Curr. Top. Med. Chem., 2005, 5(2), 147-157.
[7]
Jemal, A.; Bray, F.; Center, M.M.; Ferlay, J.; Ward, E.; Forman, D. Global cancer statistics. Cancer J. Clin., 2011, 61(2), 69-90.
[8]
Crino, L.; Metro, G. Therapeutic options targeting angiogenesis in nonsmall cell lung cancer. Eur. Respir. Rev., 2014, 23(131), 79-91.
[9]
Zhang, J.; Jiang, X.; Jiang, Y.; Guo, M.; Zhang, S.; Li, J.; He, J.; Liu, J.; Wang, J.; Ouyang, L. Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs. Eur. J. Med. Chem., 2016, 108(2), 495-504.
[10]
Feitelson, M.A.; Arzumanyan, A.; Kulathinal, R.J.; Blain, S.W.; Holcombe, R.F.; Mahajna, J. Sustained proliferation in cancer: Mechanisms and novel therapeutic targets. Semin. Cancer Biol., 2015, 15(2), 1-30.
[11]
Chang, J.; Wang, S.; Zhang, Z.; Liu, X.; Wu, Z.; Geng, R. Multiple receptor tyrosine kinase activation attenuates therapeutic efficacy of the fibroblast growth factor receptor 2 inhibitor AZD4547 in FGFR2 amplified gastric cancer. Oncotarget, 2015, 6(4), 2009-2022.
[12]
Knowles, L.M.; Stabile, L.P.; Egloff, A.M.; Rothstein, M.E.; Thomas, S.M.; Gubish, C.T.; Lerner, E.C.; Seethala, R.R.; Suzuki, S.; Quesnelle, K.M.; Morgan, S.; Ferris, R.L.; Grandis, J.R. Siegfried. J.M. HGF and c-Met participate in paracrine tumorigenic pathways in head and neck squamous cell cancer. Clin. Cancer Res., 2009, 15(11), 3740-3750.
[13]
Lengyel, E.; Prechtel, D.; Resau, J.H.; Gauger, K.; Welk, A.; Lindemann, K.; Salanti, G.; Richter, T.; Knudsen, B.; Vande Woude, G.F.; Harbeck, N. C-Met overexpression in nodel-positive breast cancer identifies patients with poor clinical outcome independent of Her2/neu. Int. J. Cancer, 2005, 113(4), 678-682.
[14]
Ramirez, R.; Hsu, D.; Patel, A.; Fenton, C.; Dinauer, C.; Tuttle, R.M.; Francis, G.L. Over-expression of hepatocyte growth factor/scatter factor (HGF/SF) and the HGF/SF receptor (cMET) are associated with a high risk of metastasis and recurrence for children and young adults with papillary thyroid carcinoma. Clin. Endocrinol. (Oxf.), 2000, 53(5), 635-644.
[15]
Sierra, J.R.; Tsao, M.S. C-MET as a potential therapeutic target and biomarker in cancer. Ther. Adv. Med. Oncol., 2011, 3(Suppl. 1), S21-S35.
[16]
Singleton, K.R.; Kim, J.; Hinz, T.K.; Marek, L.A.; Casas-Selves, M.; Hatheway, C.; Tan, A.C.; DeGregori, J.; Heasley, L.E. A receptor tyrosine kinase network composed of fibroblast growth factor receptors, epidermal growth factor receptor, v-erb-b2 erythroblastic leukemia viral oncogene homolog 2, and hepatocyte growth factor receptor drives growth and survival of head and neck squamous carcinoma cell lines. Mol. Pharmacol., 2013, 83(4), 882-893.
[17]
Tokunou, M.; Niki, T.; Eguchi, K.; Iba, S.; Tsuda, H.; Yamada, T.; Matsuno, Y.; Kondo, H.; Saitoh, Y.; Imamura, H.; Hirohashi, S. c-MET expression in myofibroblasts: Role in autocrine activation and prognostic significance in lung adenocarcinoma. Am. J. Pathol., 2001, 158(4), 1451-1463.
[18]
Iacovelli, R.; Pietrantonio, F.; Palazzo, A.; Maggi, C.; Ricchini, F.; de Brau, F.; Di Bartolomeo, M. Incidence and relative risk of hepatic toxicity in patients treated with anti-angiogenic tyrosine kinase inhibitors for malignancy. Br. J. Clin. Pharmacol., 2014, 78(6), 1228-1237.
[19]
Levitzki, A.; Gazit, A. Tyrosine kinase inhibition-an approach to drug development. Science, 1995, 267(5205), 1782-1788.
[20]
Ranieri, G.; Pantaleo, M.; Piccinno, M.; Roncetti, M.; Mutinati, M.; Marech, I.; Patruno, R.; Rizzo, A.; Sciorsci, R.L. Tyrosine kinase inhibitors (TKIs) in human and pet tumors with special reference to breast cancer: A comparative review. Crit. Rev. Oncol. Hematol., 2013, 88(2), 293-308.
[21]
Zwick, E.; Bange, J.; Ullrich, A. Receptor tyrosine kinases as targets for anti-cancer drugs. Trends Mol. Med., 2002, 8(1), 17-23.
[22]
Cameron, A.C.; Touyz, R.M.; Lang, N.N. Vascular complications of cancer chemotherapy. Can. J. Cardiol., 2016, 32(7), 852-862.
[23]
Daher, I.N.; Yeh, E.T. Vascular complications of selected cancer therapies. Nat. Clin. Pract. Cardiovasc. Med., 2008, 5(12), 797-805.
[24]
Suter, T.M.; Ewer, M.S. Cancer drugs and the heart: Importance and management. Eur. Heart J., 2013, 34(15), 1102-1111.
[25]
Lee, S.H.; Jeong, D.; Han, Y.S.; Baek, M.J. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis. Ann. Surg. Treat. Res., 2015, 89(1), 1-8.
[26]
Maes, H.; Olmeda, D.; Soengas, M.S.; Agostinis, P. Vesicular trafficking mechanisms in endothelial cells as modulators of the tumor vasculature and targets of antiangiogenic therapies. FEBS, 2016, 283(1), 25-38.
