Inhibition of PI3K/mTOR Pathways with GDC-0980 in Pediatric Leukemia: Impact on Abnormal FLT-3 Activity and Cooperation with Intracellular Signaling Targets

Author(s): Abdulhameed Al-Ghabkari*, Maneka A. Perinpanayagam, Aru Narendran.

Journal Name: Current Cancer Drug Targets

Volume 19 , Issue 10 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: GDC-0980 is a selective small molecule inhibitor of class I PI3K and mTOR pathway with a potent anti-proliferative activity.

Objective: We set out to evaluate the efficacy of GDC-0980, in pre-clinical studies, against pediatric leukemia cells.

Methods: The anti-neoplastic activity of GDC-0980 was evaluated in vitro using five different pediatric leukemia cells.

Results: Our data show that GDC-0980 significantly inhibited the proliferation of leukemia cell lines, KOPN8 (IC50, 532 nM), SEM (IC50,720 nM), MOLM-13 (IC50,346 nM), MV4;11 (IC50,199 nM), and TIB-202 (IC50, 848 nM), compared to normal control cells (1.23 µM). This antiproliferative activity was associated with activation of cellular apoptotic mechanism characterized by a decrease in Bcl-2 protein phosphorylation and enhanced PARP cleavage. Western blot analyses of GDC-0980 treated cells also showed decreased phosphorylation levels of mTOR, Akt and S6, but not ERK1/2. Notably, FLT3 phosphorylation was decreased in Molm-13 and MV4;11 cells following the application of GDC-0980. We further examined cellular viability of GDC-0980-treated primary leukemia cells isolated from pediatric leukemia patients. This study revealed a potential therapeutic effect of GDC-0980 on two ALL patients (IC50’s, 1.23 and 0.625 µM, respectively). Drug combination analyses of GDC-0980 demonstrated a synergistic activity with the MEK inhibitor Cobimetinib (MV4-11; 11, CI, 0.25, SEM, CI, 0.32, and TIB-202, CI, 0.55) and the targeted FLT3 inhibitor, Crenolanib (MV4-11; 11, CI, 0.25, SEM, CI, 0.7, and TIB-202, CI, 0.42).

Conclusion: These findings provide initial proof-of-concept data and rationale for further investigation of GDC-0980 in selected subgroups of pediatric leukemia patients.

Keywords: FLT3, PI3K, mTOR, cell cytotoxicity, ITD, ALL, AML.