[27]
Chamorro-Jorganes, A.; Lee, M.Y.; Araldi, E.; Landskroner-Eiger, S.; Fernandez-Fuertes, M.; Sahraei, M.; Quiles Del Rey, M.; van Solingen, C.; Yu, J.; Fernandez-Hernando, C.; Sessa, W.C.; Suarez, Y. VEGF-induced expression of miR-17w 92 cluster in endothelial cells is mediated by ERK/ELK1 activation and regulates angiogenesis. Circ. Res., 2016, 118(1), 38-47.
[28]
Hein, T.W.; Rosa, R.H., Jr; Ren, Y.; Xu, W.; Kuo, L. VEGF receptor-2-linked P13K/calpain/SIRT1 activation mediates retinal arteriolar dilations to VEGF and shear stress. Invest. Ophthalmol. Vis. Sci., 2015, 56(9), 5381-5389.
[29]
Heiss, C.; Schanz, A.; Amabile, N.; Jahn, S.; Chen, Q.; Wong, M.L.; Rassaf, T.; Heinen, Y.; Cortese-Krott, M.; Grossman, W.; Yeghiazarians, Y.; Springer, M.L. Nitric oxide synthase expression and functional response to nitric oxide are both important modulators of circulating angiogenic cell response to angiogenic stimuli. Arterioscler. Thromb. Vasc. Biol., 2010, 30(11), 2212-2218.
[30]
Force, T.; Krause, D.S.; Van Erten, R.A. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat. Rev. Cancer, 2007, 7(5), 332-344.
[31]
Chu, T.F.; Rupnick, M.A.; Kerkela, R.; Dallabrida, S.M.; Zurakowski, D.; Nguyen, L.; Woulfe, K.; Pravda, E.; Cassiola, F.; Desai, J.; George, S.; Morgan, J.A.; Harris, D.M.; Ismail, N.S.; Chen, J.H.; Schoen, F.J.; Van den Abbeele, A.D.; Demetri, G.D.; Force, T.; Chen, M.H. Cardiotoxicity associated with tyrosine kinase inhibitor sunitinib. Lancet, 2007, 370(9604), 2011-2019.
[32]
Kerkela, R.; Woulfe, K.C.; Durand, J.B.; Vagnozzi, R.; Kramer, D.; Chu, T.F.; Beahm, C.; Chen, M.H.; Force, T. Sunitinib-induced cardiotoxicity is mediated by off-target inhibition of AMP-activated protein kinase. Clin. Transl. Sci., 2009, 2(1), 15-25.
[33]
Limaverde-Sousa, G.; Sternberg, C.; Ferreira, C.G. Antiangiogenesis beyond VEGF inhibition: A journey from antiangiogenic single-target to broad-spectrum agents. Cancer Treat. Rev., 2014, 40(4), 548-557.
[34]
Doll, D.C.; Ringenberg, Q.S.; Yarbro, J.W. Vascular toxicity associated with antineoplastic agents. J. Clin. Oncol., 1986, 4(9), 1405-1417.
[35]
Meinardi, M.T.; Gietema, J.A.; van Veldhuisen, D.J. vander Graaf, W.T.; de Vries, E.G.; Sleijfer, D.T. Long-term chemotherapy-related cardiovascular morbidity. Cancer Treat. Rev., 2000, 26(6), 429-447.
[36]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2015. CA Cancer J. Clin., 2015, 65(1), 5-29.
[37]
Howlader, N.; Krapcho, M.; Noone, A.M.; Garshell, J.; Miller, D.; Altekruse, S.F. SEER Cancer Stat. Rev., 1975-2012. Updated April, 2015.. http://seer.cancer.gov/csr/1975_2012/ (accessed October 12, 2016)
[38]
Bardeesy, N.; DePinho, R.A. Pancreatic cancer biology and genetics. Nat. Rev. Cancer, 2002, 2(12), 897-909.
[39]
Ghadirian, P.; Lynch, H.T.; Krewski, D. Epidemiology of pancreatic cancer: An overview. Cancer Detect. Prev., 2003, 27(2), 87-93.
[40]
Hassan, M.M.; Bondy, M.L.; Wolff, R.A.; Abbruzzese, J.L.; Vauthey, J.N.; Pisters, P.W.; Evans, D.B.; Khan, R.; Chou, T.H.; Lenzi, R.; Jiao, L.; Li, D. Risk factors for pancreatic cancer: Case-control study. Am. J. Gastroenterol., 2007, 102(12), 2696-2707.
[41]
Michaud, D.S.; Giovannucci, E.; Willett, W.C.; Colditz, G.A.; Stampfer, M.J.; Fuchs, C.S. Physical activity, obesity, height, and the risk of pancreatic cancer. JAMA, 2001, 286(8), 921-929.
[42]
Raimondi, S.; Maisonneuve, P.; Lowenfels, A.B. Epidemiology of pancreatic cancer: An overview. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(12), 699-708.
[43]
Ryan, D.P.; Hong, T.S.; Bardeesy, N. Pancreatic adenocarcinoma. N. Engl. J. Med., 2014, 371(22), 2140-2141.
[44]
Vincent, A.; Herman, J.; Schulick, R.; Hruban, R.H.; Goggins, M. Pancreatic cancer. Lancet, 2011, 378(9791), 607-620.
[45]
Maitra, A.; Hruban, R.H. Pancreatic cancer. Annu. Rev. Pathol., 2008, 3(1), 157-188.
[46]
Wanebo, H.J.; Vezeridis, M.P. Pancreatic carcinoma in perspective. A continuing challenge. Cancer, 1996, 78(Suppl. 3), 580-591.
[47]
Modolell, I.; Guarner, L.; Malagelada, J.R. Vagaries of clinical presentation of pancreatic and biliary tract cancer. Ann. Oncol., 1999, 10(Suppl. 4), 82-84.
[48]
Chari, S.T.; Leibson, C.L.; Rabe, K.G.; Timmons, L.J.; Ransom, J.; de Andrade, M. Pancreatic cancer-associated diabetes mellitus: prevalence and temporal association with diagnosis of cancer. Gastroenterology, 2008, 134(1), 95-101.
[49]
Gharibi, A.; Adamian, Y.; Kelber, J.A. Cellular and molecular aspects of pancreatic cancer. Acta Histochem., 2016, 118(3), 305-316.
[50]
Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L. Detection and localization of surgically resectable cancers with a multi-analyte blood test. Science, 2018, 359(6378), 926-930.
[51]
Kim, C.B.; Ahmed, S.; Hsueh, E.C. Current surgical management of pancreatic cancer. J. Gastrointest. Oncol., 2011, 2(3), 126-135.
[52]
Goodman, K.A.; Hajj, C. Role of radiation therapy in the management of pancreatic cancer. J. Surg. Oncol., 2013, 107(1), 86-96.
[53]
Brunet, L.R.; Hagemann, T.; Gaya, A.; Mudan, S.; Marabelle, A. Have lessons from past failures brought us closer to the success of immunotherapy in metastatic pancreatic cancer? OncoImmunology, 2016, 5(4) e1112942
[54]
Grasso, C.; Jansen, G.; Biovammetti, E. Drug resistance in pancreatic cancer: Impact of altered energy metabolism. Crit. Rev. Oncol. Hematol., 2017, 114(1), 139-152.
[55]
Burris, H.A., III; Moore, M.J.; Andersen, J.; Green, M.R.; Rothenberg, M.L.; Modiano, M.R. Improvements in survival and clinical benefit with gemcitabine as first-line therapy for patients with advanced pancreas cancer: a randomized trial. J. Clin. Oncol., 1997, 15(6), 2403-2413.
[56]
de Sousa Cavalcante, L.; Monteiro, G. Gemcitabine: metabolism and molecular mechanisms of action, sensitivity and chemoresistance in pancreatic cancer. Eur. J. Pharmacol., 2014, 741(1), 8-16.
[57]
Wong, H.H.; Lemoine, N.R. Pancreatic cancer: molecular pathogenesis and new therapeutic targets. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(7), 412-422.
[58]
Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; Campos, D.; Lim, R. ding, K.; Clark, G.; Voskoglou-Nomikos, T.; Ptasynski, M.; Parulekar, W. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: a phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol., 2007, 25(15), 1960-1966.
[59]
Delitto, D.; Vertes-George, E.; Hughes, S.J.; Behrns, K.E.; Trevino, J.G. c-Met signaling in the development of tumorigenesis and chemoresistance: potential applications in pancreatic cancer. World J. Gastroenterol., 2014, 20(26), 8458-8470.
[60]
Kang, C.M.; Babicky, M.L.; Lowy, A.M. The RON receptor tyrosine kinase in pancreatic cancer pathogenesis and its potential implications for future targeted therapies. Pancreas, 2014, 43(2), 183-189.
[61]
Carpenito, C.; Milone, M.C.; Hassan, R.; Simonet, J.C.; Lakhal, M.; Suhoski, M.M.; Varela-Rohena, A.; Haines, K.M.; Heitjan, D.F.; Albeida, S.M.; Carroll, R.G.; Riley, J.L.; Pastan, I.; June, C.H. Control of large, established tumor xenografts with genetically retargeted human T cells containing CD28 and CD137 domains. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3360-3365.
[62]
Finn, O.J. Vaccines for cancer prevention: A practical and feasible approach to the cancer epidemic. Cancer Immunol. Res., 2014, 2(8), 708-713.
[63]
Nakamura, T.; Nishizawa, T.; Hagiya, M.; Seki, T.; Shimonishi, M.; Sugimura, A.; Tashiro, K.; Shimizu, S. Molecular cloning and expression of human hepatocyte growth factor. Nature, 1989, 342(6248), 440-443.
[64]
Koike, H.; Ishida, A.; Shimamura, M.; Mizuno, S.; Nakamura, T.; Ogihara, T.; Kaneda, Y.; Morishita, R. Prevention of onset of Parkinson’s disease by in vivo gene transfer of human hepatocyte growth factor in rodent model: A model of gene therapy for Parkinson’s disease. Gene Ther., 2006, 13(23), 1639-1644.
[65]
Martins, G.J.; Plachez, C.; Powell, M. Loss of embryonic MET signaling alters profiles of hippocampal interneurons. Dev. Neurosci., 2007, 29(1-2), 143-158.
[66]
Nakamura, T.; Mizuno, S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. Proc. Jap. Acad., Ser. B, Phys. Biol. Sci., 2010, 86(6), 588-610.
[67]
Bottaro, D.P.; Rubin, J.D.; Faletto, D.L.; Chan, A.M.; Kmiecik, T.E.; Vande Woude, G.F.; Aaronson, S.A. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science, 1991, 251(4995), 802-804.
[68]
Ma, P.C.; Maulik, G.; Christensen, J.; Salgia, R. C-Met: Structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev., 2003, 22(4), 309-325.
[69]
Skead, G.; Govender, D. Gene of the month: MET. J. Clin. Pathol., 2015, 68(6), 405.
[70]
Gallo, S.; Sala, V.; Gatti, S.; Crepaldi, T. Cellular and molecular mechanisms of HGF/Met in the cardiovascular system. Clin. Sci. (Lond.), 2015, 129(12), 1173-1193.
[71]
Isobe, M.; Futamatsu, H.; Suzuki, J. Hepatocyte growth factor: Effects on immune-mediated heart diseases. TCM, 2006, 16(6), 188-193.
[72]
Madonna, R.; Cevik, C.; Nasser, M.; De Caterina, R. Hepatocyte growth factor: Molecular biomarker and player in cardioprotection and cardiovascular regeneration. Thromb. Haemost., 2012, 107(4), 656-661.
[73]
Yang, X.P.; Liu, S.L.; Xu, J.F.; Cao, S.C.; Li, Y.; Zhou, Y.B. Pancreatic cancer stellate cells increase pancreatic cancer cells invasion through the hepatocyte growth factor/c-Met/survivin regulated by P53/P21. Exp. Cell Res., 2017, 357(1), 79-87.
[74]
Seki, T.; Hagiya, M.; Shimonishi, M.; Nakamura, T.; Shimizu, S. Organization of the human hepatocyte growth factor-encoding gene. Gene, 1991, 102(2), 213-219.