[1]
Locatelli, F.; Moretta, F.; Rutella, S. Management of relapsed acute lymphoblastic leukemia in childhood with conventional and innovative approaches. Curr. Opin. Oncol., 2013, 25(6), 707-715.
[2]
Pui, C.H.; Carroll, W.L.; Meshinchi, S.; Arceci, R.J. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J. Clin. Oncol., 2011, 29(5), 551-565.
[3]
Sexauer, A.N.; Tasian, S.K. Targeting FLT3 signaling in childhood acute myeloid leukemia. Front Pediatr., 2017, 5, 248.
[4]
Klaeger, S.; Heinzlmeir, S.; Wilhelm, M.; Polzer, H.; Vick, B.; Koenig, P.A.; Reinecke, M.; Ruprecht, B.; Petzoldt, S.; Meng, C.; and Zecha, J. The target landscape of clinical kinase drugs. Science, 2017, 358(6367), 4368.
[5]
Lagunas-Rangel, F.A.; Chavez-Valencia, V. FLT3-ITD and its current role in acute myeloid leukaemia. Med. Oncol., 2017, 34(6), 114.
[6]
Weir, M.C.; Hellwig, S.; Tan, L.; Liu, Y.; Gray, N.S.; Smithgall, T.E. Dual inhibition of Fes and Flt3 tyrosine kinases potently inhibits Flt3-ITD+ AML cell growth. PLoS One, 2017, 12(7) e0181178
[7]
Chen, Y.; Pan, Y.; Guo, Y.; Zhao, W.; Ho, W.T.; Wang, J.; Xu, M.; Yang, F.C.; Zhao, Z.J. Tyrosine kinase inhibitors targeting FLT3 in the treatment of acute myeloid leukemia. Stem Cell Investig., 2017, 4, 48.
[8]
Smith, A.M.; Dun, M.D.; Lee, E.M.; Harrison, C.; Kahl, R.; Flanagan, H.; Panicker, N.; Mashkani, B.; Don, A.S.; Morris, J.; Toop, H. Activation of protein phosphatase 2A in FLT3+ acute myeloid leukemia cells enhances the cytotoxicity of FLT3 tyrosine kinase inhibitors. Oncotarget, 2016, 7(30), 47465-47478.
[9]
Martelli, A.M.; Nyåkern, M.; Tabellini, G.; Bortul, R.; Tazzari, P.L.; Evangelisti, C.; Cocco, L. Phosphoinositide 3-kinase/Akt signaling pathway and its therapeutical implications for human acute myeloid leukemia. Leukemia, 2006, 20(6), 911-928.
[10]
Tamburini, J.; Elie, C.; Bardet, V.; Chapuis, N.; Park, S.; Broet, P.; Cornillet-Lefebvre, P.; Lioure, B.; Ugo, V.; Blanchet, O.; Ifrah, N. Constitutive phosphoinositide 3-kinase/Akt activation represents a favorable prognostic factor in de novo acute myelogenous leukemia patients. Blood, 2007, 110(3), 1025-1028.
[11]
Lindblad, O.; Cordero, E.; Puissant, A.; Macaulay, L.; Ramos, A.; Kabir, N.N.; Sun, J.; Vallon-Christersson, J.; Haraldsson, K.; Hemann, M.T.; Borg, Å. Aberrant activation of the PI3K/mTOR pathway promotes resistance to sorafenib in AML. Oncogene, 2016, 35(39), 5119-5131.
[12]
Kraszewska, M.D.; Dawidowska, M.; Kosmalska, M.; Sędek, Ł.; Grzeszczak, W.; Kowalczyk, J.R.; Szczepański, T.; Witt, M. Polish Pediatric Leukemia Lymphoma Study Group. BCL11B, FLT3, NOTCH1 and FBXW7 mutation status in T-cell acute lymphoblastic leukemia patients. Blood Cells Mol. Dis., 2013, 50(1), 33-38.
[13]
Griffith, M.; Griffith, O.L.; Krysiak, K.; Skidmore, Z.L.; Christopher, M.J.; Klco, J.M.; Ramu, A.; Lamprecht, T.L.; Wagner, A.H.; Campbell, K.M.; Lesurf, R. Comprehensive genomic analysis reveals FLT3 activation and a therapeutic strategy for a patient with relapsed adult B-lymphoblastic leukemia. Exp. Hematol., 2016, 44(7), 603-613.
[14]
Martelli, A.M.; Evangelisti, C.; Chiarini, F.; McCubrey, J.A. The phosphatidylinositol 3-kinase/Akt/mTOR signaling network as a therapeutic target in acute myelogenous leukemia patients. Oncotarget, 2010, 1(2), 89-103.
[15]
Franke, T.F.; Kaplan, D.R.; Cantley, L.C.; Toker, A. Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science, 1997, 275(5300), 665-668.