[75]
Basillico, C.; Amesano, A.; Galluzzo, M.; Comoglio, P.M.; Michieli, P. A high affinity hepatocyte growth factor-binding site in the immunoglobulin-like region of Met. J. Biol. Chem., 2008, 283(30), 21267-21277.
[76]
Birchmeier, C.; Birchmeier, W.; Gherardi, E.; Vande Woude, G.F. Met, metastasis, motility and more. Nat. Rev. Mol. Cell Biol., 2003, 4(12), 915-925.
[77]
Miyazawa, K.; Shimomura, T.; Kitamura, A.; Kondo, J.; Morimoto, Y.; Kitamura, N. Molecular cloning and sequence analysis of the cDNA for a human serine protease responsible for activation of hepatocyte growth factor. Structural similarity of the protease precursor to blood coagulation factor XII. J. Biol. Chem., 1993, 268(14), 10024-10028.
[78]
Wright, J.W.; Kawas, L.H.; Harding, J.W. The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases. Prog. Neurobiol., 2015, 125(1), 26-46.
[79]
Gherardi, E.; Sandin, S.; Petoukhov, M.V.; Finch, J.; Youles, M.E.; Ofverstedt, L.G.; Miguel, R.N.; Blundell, T.L.; Vande Woude, G.F.; Skoglund, U.; Svergun, D.I. Structural basis of hepatocyte growth factor/scatter factor and MET signaling. Proc. Natl. Acad. Sci. USA, 2006, 103(11), 4046-4051.
[80]
Holmes, O.; Pillozzi, S.; Deakin, J.A.; Carafoli, F.; Kemp, L.; Butler, P.J.; Lyon, M.; Gherardi, E. Insights into the structure/function of hepatocyte growth factor/scatter factor from studies with individual domains. J. Mol. Biol., 2007, 367(2), 395-408.
[81]
Stamos, J.; Lazarus, R.A.; Yao, X.; Kirchhofer, D.; Wiesmann, C. Crystal structure of the HGF beta-chain in complex with the Sema domain of the Met receptor. EMBO J., 2004, 23(12), 2325-2335.
[82]
Lyon, M.; Deakin, J.A.; Gallagher, J.T. The mode of action of heparin and dermatan sulfates in the regulation of hepatocyte growth factor/scatter factor. J. Biol. Chem., 2002, 277(2), 1040-1046.
[83]
Youles, M.; Holmes, O.; Petoukhov, M.V.; Nessen, M.A.; Stivala, S.; Svergun, D.I.; Gherardi, E. Engineering the NK1 fragment of hepatocyte growth factor/scatter factor as a MET receptor antagonist. J. Mol. Biol., 2008, 377(3), 616-622.
[84]
Chirgadze, D.Y.; Hepple, J.P.; Zhou, H.; Byrd, R.A.; Blundell, T.L.; Cherardi, E. Crystal structure of the NK1 fragment of HGF/SF suggests a novel mode for growth factor dimerization and receptor binding. Nat. Struct. Biol., 1999, 6(1), 72-79.
[85]
Tolbert, W.D.; Daugherty, J.; Gao, C.; Xie, Q.; Miranti, C.; Gherardi, E.; Vande Woude, G.; Xu, H.E. A mechanistic basis for converting a receptor tyrosine kinase agonist to an antagonist. Proc. Natl. Acad. Sci. USA, 2007, 104(37), 14592-14597.
[86]
Sheth, P.R.; Hays, J.L.; Elferink, L.A.; Watowich, S.J. Biochemical basis for the functional switch that regulates hepatocyte growth factor receptor tyrosine kinase activation. Biochemistry, 2008, 47(13), 4028-4038.
[87]
Gherardi, E.; Birchmeier, W.; Birchmeier, C.; Vande Woude, G. Targeting MET in cancer: Rationale and progress. Nat. Rev. Cancer, 2012, 12(2), 89-103.
[88]
Stella, M.C.; Comoglio, P.M. HGF: A multifunctional growth factor controlling cell scattering. Int. J. Biochem. Cell Biol., 1999, 31(12), 1357-1362.
[89]
Cooper, S.; Park, M.; Blair, D.G.; Tainsky, M.A.; Huebner, K.; Croce, C.M.; Vande Woude, G.F. Molecular cloning of a new transforming gene from a chemically transformed human cell line. Nature, 1984, 311(5981), 29-33.
[90]
Organ, S.L.; Tsao, M.S. An overview of the c-MET signaling pathway. Ther. Adv. Med. Oncol., 2011, 3(Suppl. 1), S7-S19.
[91]
Matsumoto, K.; Nakamura, T. NK4 (HGF-antagonist/angiogenesis inhibitor) in cancer biology and therapeutics. Cancer Sci., 2003, 94(4), 321-327.
[92]
Gherardi, E.; Youles, M.E.; Miguel, R.N.; Blundell, T.L.; Lamele, L.; Gough, J.; Bandyopadhyay, A.; Hartmann, G.; Butler, P.J. Functional map and domain structure of MET, the product of the c-met proto-oncogene and receptor for hepatocyte growth factor/scatter factor. Proc. Natl. Acad. Sci. USA, 2003, 100(21), 12039-12044.
[93]
Okigaki, M.; Komada, M.; Uehara, Y.; Miyazawa, K.; Kitamura, N. Functional characterization of human hepatocyte growth factor mutants obtained by deletion of structural domains. Biochemistry, 1992, 31(40), 9555-9561.
[94]
Rosario, M.; Birchmeier, W. How to make tubes: Signaling by the Met receptor tyrosine kinase. Trends Cell Biol., 2003, 13(6), 328-335.
[95]
Tulasne, D.; Foveau, B. The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ., 2008, 15(3), 427-434.
[96]
Nakamura, T.; Sakai, K.; Matsumoto, K. Hepatocyte growth factor twenty years on: Much more than a growth factor. J. Gastroenterol. Hepatol., 2011, 26(Suppl. 1), 188-202.
[97]
Rong, S.; Segal, S.; Anver, M.; Resau, J.H.; Vande Woude, G.F. Invasiveness and metastasis of NIH 3T3 cells induced by Met-hepatocyte growth factor/scatter factor autocrine stimulation. Proc. Natl. Acad. Sci. USA, 1994, 91(11), 4731-4735.
[98]
Ebert, M.; Yokoyama, M.; Friess, H.; Buchler, M.W.; Dorc, M. Coexpression of the c-Met ptoto-oncogene and hepatocyte growth factor in human pancreatic cancer. Cancer Res., 1994, 54(22), 5775-5778.
[99]
Avan, A.; Quint, K.; Nicolini, F.; Funel, N.; Frampton, A.E.; Maftouh, M.; Pelliccioni, S.; Schuurhuis, G.J.; Peters, G.J.; Giovannetti, E. Enhancement of the antiproliferative activity of gemcitabine by modulation of c-Met pathway in pancreatic cancer. Curr. Pharm. Des., 2013, 19(5), 940-950.
[100]
Rizwani, W.; Allen, A.E.; Trevino, J.G. Hepatocyte growth factor from a clinical perspective: A pancreatic cancer challenge. Cancers (Basel), 2015, 7(3), 1785-1805.
[101]
Yoshimura, T.; Yuhki, N.; Wang, M.H.; Skeel, A.; Leonard, E.J. Cloning, sequencing, and expression of human macrophage stimulating protein (MSP, MST1) confirms MSP as a member of the family of kringle proteins and locates the MSP gene on chromosome 3. J. Biol. Chem., 1993, 268(21), 15461-15468.
[102]
Leonard, E.J.; Danilkovitch, A. Macrophage stimulating protein. Adv. Cancer Res., 2000, 77(1), 139-167.
[103]
Wagh, P.K.; Peace, B.E.; Waltz, S.E. Met-related receptor tyrosine kinase Ron in tumor growth and metastasis. Adv. Cancer Res., 2008, 100(1), 1-33.
[104]
Wang, M.H.; Dlugosz, A.A.; Sun, Y.; Suda, T.; Skeel, A.L.; Leonard, E.J. Macrophage-stimulating protein induces proliferation and migration of murine keratinocytes. Exp. Cell Res., 1996, 226(1), 39-46.
[105]
Leonar, E.J.; Skeel, A.H. Isolation of macrophage stimulating protein (MSP) from human serum. Exp. Cell Res., 1978, 114(1), 117-126.
[106]
Skeel, A.; Yoshimura, T.; Showalter, S.D.; Tanaka, S.; Appella, E.; Leonard, E.J. Macrophage stimulating protein: purification, partial amino acid sequence, and cellular activity. J. Exp. Med., 1991, 173(5), 1227-1234.
[107]
Han, S.; Stuart, L.A.; Degen, S.J. Characterization of the DNF15S2 locus on human chromosome 3: Identification of a gene coding for four kringle domains with homology to hepatocyte growth factor. Biochemistry, 1991, 30(40), 9768-9780.
[108]
Ganesan, R.; Kolumam, G.A.; Lin, S.J.; Xie, M.H.; Santell, L.; Wu, T.D.; Lazarus, R.A.; Chaudhuri, A.; Kirchhofer, D. Proteolytic activation of pro-macrophage-stimulating protein by hepsin. Mol. Cancer Res., 2011, 9(9), 1175-1186.
[109]
Wang, M.H.; Yoshimura, T.; Skeel, A.; Leonard, E.J. Proteolytic conversion of single chain precursor macrophage-stimulating protein to a biologically active heterodimer by contact enzymes of the coagulation cascade. J. Biol. Chem., 1994, 269(19), 3436-3440.
[110]
Ronsin, C.; Muscatelli, F.; Mattei, M.G.; Breathnach, R. A novel putative receptor protein tyrosine kinase of the met family. Oncogene, 1993, 8(5), 1195-1202.
[111]
Gaudino, G.; Follenzi, A.; Naldini, L.; Collesi, C.; Santoro, M.; Gallo, K.A.; Godowski, P.J.; Comoglio, P.M. RON is a heterodimeric tyrosine kinase receptor activated by the HGF homologue MSP. EMBO J., 1994, 13(15), 3524-3532.
[112]
Wang, M.H.; Julian, F.M.; Breathnach, R.; Godowski, P.J.; Takehara, T.; Yoshikawa, W.; Hagiya, M.; Leonard, E.J. Macrophage stimulating protein (MSP) binds to its receptor via the MSP beta chain. J. Biol. Chem., 1997, 272(27), 16999-17004.
[113]
Waltz, S.E.; McDowell, S.A.; Muraoka, R.S.; Air, E.L.; Flick, L.M.; Chen, Y.Q.; Wang, M.H.; Degan, S.J. Functional characterization of domains contained in hepatocyte growth factor-like protein. J. Biol. Chem., 1997, 272(48), 30526-30537.
[114]
Danilkovitch, A.; Miller, M.; Leonard, E.J. Interaction of macrophage-stimulating protein with its receptor. Residues critical for beta chain binding and evidence for independent alpha chain binding. J. Biol. Chem., 1999, 274(42), 29937-29943.
[115]
Yao, H.P.; Zhou, Y.Q.; Zhang, R.; Wang, M.H. MSP-RON signaling in cancer: pathogenesis and therapeutic potential. Nat. Rev. Cancer, 2013, 13(7), 466-481.
[116]
Chaudhuri, A.; Xie, M.H.; Yang, B.; Mahapatra, K.; Liu, J.; Marsters, S.; Bodepudi, S.; Ashkenazi, A. Distinct involvement of the Gab1 and Grb2 adaptor proteins in signal transduction by the related receptor tyrosine kinases RON and MET. J. Biol. Chem., 2011, 286(37), 32762-32774.
[117]
Wang, M.H.; Lee, W.; Luo, Y.L.; Weis, M.T.; Yao, H.P. Altered expression of the RON receptor tyrosine kinase in various epithelial cancers and its contribution to tumourigenic phenotypes in thyroid cancer cells. J. Pathol., 2007, 213(4), 402-411.
[118]
Santoro, M.M.; Penengo, L.; Minetto, M.; Orecchia, S.; Cilli, M.; Gaudino, G. Point mutations in the tyrosine kinase domain release the oncogenic and metastatic potential of the Ron receptor. Oncogene, 1998, 17(6), 741-749.