[16]
Franke, T.F.; Kaplan, D.R.; Cantley, L.C.; Toker, A. Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging. Aging (Albany NY), 2011, 3(3), 192-222.
[17]
McCubrey, J.A.; Steelman, L.S.; Abrams, S.L.; Bertrand, F.E.; Ludwig, D.E.; Bäsecke, J.; Libra, M.; Stivala, F.; Milella, M.; Tafuri, A.; Lunghi, P. Targeting survival cascades induced by activation of Ras/Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways for effective leukemia therapy. Leukemia, 2008, 22(4), 708-722.
[18]
Toosi, B.; Zaker, F.; Alikarami, F.; Kazemi, A.; Ardestanii, M.T. VS-5584 as a PI3K/mTOR inhibitor enhances apoptotic effects of subtoxic dose arsenic trioxide via inhibition of NF-kappaB activity in B cell precursor-acute lymphoblastic leukemia. Biomed. Pharmacother., 2018, 102, 428-437.
[19]
Iezzi, A.; Caiola, E.; Broggini, M. Activity of pan-class I isoform PI3K/mTOR inhibitor PF-05212384 in combination with crizotinib in ovarian cancer xenografts and PDX. Transl. Oncol., 2016, 9(5), 458-465.
[20]
Sutherlin, D.P. Discovery of a potent, selective, and orally available class I phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) kinase inhibitor (GDC-0980) for the treatment of cancer. J. Med. Chem., 2011, 54(21), 7579-7587.
[21]
Wallin, J.J.; Edgar, K.A.; Guan, J.; Berry, M.; Prior, W.W.; Lee, L.; Lesnick, J.D.; Lewis, C.; Nonomiya, J.; Pang, J.; Salphati, L. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol. Cancer Ther., 2011, 10(12), 2426-2436.
[22]
Al-Nasiry, S.; Geusens, N.; Hanssens, M.; Luyten, C.; Pijnenborg, R. The use of Alamar Blue assay for quantitative analysis of viability, migration and invasion of choriocarcinoma cells. Hum. Reprod., 2007, 22(5), 1304-1309.
[23]
Zhao, X.M. Prediction of drug combinations by integrating molecular and pharmacological data. PLOS Comput. Biol., 2011, 7(12)e1002323
[24]
Quentmeier, H.; Reinhardt, J.; Zaborski, M.; Drexler, H.G. FLT3 mutations in acute myeloid leukemia cell lines. Leukemia, 2003, 17(1), 120-124.
[25]
Gibson, C.J.; Davids, M.S. BCL-2 Antagonism to target the intrinsic mitochondrial pathway of apoptosis. Clin. Cancer Res., 2015, 21(22), 5021-5029.
[26]
Seth, R.; Singh, A. Leukemias in children. Indian J. Pediatr., 2015, 82(9), 817-824.
[27]
Xu, C.; Nikolova, O.; Basom, R.S.; Mitchell, R.M.; Shaw, R.; Moser, R.D.; Park, H.; Gurley, K.E.; Kao, M.C.; Green, C.L.; Schaub, F.X. Functional precision medicine identifies novel druggable targets and therapeutic options in head and neck cancer. 2018, 24(12), 2828-2843.
[28]
Hoelder, S.; Clarke, P.A.; Workman, P. Discovery of small molecule cancer drugs: Successes, challenges and opportunities. Mol. Oncol., 2012, 6(2), 155-176.
[29]
Niu, N.; Wang, L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics, 2015, 16(3), 273-285.
[30]
Wilding, J.L.; Bodmer, W.F. Cancer cell lines for drug discovery and development. Cancer Res., 2014, 74(9), 2377-2384.
[31]
Larrosa-Garcia, M.; Baer, M.R. FLT3 inhibitors in acute myeloid leukemia: Current status and future directions. Mol. Cancer Ther., 2017, 16(6), 991-1001.
[32]
Fischer, M.; Schnetzke, U.; Spies-Weisshart, B.; Walther, M.; Fleischmann, M.; Hilgendorf, I.; Hochhaus, A.; Scholl, S. Impact of FLT3-ITD diversity on response to induction chemotherapy in patients with acute myeloid leukemia. Haematologica, 2017, 102(4), e129-e131.