[119]
Potratz, J.C.; Saunders, D.N.; Wai, D.H.; Ng, T.L.; McKinney, S.E.; Carboni, J.M.; Gottardis, M.M.; Triche, T.J.; Jurgens, H.; Pollak, M.N.; Aparicio, S.A.; Sorensen, P.H. Synthetic lethality screens reveal RPS6 and MST1R as modifiers of insulin-like growth factor-1 receptor inhibitor activity in childhood sarcomas. Cancer Res., 2010, 70(21), 8770-8781.
[120]
Camp, E.R.; Yang, A.; Gray, M.J.; Fan, F.; Hamilton, S.R.; Evans, D.B.; Hooper, A.T.; Pereira, D.S.; Hicklin, D.J.; Ellis, L.M. Tyrosine kinase receptor RON in human pancreatic cancer: expression, function, and validation as a target. Cancer, 2007, 109(6), 1030-1039.
[121]
Thomas, R.M.; Jaquish, D.V.; French, R.P.; Lowy, A.M. The RON tyrosine kinase receptor regulates vascular endothelial growth factor production in pancreatic cancer cells. Pancreas, 2010, 39(3), 301-307.
[122]
Passos-Silva, D.G.; Brandan, E.; Santos, R.A.S. Angiotensins as therapeutic targets beyond heart disease. Trends Pharmacol. Sci., 2015, 36(5), 310-320.
[123]
Wang, M.H.; Padhye, S.S.; Guin, S.; Ma, Q.; Zhou, Y.Q. Potential therapeutics specific to c-MET/RON receptor tyrosine kinases for molecular targeting in cancer therapy. Acta Pharmacol. Sin., 2010, 31(9), 1181-1188.
[124]
Gordon, M.S.; Sweeney, C.S.; Mendelson, D.S.; Eckhardt, S.G.; Anderson, A.; Beaupre, D.M.; Branstetter, D.; Burgess, T.L.; Coxon, A.; Deng, H.; Kaplan-Lefko, P.; Leitch, I.M.; Oliner, K.S.; Yan, L.; Zhu, M.; Gore, L. Safety, pharmacokinetics, and pharmacodynamics of AMG 102, a fully human hepatocyte growth factor-neutralizing monoclonal antibody, in a first-in-human study of patients with advanced solid tumors. Clin. Cancer Res., 2010, 16(2), 699-710.
[125]
Wright, J.W.; Kawas, L.H.; Harding, J.W. A role for the brain RAS in Alzheimer’s and Parkinson;s diseases. Front. Endocrinol., 2013, 4(1), article 158.
[126]
Allen, A.M.; Moeller, I.; Jenkings, T.A.; Zhuo, J.; Aldred, G.P.; Chai, S.Y.; Mendelsohn, F.A. Angiotensin receptors in the nervous system. Brain Res. Bull., 1998, 47(1), 17-28.
[127]
Sandberg, K.; Ji, H.; Catt, K.J. Regulation of angiotensin II receptors in rat brain during dietary sodium changes. Hypertension, 1994, 23(Suppl. 1), I-137-I-141.
[128]
Unger, T.; Chung, O.; Csikos, T.; Culman, J.; Gallinat, S.; Gohlke, P.; Hohle, S.; Meffert, S.; Stoll, M.; Stroth, U.; Zhu, Y.A. Angiotensin receptors. J. Hypertens., 1996, 14(5), S95-S103.
[129]
Glass, C.K.; Saijo, K.; Winner, B.; Marchetto, M.C.; Gage, F.H. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010, 140(6), 918-934.
[130]
Phillips, M.I.; de Oliveira, E.M. Brain renin angiotensin in disease. J. Mol. Med., 2008, 86(6), 715-722.
[131]
Hanesworth, J.M.; Sardinia, J.F.; Krebs, L.T.; Hall, K.L.; Harding, J.W. Elucidation of a specific binding site for angiotensin II(3-8), angiotensin IV, in mammalian heart membranes. J. Pharmcol. Exp. Ther., 1993, 266(2), 1036-1042.
[132]
Harding, J.W.; Cook, V.I.; Miller-Wing, A.V.; Hanesworth, J.M.; Sardinia, M.F.; Hall, K.L.; Stobb, J.W.; Swanson, G.N.; Coleman, J.K.; Wright, J.W.; Harding, E.C. Identification of an AII (3-8) [AIV] binding site in guinea pig hippocampus. Brain Res., 1992, 583(1-2), 340-343.
[133]
Swanson, G.N.; Hanesworth, J.M.; Sardinia, M.F.; Coleman, J.K.; Wright, J.W.; Hall, K.L.; Miller-Wing, A.V.; Stobb, J.W.; Cook, V.I.; Harding, E.C.; Harding, J.W. Discovery of a distinct binding site for angiotensin II (3-8), a putative angiotensin IV receptor. Regul. Pept., 1992, 40(3), 409-419.
[134]
Wright, J.W.; Krebs, L.T.; Stobb, J.W.; Harding, J.W. The angiotensin IV system: Functional implications. Front. Neuroendocrinol., 1995, 16(1), 23-52.
[135]
Paul, M.; Poyan Mehr, A.; Kreutz, R. Physiology of local renin-angiotensin system. Physiol. Rev., 2006, 86(3), 747-803.
[136]
Skipworth, J.R.A.; Szabadkai, L.G.; Olde Damink, S.W.M.; Leung, P.S.; Humphries, S.E.; Montgomery, H.E. Review article: Pancreatic renin-angiotensin systems in health and disease. Aliment. Pharmacol. Ther., 2011, 34(8), 840-852.
[137]
Campbell, D.J.; Habener, J.F. Angiotensinogen gene is expressed and differentially regulated in multiple tissues of the rat. J. Clin. Invest., 1986, 78(1), 31-39.
[138]
Deshepper, C.F.; Mellon, S.H.; Cumin, F.; Baxter, J.D.; Ganong, W.F. Analysis by immunocytochemistry and in situ hybridization of renin and its mRNA in kidney, testis, adrenal, and pituitary of the rat. Proc. Natl. Acad. Sci. USA, 1986, 83(19), 7552-7556.
[139]
Leung, P.S.; Ip, S.P. Pancreatic acinar cell: Its role in acute pancreatitis. Int. J. Biochem. Cell Biol., 2006, 38(7), 1024-1030.