[33]
Weisberg, E. FLT3 inhibition and mechanisms of drug resistance in mutant FLT3-positive AML. Drug Resist. Updat., 2009, 12(3), 81-89.
[34]
Chen, W.; Drakos, E.; Grammatikakis, I.; Schlette, E.J.; Li, J.; Leventaki, V.; Staikou-Drakopoulou, E.; Patsouris, E.; Panayiotidis, P.; Medeiros, L.J.; Rassidakis, G.Z. mTOR signaling is activated by FLT3 kinase and promotes survival of FLT3-mutated acute myeloid leukemia cells. Mol. Cancer, 2010, 9, 292.
[35]
Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR signaling in cancer. Front. Oncol., 2014, 4, 64.
[36]
Bhatti, M.; Ippolito, T.; Mavis, C.; Gu, J.; Cairo, M.S.; Lim, M.S.; Hernandez-Ilizaliturri, F.; Barth, M.J. Pre-clinical activity of targeting the PI3K/Akt/mTOR pathway in Burkitt lymphoma. Oncotarget, 2018, 9(31), 21820-21830.
[37]
Powles, T.; Lackner, M.R.; Oudard, S.; Escudier, B.; Ralph, C.; Brown, J.E.; Hawkins, R.E.; Castellano, D.; Rini, B.I.; Staehler, M.D.; Ravaud, A. Randomized open-label phase II trial of apitolisib (GDC-0980), a novel inhibitor of the PI3K/mammalian target of rapamycin pathway, versus everolimus in patients with metastatic renal cell carcinoma. J. Clin. Oncol., 2016, 34(14), 1660-1668.
[38]
Dolly, S.O.; Wagner, A.J.; Bendell, J.C.; Kindler, H.L.; Krug, L.M.; Seiwert, T.Y.; Zauderer, M.G.; Lolkema, M.P.; Apt, D.; Yeh, R.F.; Fredrickson, J.O. Phase I study of apitolisib (GDC-0980), dual phosphatidylinositol-3-kinase and mammalian target of rapamycin kinase inhibitor, in patients with advanced solid tumors. Clin. Cancer Res., 2016, 22(12), 2874-2884.
[39]
O’Reilly, M.S. Targeting multiple biological pathways as a strategy to improve the treatment of cancer. Clin. Cancer Res., 2002, 8(11), 3309-3310.
[40]
Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[41]
Yardley, D.A. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int. J. Breast Cancer, 2013. 137414
[42]
Baudy, A.R.; Dogan, T.; Flores-Mercado, J.E.; Hoeflich, K.P.; Su, F.; van Bruggen, N.; Williams, S.P. FDG-PET is a good biomarker of both early response and acquired resistance in BRAFV600 mutant melanomas treated with vemurafenib and the MEK inhibitor GDC-0973. EJNMMI Res., 2012, 2(1), 22.
[43]
Hoeflich, K.P.; Merchant, M.; Orr, C.; Chan, J.; Den Otter, D.; Berry, L.; Kasman, I.; Koeppen, H.; Rice, K.; Yang, N.Y.; Engst, S. Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res., 2012, 72(1), 210-219.
[44]
Heavey, S.; Cuffe, S.; Finn, S.; Young, V.; Ryan, R.; Nicholson, S.; Leonard, N.; McVeigh, N.; Barr, M.; O’Byrne, K.; Gately, K. In pursuit of synergy: An investigation of the PI3K/mTOR/MEK co-targeted inhibition strategy in NSCLC. Oncotarget, 2016, 7(48), 79526-79543.
[45]
Smith, C.C.; Lasater, E.A.; Lin, K.C.; Wang, Q.; McCreery, M.Q.; Stewart, W.K.; Damon, L.E.; Perl, A.E.; Jeschke, G.R.; Sugita, M.; Carroll, M. Crenolanib is a selective type I pan-FLT3 inhibitor. Proc. Natl. Acad. Sci. USA, 2014, 111(14), 5319-5324.
[46]
Galanis, A.; Ma, H.; Rajkhowa, T.; Ramachandran, A.; Small, D.; Cortes, J.; Levis, M. Crenolanib is a potent inhibitor of FLT3 with activity against resistance-conferring point mutants. Blood, 2014, 123(1), 94-100.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 19
ISSUE: 10
Year: 2019
Page: [828 - 837]
Pages: 10
DOI: 10.2174/1568009619666190326120833
Price: $65

Article Metrics

PDF: 17
HTML: 2

Special-new-year-discount