[140]
Leung, P.S.; Chan, W.P.; Wong, T.P.; Sernia, C. Expression and localization of the renin-angiotensin system in the rat pancreas. J. Endocrinol., 1999, 160(1), 13-19.
[141]
Speth, R.C.; Daubert, D.L.; Grove, K.L.; Angiotensin, I.I. A reproductive hormone too? Regul. Pept., 1999, 79(1), 25-40.
[142]
Wright, J.W.; Harding, J.W. Brain renin-angiotensin: a new look at an old system. Prog. Neurobiol., 2011, 95(1), 49-67.
[143]
George, A.J.; Thomas, W.G.; Hannan, R.D. The renin angiotensin system and cancer: Old dog, new tricks. Nat. Rev. Cancer, 2010, 10(11), 745-759.
[144]
Hernandez, N.A.; Correa, E.; Avila, E.P.; Vela, T.A.; Perez, V.M. PAR1 is selectively over expressed in high grade breast cancer patients: A cohort study. J. Transl. Med., 2009, 7, 47.
[145]
Chow, L.; Rezmann, L.; Catt, K.J.; Louis, W.J.; Frauman, A.G.; Nahmias, C.; Louis, S.N. Role of the renin-angiotensin system in prostate cancer. Mol. Cell. Endocrinol., 2009, 302(2), 219-229.
[146]
Wilop, S.; von Hobe, S.; Crysandt, M.; Esser, A.; Osieka, R.; Jost, E. Impact of angiotensin I converting enzyme inhibitors and angiotensin II type 1 receptor blockers on survival in patients with advanced non-small-cell lung cancer undergoing first-line platinum-based chemotherapy. J. Cancer Res. Clin. Oncol., 2009, 135(10), 1429-1435.
[147]
Napoleone, E.; Cutrone, A.; Cugino, D.; Amore, C.; Di Santo, A.; Iacoviello, L.; de Gaetano, G.; Donati, M.B.; Lorenzet, R. Inhibition of the renin-angiotensin system downregulates tissue factor and vascular endothelial growth factor in human breast carcinoma cells. Thromb. Res., 2012, 129(6), 736-742.
[148]
Okazaki, M.; Fushida, S.; Harada, S.; Tsukada, T.; Kinoshita, J.; Oyama, K.; Tajima, H.; Ninomiya, I.; Fujimura, T.; Ohta, T. The angiotensin II type 1 receptor blocker candesartan suppresses proliferation and fibrosis in gastric cancer. Cancer Lett., 2014, 355(1), 46-53.
[149]
Egami, K. Role of host angiotensin II type 1 receptor in tumor angiogenesis and growth. J. Clin. Invest., 2003, 112(1), 67-75.
[150]
Chauhan, V.P.; Martin, J.D.; Liu, H.; Lacorre, D.A.; Jain, S.R.; Kozin, S.V.; Stylianopoulos, T.; Mousa, A.S.; Han, X.; Adstamongkonkul, P.; Popovic, Z.; Huang, P.; Bawendi, M.G.; Boucher, Y.; Jain, R.K. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun., 2013, 4, 2516.
[151]
Chen, Y.H.; Huang, C.H.; Lu, H.I.; Chen, C.H.; Huang, W.T.; Hsieh, M.J. Prognostic impact of renin-angiotensin system blockade in esophageal squamous cell carcinoma. J. Renin Angiotensin Aldosterone Syst., 2015, 16(4), 1185-1192.
[152]
Chae, Y.K.; Brown, E.N.; Lei, X.; Milhem-Bertrandt, A.; Giordano, S.H.; Litton, J.K.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M.; Chavez-Macgregor, M. Use of ACE inhibitors and angiotensin receptor blockers and primary breast cancer outcomes. J. Cancer, 2013, 4(7), 549-556.
[153]
Engineer, D.R.; Burney, B.O.; Hayes, T.G.; Garcia, J.M. Exposure to ACEI/ARB and β-blockers is associated with improved survival and decreased tumor progression and hospitalizations in patients with advanced colon cancer. Transl. Oncol., 2013, 6(5), 539-545.
[154]
Yuge, K.; Miyajima, A.; Tanaka, N.; Shirotake, S.; Kosaka, T.; Kikuchi, E.; Oya, M. Prognostic value of renin-angiotensin system blockade in non-muscle-invasive bladder cancer. Ann. Surg. Oncol., 2012, 19(12), 3987-3993.
[155]
Cardwell, C.R.; McMenamin, U.C.; Hicks, B.M.; Hughes, C.; Cantwell, M.M.; Murray, L.J. Drugs affecting the renin-angiotensin system and survival from cancer: A population based study of breast, colorectal and prostate cancer patient cohorts. BMC Med., 2014, 12, 28.
[156]
Chiang, Y.Y.; Chen, K.B.; Tsai, T.H.; Tsai, W.C. Lowered cancer risk with ACE inhibitors/ARBs: A population-based cohort study. J. Clin. Hypertens., 2014, 16(1), 27-33.
[157]
Hallas, J.; Christensen, R.; Andersen, M.; Friis, S.; Bjerrum, L. Long term use of drugs affecting the renin-angiotensin system and the risk of cancer: A population-based case-control study. Br. J. Clin. Pharmacol., 2012, 74(1), 180-188.
[158]
Huang, C.C.; Chan, W.L.; Chen, Y.C.; Chen, T.J.; Lin, S.J.; Chen, J.W.; Leu, H.B. Angiotensin II receptor blockers and risk of cancer in patients with systemic hypertension. Am. J. Cardiol., 2011, 107(7), 1028-1033.
[159]
Pasternak, B.; Svanstrom, H.; Callreus, T.; Melbye, M.; Hviid, A. Use of angiotensin receptor blockers and the risk of cancer. Circulation, 2011, 123(16), 1729-1736.
[160]
Rao, G.A.; Mann, J.R.; Shoaibi, A.; Pai, S.B.; Bottai, M.; Sutton, S.S.; Haddock, K.S.; Bennett, C.I.; Hebert, J.R. Angiotensin receptor blockers: Are they related to lung cancer? J. Hypertens., 2013, 31(8), 1669-1675.
[161]
Sipahi, I.; Debanne, S.M.; Rowland, D.Y.; Simon, D.I.; Fang, J.C. Angiotensin-receptor blockade and risk of cancer: Meta-analysis of randomized controlled trials. Lancet Oncol., 2010, 11(7), 627-636.
[162]
Kim, S.; Toyokawa, H.; Yamao, J.; Satoi, S.; Yanagimoto, H.; Yamamoto, T.; Hirooka, S.; Yamaki, S.; Inoue, K.; Matsui, Y.; Kwon, A.H. Antitumor effect of angiotensin II type 1 receptor blocker losartan for orthotopic rat pancreatic adenocarcinoma. Pancreas, 2014, 43(6), 886-890.
[163]
Park, H.; Poo, N.N. Neurotrophin regulation of neural circuit development and function. Nat. Rev. Neurosci., 2013, 14(1), 7-23.
[164]
Guimond, M.O.; Battista, M.C.; Nikjouitavabi, F.; Carmel, M.; Barres, V.; Doueik, A.A.; Fazli, L.; Gleave, M.; Sabbagh, R.; Gallo-Payet, N. Expression and role of the angiotensin II AT2 receptor in human prostate tissue: In search of a new therapeutic option for prostate cancer. Prostate, 2013, 73(10), 1057-1068.
[165]
Nakai, Y.; Isayama, H.; Ijichi, H.; Sasaki, T.; Kogure, H.; Yagioka, H.; Miyabayashi, K.; Mizuno, I.S.; Yamamoto, K.; Mouri, D.; Kawakubo, K.; Yamamoto, N.; Hirano, K.; Sasahira, N.; Tateishi, K.; Tada, M.; Koike, K. Phase I trial of gemcitabine and candesartan combination therapy in normotensive patients with advanced pancreatic cancer: GECA1. Cancer Sci., 2012, 103(8), 1489-1492.
[166]
Nakai, Y.; Isayama, H.; Ijichi, H.; Sasaki, T.; Takahara, N.; Ito, Y.; Matsubara, S.; Uchino, R.; Yagioka, H.; Arizumi, T.; Hamada, T.; Miyabayashi, K.; Mizuno, S.; Yamamoto, K.; Kogure, H.; Yamamoto, N.; Hirano, K.; Sasahira, N.; Tateishi, K.; Tada, M.; Koike, K. A multicenter phase II trial of gemcitabine and candesartan combination therapy in patients with advanced pancreatic cancer: GECA2. Invest. New Drugs, 2013, 31(5), 1294-1299.
[167]
de Gasparo, M.; Husain, A.; Alexander, W.; Catt, K.J.; Chiu, A.T.; Drew, M.; Goodfriend, T.; Harding, J.W.; Inagami, T.; Timmermans, P.B. Proposed update of angiotensin receptor nomenclature. Hypertension, 1995, 25(5), 924-939.
[168]
de Gasparo, M.; Catt, K.J.; Inagami, T.; Wright, J.W.; Unger, T. International Union of Pharmacology. XIII. The angiotensin II receptors. Pharmacol. Rev., 2000, 52(3), 415-472.
[169]
Kawas, L.H.; McCoy, A.T.; Yamamoto, B.J.; Wright, J.W.; Harding, J.W. Development of angiotensin IV analogs as hepatocyte growth factor/Met modifiers. J. Pharmacol. Exp. Ther., 2012, 340(3), 539-548.
[170]
McCoy, A.T.; Benoist, C.C.; Wright, J.W.; Kawas, L.H.; Bule-Ghogare, J.M.; Zhu, M.; Appleyard, S.M.; Wayman, G.A.; Harding, J.W. Evaluation of metabolically stabilized angiotensin IV analogs as procognitive/antidementia agents. J. Pharmacol. Exp. Ther., 2013, 344(1), 141-154.
[171]
Wright, J.W.; Kawas, L.H.; Harding, J.W. A role for the brain RAS in Alzheimer’s and Parkinson’s diseases. Front. Endocrinol., 2013, 4, 158.
[172]
Yamamoto, B.J.; Elias, P.D.; Masino, J.A.; Hudson, B.D.; McCoy, A.T.; Anderson, Z.J.; Varnum, M.D.; Sardinia, M.F.; Wright, J.W.; Harding, J.W. The angiotensin IV analog Nle-Tyr-Leu-ψ-(CH2-NH2)3-4-His-Pro-Phe (Norleual) can act as a hepatocyte growth factor/c-Met inhibitor. J. Pharmacol. Exp. Ther., 2010, 333(1), 161-173.
[173]
Kawas, L.H.; Yamamoto, B.J.; Wright, J.W.; Harding, J.W. Mimics of the dimerization domain of hepatocyte growth factor exhibit anti-Met and anticancer activity. J. Pharmacol. Exp. Ther., 2011, 339(2), 509-518.
[174]
Lu, P.C.; Yang, Y.S.; Wang, Z.C. Recent progress in the development of small c-Met inhibitors. Curr. Top. Med. Chem., 2019, 19(15), 1276-1288.
[175]
Kiehne, K.; Herzig, K.H.; Folsch, U.R. c-Met expression in pancreatic cancer and effects of hepatocyte growth factor on pancreatic cancer cell growth. Pancreas, 1997, 15(1), 35-40.
[176]
Church, K.J.; Vanderwerff, B.R.; Riggers, R.R.; McMicheal, M.D.; Mateo-Victoriano, B.; Sukumar, S.R.; Harding, J.W. Analogs of the hepatocyte growth factor and macrophage stimulating protein hinge regions act as Met and Ron dual inhibitors in pancreatic cancer cells. Anti-Cancer Drugs, 2016, 27(8), 766-779.
[177]
Church, K.J.; Vanderwerff, B.R.; Riggers, R.R.; Mateo-Victoriano, B.; Fagnan, M.; Phillip, H.; Harris, P.H. LeValley, J.C.; Harding, J.W. Norleual, a hepatocyte growth factor and macrophage stimulating protein dual antagonist, increases pancreatic cancer sensitivity to gemcitabine. Anti-Cancer Drugs, 2018, 29(4), 295-306.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy