Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Cytoprotective Agents to Avoid Chemotherapy Induced Sideeffects on Normal Cells: A Review

Author(s): Seema Rohilla*, Harish Dureja and Vinay Chawla

Volume 19, Issue 10, 2019

Page: [765 - 781] Pages: 17

DOI: 10.2174/1568009619666190326120457

Price: $65

Abstract

Anticancer agents play a vital role in the cure of patients suffering from malignancy. Though, the chemotherapeutic agents are associated with various adverse effects which produce significant toxic symptoms in the patients. But this therapy affects both the malignant and normal cells and leads to constricted therapeutic index of antimalignant drugs which adversely impacts the quality of patients’ life. Due to these adversities, sufficient dose of drug is not delivered to patients leading to delay in treatment or improper treatment. Chemoprotective agents have been developed either to minimize or to mitigate the toxicity allied with chemotherapeutic agents. Without any concession in the therapeutic efficacy of anticancer drugs, they provide organ specific guard to normal tissues.

Keywords: Chemoprotective agents, cytoprotective, malignant, chemotherapeutic agent, palifermin, chemotherapy.

Next »
Graphical Abstract
[1]
List, A.F.; Gerner, E.W. Amifostine: A tonic or toxin to myeloid progenitors. Leuk. Res., 2000, 24, 1009-1011.
[2]
Liu, B.; Ezeogu, L.; Zellmer, L.; Yu, B.; Xu, N.; Joshua Liao, D. Protecting the normal in order to better kill the cancer. Cancer Med., 2015, 4, 1394-1403.
[3]
DeVita, V.T.; Chu, E. A history of cancer chemotherapy. Cancer Res., 2008, 68, 8643-8653.
[4]
Jena, G.; Vikram, A.; Tripathi, D.N.; Ramarao, P. Use of chemoprotectants in chemotherapy and radiation therapy: the challenges of selecting an appropriate agent. Integr. Cancer Ther., 2010, 9, 253-258.
[5]
Conklin, K.A. Cancer chemotherapy and antioxidants. J. Nutr., 2004, 134, 3201S-3204S.
[6]
Marx, G.M.; Friedlander, M.L. Drug toxicity prevention and management. CME. J. Gynecol. Oncol., 2010, 18, 29-33.
[8]
Links, M.; Lewis, C. Chemoprotectants: A review of their clinical pharmacology and therapeutic efficacy. Drugs, 1999, 57, 293-308.
[9]
Calabresi, P.; Chabner, B.A. Chemotherapy of neoplastic diseases, In: ; Hardman, J.G.; Limbird, L.E.; Perry, B.M.; Raymond, W.R., Eds.; Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 9th edition. McGraw-Hill, New Delhi, 1996; pp. 1225-1232.
[10]
Eisenberg, D.M.; Davis, R.B.; Ettner, L.S.; Appel, S.; Wilkey, S.; Van Rompay, M.; Kessler, R.C. Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. JAMA, 1998, 280, 1569-1575.
[11]
Armstrong, T.S.; Gilbert, M.R. Use of complementary and alternative medical therapy by patients with primary brain tumors. Curr. Neurol. Neurosci. Rep., 2008, 8, 264-268.
[12]
Drummond, D.C.; Noble, C.O.; Guo, Z.; Hayes, M.E.; Connolly-Ingram, C.; Gabriel, B.S.; Hann, B.; Liu, B.; Park, J.W.; Hong, K.; Benz, C.C.; Marks, J.D.; Kirpotin, D.B. Development of a highly stable and targetable nanoliposomal formulation of topotecan. J. Control. Release, 2010, 141, 13-21.
[13]
Bansal, S.; Kashyap, C.; Aggarwal, G.; Harikumar, S. A comparative review on vesicular drug delivery system and stability issues. I.J.R.P.C., 2012, 2, 704-713.
[14]
Thompson, A.K.; Mozafari, M.R.; Singh, H. The properties of liposomes produced from milk-fat globule membrane material using different techniques. Le. Lait. Dairy. Sci. Technol, 2007, 87, 349-360.
[15]
Chen, K.F.; Tai, W.T.; Liu, T.H.; Huang, H.P.; Lin, Y.C.; Shiau, C.W.; Li, P.K.; Chen, P.J.; Cheng, A.L. Sorafenib overcomes TRAIL resistance of hepatocellular carcinoma cells through the inhibition of STAT3. Clin. Cancer Res., 2010, 16, 5189-5199.
[16]
Yuhas, J.M. Biological factors affecting the radioprotective efficiency of S-2-[3-aminopropylamino] ethylphosphorothioic acid (WR-2721): LD50(3) doses. Radiat. Res., 1970, 44, 621-628.
[17]
De Souza, C.A.; Santini, G.; Marino, G.; Nati, S.; Congiu, A.M.; Vigorito, A.C.; Damasio, E. Amifostine (WR-2721), a cytoprotective agent during high-dose cyclophosphamide treatment of non-Hodgkin’s lymphomas: a phase II study. Braz. J. Med. Biol. Res., 2000, 33, 791-798.
[18]
Shaw, L.M.; Bonner, H.S.; Brown, D.Q. Metabolic pathways of WR-2721 (ethyol, amifostine) in the BALB/c mouse. Drug Metab. Dispos., 1994, 22, 895-902.
[19]
Koukourakis, M.I. Amifostine in clinical oncology: Current use and future applications. Anticancer Drugs, 2002, 13, 181-209.
[20]
Dedieu, S.; Canron, X.; Rezvani, H.R.; Bouchecareilh, M.; Mazurier, F.; Sinisi, R.; Zanda, M.; Moenner, M.; Bikfalvi, A.; North, S. The cytoprotective drug amifostine modifies both expression and activity of the pro-angiogenic factor VEGF-A. BMC Med., 2010, 8, 19.
[21]
Calabro-Jones, P.M.; Fahey, R.C.; Smoluk, G.D.; Ward, J.F. Alkaline phosphatase promotes radioprotection and accumulation of WR-1065 in V79-171 cells incubated in medium containing WR-2721. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med., 1985, 47, 23-27.
[22]
Schuchter, L.M.; Luginbuhl, W.E.; Meropol, N.J. The current status of toxicity protectants in cancer therapy. Semin. Oncol., 1992, 19, 742.
[23]
Buntzel, I.; Kuttner, K.; Frohlich, D.; Glatzel, M. Selective cytoprotection with amifostine in concurrent radiochemotherapy for head and neck cancer. Ann. Oncol., 1998, 9, 505-509.
[24]
Koukourakis, M.I. Amifostine: Is there evidence of tumor protection? Semin. Oncol., 2003, 30, 18-30.
[25]
Shaw, L.M.; Glover, D.; Turrisi, A.; Brown, D.Q.; Bonner, H.S.; Norfleet, A.L.; Weiler, C.; Glick, J.H.; Kligerman, M.M. Pharmacokinetics of WR-2721. Pharmacol. Ther., 1988, 39, 195-201.
[26]
Yuhas, J.M.; Spellman, J.M.; Culo, F. The role of WR-2721 in radiotherapy and/or chemotherapy. Cancer Clin. Trials, 1980, 3, 211-216.
[27]
Smoluk, G.D.; Fahey, R.C.; Calabro-Jones, P.M.; Aguilera, J.A.; Ward, J.F. Radioprotection of cells in culture by WR-2721 and derivatives: form of the drug responsible for protection. Cancer Res., 1988, 48, 3641-3647.
[28]
Hunter, N.R.; Guttenberger, R.; Milas, L. Modification ofradiation-induced carcinogenesis in mice by misoni-dazole and WR-2721. Int. J. Radiat. Oncol. Biol. Phys., 1992, 22, 795-798.
[29]
Yuhas, J.M. Active versus passive absorption kinetics as the basis for selective protection of normal tissues by S-2-(3-aminopropylamino) - ethylphosphorothioic acid. Cancer Res., 1980b, 40, 1519-1524.
[30]
Millar, J.L.; McElwain, T.J.; Clutterbuck, R.D.; Wist, E.A. Themodification of melphalan toxicity in tumor bearingmice by s-2-(3-aminopropylamino)-ethylphospho-rothioic acid (WR2721). Am. J. Clin. Oncol., 1982, 5, 321-328.
[31]
Milas, L.; Stephens, L.C.; Meyn, R.E. Relation of apoptosis to cancer therapy. In Vivo, 1994, 8, 665-673.
[32]
Li, C.J.; Wang, S.Z.; Wang, S.Y.; Zhang, Y.P. Assessment of the effect of local application of amifostine on acute radiation-induced oral mucositis in guinea pigs. J. Radiat. Res., 2014, 55, 847-854.
[33]
Sodicof, T.M.; Conger, A.D.; Pratt, N.E.; Trepper, P. Radioprotection by WR-2721 against long-term chronic damage to the rat parotid gland. Radiat. Res., 1978a, 76, 172-179.
[34]
Sodicoff, M.; Conger, A.D.; Trepper, P.; Pratt, N.E. Short-term radioprotective effects of WR-2721 on the rat parotid glands. Radiat. Res., 1978b, 75, 317-326.
[35]
Dorr, R.T. Cytoprotective agents for anthracyclines. Semin. Oncol., 1996, 23, 23-34.
[36]
Tanaka, Y. Protective effects of WR-2721 against to the local irradiation and its clinical application. J. Radial. Res., 1980, 21, 76-77.
[37]
Takahashi, I.; Nagai, T.; Miyaishi, K.; Maehara, Y.; Niibe, H. Clinical study of the radioprotective effects of amifostine (YM-08310, WR-2721) on chronic radiation injury. Int. J. Radiat. Oncol. Biol. Phys., 1986, 12, 935-938.
[38]
McDonald, S.; Meyerowitz, C.; Smudzin, T.; Rubin, P. Preliminary results of a pilot study using WR-2721 before fractionated irradiation of the head and neck to reduce salivary gland dysfunction. Int. J. Radiat. Oncol. Biol. Phys., 1994, 29, 747-754.
[39]
Kemp, G.; Rose, P.; Lurain, J.; Berman, M.; Manetta, A.; Roullet, B.; Homesley, H.; Belpomme, D.; Glick, J. Amifostine pretreatment for protection against cyclophosphamide-and cisplatin-induced toxicities: Results of a randomized control trial in patients with advanced ovarian cancer. J. Clin. Oncol., 1996, 14, 2101-2112.
[40]
Santini, V.; Gile, F.J. The potential of amifostine: from cytoprotectant to therapeutic agent. Haematologica, 1999, 84, 1035-1042.
[41]
Capizzi, R.L. Clinical status and optimal use of amifos-tine. Oncology, 1999, 13, 47-55.
[42]
Culy, C.R.; Spencer, C.M. Amifostine: An update on its clinical status as a cytoprotectant in patients with cancer receiving chemotherapy or radiotherapy and its potential therapeutic application in myelodysplastic syndrome. Drugs, 2001, 61, 641-684.
[43]
Antonadou, D.; Throuvalas, N.; Petridis, A.; Bolanos, N.; Sagriotis, A.; Synodinou, M. Effect of amifostine on toxicities associated with radiochemotherapy in patients with locally advanced non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys., 2003, 57, 402-408.
[44]
Komaki, R.; Lee, J.S.; Milas, L.; Lee, H.K.; Fossella, F.V.; Herbst, R.S.; Allen, P.K.; Liao, Z.; Stevens, C.W.; Lu, C.; Zinner, R.G.; Papadimitrakopoulou, V.A.; Kies, M.S.; Blumenschein, G.R.; Pisters, K.M.; Glisson, B.S.; Kurie, J.; Kaplan, B.; Garza, V.P.; Mooring, D.; Tucker, S.L.; Cox, J.D. Effects of amifostine on acute toxicity from concurrent chemotherapy and radiotherapy for inoperable non-small cell lung cancer: Report of a randomized comparative trial. Int. J. Radiat. Oncol. Biol. Phy., 2004, 58, 1369-1377.
[45]
Altayli, E.; Malkoc, E.; Alp, B.F.; Korkmaz, A. Prevention and treatment of cyclophosphamide and ifosfamide-induced hemorrhagic cystitis. J. Mol. Pathophysiol, 2012, 1, 53-62.
[46]
Salman, D.; Swinden, J.; Barton, S.; Peron, J.M.; Nabhani-Gebara, S. Evaluation of the stability profile of anticancer drugs: A review of Ifosfamide and Mesna regimen for the treatment of metastatic soft tissue sarcoma. J. Oncol. Pharm. Pract., 2016, 22, 86-91.
[47]
Khaw, S.L.; Downie, P.A.; Waters, K.D.; Ashley, D.M.; Heath, J.A. Adverse hypersensitivity reactions to mesna as adjunctive therapy for cyclophosphamide. Pediatr. Blood Cancer, 2007, 49, 341-343.
[48]
Hausheer, F.H.; Parker, A.R.; Petluru, P.N.; Jair, K.W.; Chen, S.; Huang, Q.; Chen, X.; Ayala, P.Y.; Shanmugarajah, D.; Kochat, H. Mechanistic study of BNP7787-mediated cisplatin nephroprotection: modulation of human aminopeptidase N. Cancer Chemother. Pharmacol., 2011, 67, 381-391.
[49]
Hausheer, F.H.; Kanter, P.; Cao, S.; Haridas, K.; Seetharamulu, P.; Reddy, D.; Petluru, P.; Zhao, M.; Murali, D.; Saxe, J.D.; Yao, S.; Martinez, N.; Zukowski, A.; Rustum, Y.M. Modulation of platinum-induced toxicities and therapeutic index: mechanistic insightsand first- and second-generation protecting agents. Semin. Oncol., 1998, 25, 584-559.
[50]
Boven, E.; Verschraagen, M.; Hulscher, T.M.; Erkelens, C.A.; Hausheer, F.H.; Pinedo, H.M.; van der Vijgh, W.J. BNP7787, a novelprotector against platinum-related toxicities, does not affect theefficacy of cisplatin or carboplatin in human tumour xenografts. Eur. J. Cancer, 2002, 38, 1148-1156.
[51]
Hausheer, F.H.; Kochat, H.; Parker, A.R.; Ding, D.; Yao, S.; Hamilton, S.E.; Petluru, P.N.; Leverett, B.D.; Bain, S.H.; Saxe, J.D. New approaches to drug discovery and development: a mechanism-based approach to pharmaceutical research and its application to BNP7787, a novel chemoprotective agent. Cancer Chemother. Pharmacol., 2003, 52, S3-S15.
[52]
Ormstad, K.; Uehara, N. Renal transport and disposition of Na-2-mercaptoethane sulfonate disulfide (dimesna) in the rat. FEBS Lett., 1982, 150, 354-358.
[53]
Leeuwenkamp, O.R.; Neijt, J.P.; Van der Vijgh, W.J.; Pinedo, H.M. Reaction kinetics of cisplatin and its monoaquated species with the modulating agents (di)mesna and thiosulphate. Eur. J. Cancer, 1991, 27, 1243-1247.
[54]
Verschraagen, M.; Kedde, M.A.; Hausheer, F.H.; Van der Vijgh, W.J.F. The chemical reactivity of BNP7787 and its metabolite mesna with the cytostatic agent cisplatin: comparison with the nucleophiles thiosulphate, DDTC, glutathione and its disulfide GSSG. Cancer Chemother. Pharmacol., 2003, 51, 499-504.
[55]
Mashiach, E.; Sela, S.; Weinstein, T.; Cohen, H.I.; Shasha, S.M.; Kristal, B. Mesna: a novel renoprotective antioxidant in ischaemic acute renal failure. Nephrol. Dial. Transplant., 2001, 16, 542-551.
[56]
Verschraagen, M.; Boven, E.; Torun, E.; Erkelens, C.A.M.; Hausheer, F.H.; van der Vijgh, W.J.F. Pharmacokinetic behaviour of the chemoprotectants BNP7787 and mesna after an i.v. bolus injection in rats. Br. J. Cancer, 2004, 90, 1654-1659.
[57]
Parker, A.R.; Petluru, P.N.; Nienaber, V.L.; Zhao, M.; Ayala, P.Y.; Badger, J.; Chie-Leon, B.; Sridhar, V.; Logan, C.; Kochat, H.; Hausheer, F.H. Novel covalent modification of human anaplastic lymphoma kinase (ALK) and potentiation of crizotinib-mediated inhibition of ALK activity by BNP7787. OncoTargets Ther., 2015, 8, 375-383.
[58]
Hausheer, F.H.; Shanmugarajah, D.; Leverett, B.D.; Chen, X.; Huang, Q.; Kochat, H.; Petluru, P.N.; Parker, A.R. Mechanistic study of BNP7787-mediated cisplatin nephroprotection: Modulation of gamma-glutamyl transpeptidase. Cancer Chemother. Pharmacol., 2010, 65, 941-951.
[59]
Masuda, N.; Negoro, S.; Hausheer, F.; Nakagawa, K.; Matsui, K.; Kudoh, S.; Takeda, K.; Yamamoto, N.; Yoshimura, N.; Ohashi, Y.; Fukuoka, M. Phase I and pharmacologic study of BNP7787, a novel chemoprotector in patients with advanced non-small cell lung cancer. Cancer Chemother. Pharmacol., 2011, 67, 533-542.
[60]
Finch, P.W.; Mark Cross, L.J.; McAuley, D.F.; Farrell, C.L. Palifermin for the protection and regeneration of epithelial tissues following injury: New findings in basic research and pre-clinical models. J. Cell. Mol. Med., 2013, 17, 1065-1087.
[61]
Beaven, A.W.; Shea, T.C. The effect of palifermin on chemotherapyand radiation therapy-induced mucositis: a review of the current literature. Support. Cancer Ther., 2007, 4, 188-197.
[62]
Farrell, C.L.; Bready, J.V.; Rex, K.L.; Chen, J.N.; DiPalma, C.R.; Whitcomb, K.L.; Yin, S.; Hill, D.C.; Wiemann, B.; Starnes, C.O.; Havill, A.M.; Lu, Z.N.; Aukerman, S.L.; Pierce, G.F.; Thomason, A.; Potten, C.S.; Ulich, T.R.; Lacey, D.L. Keratinocyte growth factor protects mice from chemotherapy and radiation-induced gastrointestinal injury and mortality. Cancer Res., 1998, 58, 933-939.
[63]
Rubin, C.; Zwang, Y.; Vaisman, N.; Ron, D.; Yarden, Y. Phosphorylation of carboxylterminal tyrosines modulates the specificity of Sprouty-2 inhibition of different signaling pathways. J. Biol. Chem., 2005, 280, 9735-9744.
[64]
Cross, L.J.; Okane, C.M.; Mcdowell, C.; Elborn, J.J.; Matthay, M.A.; McAuley, D.F. Keratinocyte growth factor in acute lung injury to reduce pulmonary dysfunction-a randomised placebo-controlled trial (KARE): study protocol. Trials, 2013, 14, 51.
[65]
Rubin, J.S. Recent developments in palifermin basic, pre-clinical and clinical research. J. Cell. Mol. Med., 2013, 17, 1063-1064.
[66]
Steiling, H.; Muhlbauer, M.; Bataille, F.; Scholmerich, J.; Werner, S.; Hellerbrand, C. Activated hepatic stellate cells express keratinocyte growth factor in chronic liver disease. Am. J. Pathol., 2004, 165, 1233-1241.
[67]
Tsai, S.M.; Wang, W.P. Expression and function of fibroblast growth factor (FGF) 7 during liver regeneration. Cell. Physiol. Biochem., 2011, 27, 641-652.
[68]
Peng, C.; Chen, B.; Kao, H.K.; Murphy, G.; Orgill, D.P.; Guo, L. Lack of FGF-7 further delays cutaneous wound healing in diabetic mice. Plast. Reconstr. Surg., 2011, 128, 673e-684e.
[69]
Ulrich, K.; Stern, M.; Goddard, M.E.; Williams, J.; Zhu, J.; Dewar, A.; Painter, H.A.; Jeffery, P.K.; Gill, D.R.; Hyde, S.C.; Geddes, D.M.; Takata, M.; Alton, E.W. Keratinocyte growth factor therapy in murine oleic acid-induced acute lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2005, 288, L1179-L1192.
[70]
Teramoto, H.; Yoneda, A.; Puri, P. Gene expression of fibroblast growth factors 10 and 7 is downregulated in the lung of nitrofen- induced diaphragmatic hernia in rats. J. Pediatr. Surg., 2003, 38, 1021-1024.
[71]
Xue, P.; Wang, X.; Xu, D.; Nan, J.; Ai, J.; Li, X. Expression and purification of biological-active recombinant human keratinocyte growth factor-1 base on baculovirus expression vector system. China. Biotechnol., 2013, 33, 47-53.
[72]
Martins, F.; de Oliveira, M.A.; Wang, Q.; Sonis, S.; Gallottini, M.; George, S.; Treister, N. A review of oral toxicity associated with mTOR inhibitor therapy in cancer patients. Oral Oncol., 2013, 49, 293-298.
[73]
Rubin, J.S.; Osada, H.; Finch, P.W.; Taylor, W.G.; Rudikoff, S.; Aaronson, S.A. Purification and characterization of a newly identified growth factor specific for epithelial cells. Proc. Natl. Acad. Sci., 1989, 86, 802-806.
[74]
Raber-Durlacher, J.E.; von Bultzingslowen, I.; Logan, R.M.; Bowen, J.; Al-Azri, A.R.; Everaus, H.; Gerber, E.; Gomez, J.G.; Pettersson, B.G.; Soga, Y.; Spijkervet, F.K.; Tissing, W.J.; Epstein, J.B.; Elad, S.; Lalla, R.V. Mucositis Study Group of the Multinational Association of Supportive Care in Cancer/International Society of Oral Oncology. Systematic review of cytokines and growth factors for the management of oral mucositis in cancer patients. Support. Care Cancer, 2013, 21, 343-355.
[75]
Danilenko, D.M.; Ring, B.D.; Tarpley, J.E.; Morris, B.; Van, G.Y.; Morawiecki, A.; Callahan, W.; Goldenberg, M.; Hershenson, S.; Pierce, G.F. Growth factors in porcine full and partial thickness burn repair: Differing targets and effects of keratinocyte growth factor, platelet-derived growth factor-BB, epidermal growth factor, and Neu differentiation factor. Am. J. Pathol., 1995, 147, 1261-1277.
[76]
Yi, E.S.; Williams, S.T.; Lee, H.; Malicki, D.M.; Chin, E.M.; Yin, S.; Tarpley, J.; Ulich, T.R. Keratinocyte growth factor ameliorates radiation- and bleomycin-induced lung injury and mortality. Am. J. Pathol., 1996, 149, 1963-1970.
[77]
Ulich, T.R.; Whitcomb, L.; Tang, W.; O’Conner Tressel, P.; Tarpley, J.; Yi, E.S.; Lacey, D. Keratinocyte growth factor ameliorates cyclophosphamide-induced ulcerative hemorrhagic cystitis. Cancer Res., 1997, 57, 472-475.
[78]
Meropol, N.J.; Somer, R.A.; Gutheil, J.; Pelley, R.J.; Modiano, M.R.; Rowinsky, E.K.; Rothenberg, M.L.; Redding, S.W.; Serdar, C.M.; Yao, B.; Heard, R.; Rosen, L.S. Randomized phase I trial of recombinant human keratinocyte growth factor plus chemotherapy: Potential role as mucosal protectant. J. Clin. Oncol., 2003, 21, 1452-1458.
[79]
Spielberger, R.T.; Stiff, P.; Emmanouilides, C.; Yanovich, S.; Bensinger, W.; Hedrick, E.; Noga, S.; Ziegler, T.; Keating, A.; Frankel, S.; Gentile, T.; Heard, R.; Yao, B.; Elhardt, D. Efficacy of recombinant human keratinocyte growth factor (rHuKGF) in reducing mucositis in patients with hematologic malignancies undergoing autologous peripheral blood progenitor cell transplantation (auto-PBPCT) after radiation-based conditioning: Results of a phase 2 trial. Am. Soc. Clin. Oncol, 2001, 20, 7a.
[80]
Stiff, P.J.; Emmanouilides, C.; Bensinger, W.I.; Gentile, T.; Blazar, B.; Shea, T.C.; Lu, J.; Isitt, J.; Cesano, A.; Spielberger, R. Palifermin reduces patient-reported mouth and throat soreness and improves patient functioning in the hematopoietic stem-cell transplantation setting. J. Clin. Oncol., 2006, 24, 5186-5193.
[81]
Hensley, M.L.; Hagerty, K.L.; Kewalramani, T.; Green, D.M.; Meropol, N.J.; Wasserman, T.H.; Cohen, G.I.; Emami, B.; Gradishar, W.J.; Mitchell, R.B.; Thigpen, J.T.; Trotti, A.; von Hoff, D.; Schuchter, L.M. American society of clinical oncology 2008 clinical practice guideline update: Use of chemotherapy and radiation therapy protectants. J. Clin. Oncol., 2009, 27, 127-145.
[82]
Brizel, D.M.; Murphy, B.A.; Rosenthal, D.I.; Pandya, K.J.; Glück, S.; Brizel, H.E.; Meredith, R.F.; Berger, D.; Chen, M.G.; Mendenhall, W. Phase II study of palifermin and concurrent chemoradiation in head and neck squamous cell carcinoma. J. Clin. Oncol., 2008, 20, 2489-2496.
[83]
Henke, M.; Alfonsi, M.; Foa, P.; Giralt, J.; Bardet, E.; Cerezo, L.; Salzwimmer, M.; Lizambri, R.; Emmerson, L.; Chen, M.G.; Berger, D. Palifermin decreases severe oral mucositis of patients undergoing postoperative radiochemotherapy or head and neck cancer: a randomized, placebo-controlled trial. J. Clin. Oncol., 2011, 29, 2815-2820.
[84]
Le, Q.T.; Kim, H.E.; Schneider, C.J.; Murakozy, G.; Skladowski, K.; Reinisch, S.; Chen, Y.; Hickey, M.; Mo, M.; Chen, M.G.; Berger, D.; Lizambri, R.; Henke, M. Palifermin reduces severe mucositis in definitive chemoradiotherapy of locally advanced head and neck cancer: a randomized, placebo-controlled study. J. Clin. Oncol., 2011, 29, 2808-2814.
[85]
Schuette, W.; Krzakowski, M.J.; Massuti, B.; Otterson, G.A.; Lizambri, R.; Wei, H.; Berger, D.P.; Chen, Y. Randomized phase II study of palifermin for reducing dysphagia in patients receiving concurrent chemoradiotherapy for locally advanced unresectable non-small cell lung cancer. J. Thorac. Oncol., 2012, 7, 157-164.
[86]
Vadhan-Raj, S.; Goldberg, J.D.; Perales, M.A.; Berger, D.P.; Brink, M.R.M. Clinical applications of palifermin: amelioration of oral mucositis and other potential indications. J. Cell. Mol. Med., 2013, 17, 1371-1384.
[87]
Abidi, M.H.; Agarwal, R.; Tageja, N.; Ayash, L.; Deol, A.; Al-Kadhimi, Z.; Abrams, J.; Cronin, S.; Ventimiglia, M.; Lum, L.; Ratanatharathorn, V.; Zonder, J.; Uberti, J. A phase I dose-escalation trial of high-dose melphalan with palifermin for cytoprotection followed by autologous stem cell transplantation for patients with multiple myeloma with normal renal function. Biol. Blood Marrow Transplant., 2013, 19, 56-61.
[88]
Lauritano, D.; Petruzzi, M.; Di Stasio, D.; Lucchese, A. Clinical effectiveness of palifermin in prevention and treatment of oral mucositis in children with acute lymphoblastic leukaemia: A case-control study. Int. J. Oral Sci., 2014, 6, 27-30.
[89]
Hasinoff, B.B.; Hellmann, K.; Herman, E.H.; Ferrans, V.J. Chemical, biological and clinical aspects of dexrazoxane and other bisdioxopiperazines. Curr. Med. Chem., 1998, 5, 1-28.
[90]
Alderton, P.M.; Gross, J.; Green, M.D. Comparative study of doxorubicin, mitoxantrone, and epirubicin in combination with ICRF-187 (ADR-529) in a chronic cardiotoxicity animal model. Cancer Res., 1992, 52, 194-201.
[91]
Speyer, J.L.; Green, M.D.; Zelenluch-Jacquotte, A.; Wernz, J.C.; Rey, M.; Sanger, J.; Kramer, E.; Ferrans, V.; Hochster, H.; Meyers, M. ICRF-187 permits longer treatment with doxorubicin in women with breast cancer. J. Clin. Oncol., 1992, 10, 117-127.
[92]
BuLock, F.A.; Gabriel, H.M.; Oakhill, A.; Martin, R.P. Cardioprotection by ICRF187 against high dose anthracycline toxicity in children with malignant disease. Br. Heart J., 1993, 70, 185-188.
[93]
Wexler, L.H.; Andrich, M.P.; Venzon, D.; Berg, S.L.; Weaver-McClure, L.; Chen, C.C.; Dilsizian, V.; Avila, N.; Jarosinski, P.; Balis, F.M.; Poplack, D.G.; Horowitz, M. 9ikE. Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J. Clin. Oncol., 1996, 14, 362-372.
[94]
Schiavetti, A.; Castello, M.A.; Versacci, P.; Varrasso, G.; Padula, A.; Ventriglia, F.; Werner, B.; Colloridi, V. Use of ICRF-187 for prevention of anthracycline cardiotoxicity in children: Preliminary results. Pediatr. Hematol. Oncol., 1997, 14, 213-222.
[95]
van Dalen, E.C.; Caron, H.N.; Dickinson, H.O.; Kremer, L.C. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst. Rev., 2011, 6CD003917
[96]
Sepe, D.M.; Ginsberg, J.P.; Balis, F.M. Dexrazoxane as a cardioprotectant in children receiving anthracyclines. Oncologist, 2010, 15, 1220-1226.
[97]
Lipshultz, S.E.; Adams, M.J. Cardiotoxicity after childhood cancer: beginning with the end in mind. J. Clin. Oncol., 2010, 28, 1276-1281.
[98]
Lipshultz, S.E.; Miller, T.M.; Scully, R.E.; Lipsitz, S.R.; Rifai, N.; Silverman, L.B.; Colan, S.D.; Neuberg, D.S.; Dahlberg, S.E.; Henkel, J.M.; Asselin, B.L.; Athale, U.H.; Clavell, L.A.; Laverdiere, C.; Michon, B.; Schorin, M.A.; Sallan, S.E. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: associations with long-term echocardiographic outcomes. J. Clin. Oncol., 2012, 30, 1042-1049.
[99]
Harake, D.; Franco, V.I.; Henkel, J.M.; Miller, T.L.; Lipshultz, S.E. Cardiotoxicity in childhood cancer survivors: Strategies for prevention and management. Future Cardiol., 2012, 8, 10.
[100]
Vavrova, A.; Jansova, H.; Mackova, E.; Machacek, M.; Haskova, P.; Tichotova, L.; Sterba, M.; Simunek, T. Catalytic inhibitors of topoisomerase II differently modulate the toxicity of anthracyclines in cardiac and cancer cells. PLoS One, 2013, 8e76676
[101]
Ahmadi-Ashtiani, H.R.; Allameh, A.; Rastegar, H.; Mortaz, E.; Saraf, Z. Immunoregulatory effects of glutathione during mesenchymal stem cell differentiation to hepatocyte-like cells. Iran. J. Immunol., 2012, 9, 175-187.
[102]
Ramakrishnan, M.S.; Eswaraiah, A.; Crombet, T.; Piedra, P.; Saurez, G.; Iyer, H.; Arvind, A.S. Nimotuzumab, a promising therapeutic monoclonal for treatment of tumors of epithelial origin. MAbs, 2009, 1, 41-48.
[103]
Schumann, J.; Prockl, J.; Kiemer, A.K.; Vollmar, A.M.; Bang, R.; Tiegs, G. Silibinin protects mice from T cell dependent liver injury. J. Hepatol., 2003, 39, 333-340.
[104]
Dehmlow, C.; Erhard, J.; de Groot, H. Inhibition of Kupffer cell functions as an explanation for the hepatoprotective properties of silibinin. Hepatology, 1996, 23, 749-754.
[105]
Hogan, F.S.; Krishnegowda, N.K.; Mikhailova, M.; Kahlenberg, M.S. Flavonoid, silibinin, inhibits proliferation and promotes cell-cycle arrest of human colon cancer. J. Surg. Res., 2007, 143, 58-65.
[106]
Jiang, C.C.; Lai, F.; Thorne, R.F.; Yang, F.; Liu, H.; Hersey, P.; Zhang, X.D. MEKIndependent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin. Cancer Res., 2011, 17, 721-730.
[107]
Wang, L.; Saito, K.; Toda, M.; Hori, T.; Torii, M.; Ma, N.; Katayama, N.; Shiku, H.; Kuribayashi, K.; Kato, T. UV irradiation after immunization induces type 1 regulatory T cells that suppress Th2-type immune responses via secretion of IL-10. Immunobiology, 2010, 215, 124-132.
[108]
Kauntz, H.; Bousserouel, S.; Bousserouel, S.; Gosse, F.; Raul, F. Silibinin triggers apoptotic signaling pathways and autophagic survival response in human colon adenocarcinoma cells and their derived metastatic cells. Apoptosis, 2011, 16, 1042-1053.
[109]
Roy, S.; Kaur, M.; Agarwal, C.; Tecklenburg, M.; Sclafani, R.A.; Agarwal, R. p21 and p27 induction by silibinin is essential for its cell cycle arrest effect in prostate carcinoma cells. Mol. Cancer Ther., 2007, 6, 2696-2707.
[110]
Khan, A.Q.; Khan, R.; Tahir, M.; Rehman, M.U.; Lateef, A.; Ali, F.; Hamiza, O.O.; Hasan, S.K.; Sultana, S. Silibinin inhibits tumor promotional triggers and tumorigenesis against chemically induced two-stage skin carcinogenesis in Swiss albino mice: possible role of oxidative stress and inflammation. Nutr. Cancer, 2014, 66, 249-258.
[111]
Wernerman, J.; Hammarkvist, F.; Ali, M.R.; Vinnars, E. Glutamine and ornithine-alpha-ketoglutarate but not branched-chain amino acids reduce the loss of muscle glutamine after surgical trauma. Metabolism, 1989, 38, 63-66.
[112]
Parry-Billings, M.; Evans, J.; Calder, P.C.; Newsholme, E.A. Does glutamine contribute to immunosuppression after major burns? Lancet, 1990, 336, 523-555.
[113]
Gaurav, K.; Goel, R.K.; Shukla, M.; Pandey, M. Glutamine: A novel approach to chemotherapy-induced toxicity. Indian J. Med. Paediatr. Oncol., 2012, 33, 13-20.
[114]
Wischmeyer, P.; Jayakar, D.; Williams, U.; Singleton, K.D.; Riehm, J.; Bacha, E.A.; Jeevanandam, V.; Christians, U.; Serkova, N. Single dose of glutamine preserves myocardial tissue metabolism, glutathione content, and enhances myocardial function following ischemia-reperfusion injury. J. Parenter. Enteral. Nutr, 2003, 27, 396-403.
[115]
Deberardinis, R.J.; Sayed, N.; Ditsworth, D.; Thompson, C.B. Brick by brick: metabolism and tumor cell growth. Curr. Opin. Genet. Dev., 2008, 18, 54-61.
[116]
Gao, P.; Tchernyshyov, I.; Chang, T.C.; Lee, Y.S.; Kita, K.; Ochi, T.; Zeller, K.I.; De Marzo, A.M.; Van Eyk, J.E.; Mendell, J.T.; Dang, C.V. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature, 2009, 458, 762-765.
[117]
Xue, H.; Sufit, A.J.D.; Wischmeyer, P.E. Glutamine therapy improves outcome of in vitro and in vivo experimental colitis models. J. Parenter. Enteral. Nutr, 2011, 35, 188-197.
[118]
Wischmeyer, P.E.; Lynch, J.; Liedel, J.; Wolfson, R.; Riehm, J.; Gottlieb, L.; Kahana, M. Glutamine administration reduces gram-negative bacteremia in severely burned patients: A prospective, randomized, double-blind trial versus isonitrogenous control. Crit. Care Med., 2001, 29, 2075-2080.
[119]
Wischmeyer, P.E.; Dhaliwal, R.; McCall, M.; Ziegler, T.R.; Heyland, D.K. Parenteral glutamine supplementation in critical illness: a systematic review. Crit. Care, 2014, 18, R76.
[120]
Roth, E. Non-nutritive effects of glutamine. J. Nutr., 2008, 138, 2025S-2031S.
[121]
Weitzel, L.R.; Wischmeyer, P.E. Glutamine in critical illness: the time has come, the time is now. Crit. Care Clin., 2010, 26, 515-525.
[122]
Kratochwill, K.; Boehm, M.; Herzog, R.; Michael, A.; Salzer, L.E.; Lechner, M.; Kuster, L.; Bergmeister, K.; Mayer, A.R.B.; Aufricht, C. Alanyl-glutamine dipeptide restores the cytoprotective stress proteome of mesothelial cells exposed to peritoneal dialysis fluids. Nephrol. Dial. Transplant., 2012, 27, 937-946.
[123]
Traverso, N.; Ricciarelli, R.; Nitti, M.; Marengo, B.; Furfaro, A.L.; Pronzato, M.A.; Marinari, U.M.; Domenicotti, C. Role of glutathione in cancer progression and chemoresistance. Oxid. Med. Cell. Longev., 2013, 2013972913
[124]
Díez, J.J.; Iglesias, P. The role of the novel adipocyte-derived hormone adiponectin in human disease. Eur. J. Endocrinol., 2003, 148, 293-300.
[125]
Hebbard, L.W.; Garlatti, M.L.; Young, L.J.T.; Cardiff, R.D.; Oshima, R.G.; Ranscht, B. T-cadherin supports angiogenesis and adiponectin association with the vasculature in a mouse mammary tumor model. Cancer Res., 2008, 68, 1407-1416.
[126]
Denzel, M.S.; Scimia, M.C.; Zumstein, P.M.; Walsh, K.; Ruiz-Lozano, P.; Ranscht, B. T-cadherin is critical for adiponectin-mediated cardioprotection in mice. J. Clin. Invest., 2010, 120, 4342-4352.
[127]
Parker-Duffen, J.L.; Nakamura, K.; Silver, M.; Kikuchi, R.; Tigges, U.; Yoshida, S.; Denzel, M.S.; Ranscht, B.; Walsh, K. T-cadherin is essential for adiponectin-mediated revascularization. J. Biol. Chem., 2013, 288, 24886-24897.
[128]
Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci., 2017, 18, 1321.
[129]
Lin, H.; Yu, C.H.; Jen, C.Y.; Cheng, C.F.; Chou, Y.; Chang, C.C.; Juan, S.H. Adiponectin-mediated heme oxygenase-1 induction protects against iron-induced liver injury via a pparα-dependent mechanism. Am. J. Pathol., 2010, 177, 1697-1709.
[130]
Konishi, M.; Haraguchi, G.; Ohigashi, H.; Ishihara, T.; Saito, K.; Nakano, Y.; Isobe, M. Adiponectin protects against doxorubicin-induced cardiomyopathy by anti-apoptotic effects through AMPK up-regulation. Cardiovasc. Res., 2011, 89, 309-319.
[131]
Cheng, C.F.; Lian, W.S.; Chen, S.H.; Lai, P.F.; Li, H.F.; Lan, Y.F.; Cheng, W.T.; Lin, H. Protective effects of adiponectin against renal ischemia-reperfusion injury via prostacyclin-PPARα-heme oxygenase-1 signaling pathway. J. Cell. Physiol., 2012, 227, 239-249.
[132]
Srivastava, R.A.K.; Pinkosky, S.L.; Filippov, S.; Hanselman, J.C.; Cramer, C.T.; Newton, R.S. AMP-activated protein kinase: An emerging drug target to regulate imbalances in lipid and carbohydrate metabolism to treat cardio-metabolic diseases. J. Lipid Res., 2012, 53, 2490-2514.
[133]
Zhao, H.; Orhan, Y.C.; Zha, X.; Esencan, E.; Chatterton, R.T.; Bulun, S.E. AMP-activated protein kinase and energy balance in breast cancer. Am. J. Transl. Res., 2017, 9, 197-213.
[134]
Ballatori, E.; Roila, F.; Ruggeri, B.; Betti, M.; Sarti, S.; Soru, G.; Cruciani, G.; Di Maio, M.; Andrea, B.; Deuson, R.R. The impact of chemotherapy-induced nausea and vomiting on health-related quality of life. Support. Care Cancer, 2007, 15, 179-185.
[135]
Navari, R.M. Aprepitant: a neurokinin-1 receptor antagonist for the treatment of chemotherapy-induced nausea and vomiting. Expert Rev. Anticancer Ther., 2004, 4, 715-724.
[136]
Aapro, M.; Carides, A.; Rapoport, B.L.; Schmoll, H.J.; Zhang, L.; Warr, D. Aprepitant and fosaprepitant: A 10-year review of efficacy and safety. Oncologist, 2015, 20, 450-458.
[137]
Grunberg, S.M.; Slusher, B.; Rugo, H.S. Emerging treatments in chemotherapy-induced nausea and vomiting. Clin. Adv. Hematol. Oncol., 2013, 11, 1-18.
[138]
Di Maio, M.; Bria, E.; Banna, G.L.; Puglisi, F.; Garassino, M.C.; Lorusso, D.; Perrone, F. Prevention of chemotherapy-induced nausea and vomiting and the role of neurokinin 1 inhibitors: from guidelines to clinical practice in solid tumors. Anticancer Drugs, 2013, 24, 99-111.
[139]
Aapro, M.S.; Schmoll, H.J.; Jahn, F.; Carides, A.D.; Webb, R.T. Review of the efficacy of aprepitant for the prevention of chemotherapy-induced nausea and vomiting in a range of tumor types. Cancer Treat. Rev., 2013, 39, 113-117.
[140]
Langford, P.; Chrisp, P. Fosaprepitant and aprepitant: an update of the evidence for their place in the prevention of chemotherapyinduced nausea and vomiting. Core Evid., 2010, 5, 77-90.
[141]
Rojas, C.; Slusher, B.S. Mechanisms and latest clinical studies of new NK1 receptor antagonists for chemotherapy-induced nausea and vomiting: Rolapitant and NEPA (netupitant/palonosetron). Cancer Treat. Rev., 2015, 41, 904-913.
[142]
Navari, R.M.; Aapro, M. Antiemetic prophylaxis for chemotherapy-induced nausea and vomiting. N. Engl. J. Med., 2016, 374, 1356-1367.
[143]
Bosnjak, S.M.; Gralla, R.J.; Schwartzberg, L. Prevention of chemotherapy-induced nausea: the role of neurokinin-1 (NK1) receptor antagonists. Support. Care Cancer, 2017, 25, 1661-1671.
[144]
Sejourne, A.; Noal, S.; Boone, M.; Bihan, C.; Sassier, M.; Andrejak, M.; Chauffert, B. Two cases of fatal encephalopathy related to ifosfamide: an adverse role of aprepitant? Case Rep. Oncol., 2014, 7, 669-672.
[145]
Gomez Raposo, C.; Pinto Marin, A.; Gonzalez Baron, M. Colony-stimulating factors: clinical evidence for treatment and prophylaxis of chemotherapy-induced febrile neutropenia. Clin. Transl. Oncol., 2006, 8, 729-734.
[146]
Mhaskar, R.; Clark, O.A.; Lyman, G.; Engel Ayer Botrel, T.; Morganti Paladini, L.; Djulbegovic, B. Colony-stimulating factors for chemotherapy-induced febrile neutropenia. Cochrane Database Syst. Rev., 2014, 10CD003039
[147]
Sourgens, H.; Lefrere, F. A systematic review of available clinical evidence-filgrastim compared with lenograstim. Int. J. Clin. Pharmacol. Ther., 2011, 49, 510-518.
[148]
Haas, R.; Murea, S. The role of granulocyte colonystimulating factor in mobilization and transplantation of peripheral blood progenitor and stem cells. Cytokines Mol. Ther., 1995, 1, 249-270.
[149]
Waller, E.K. The role of sargramostim (rhGMCSF) as immunotherapy. Oncologist, 1995, 12, 22-26.
[150]
Arellano, M.L.; Langston, A.; Winton, E.; Flowers, C.R.; Waller, E.K. Treatment of relapsed acute leukemia after allogeneic transplantation: a single center experience. Biol. Blood Marrow Transplant., 2007, 13, 116-123.
[151]
Kelsey, P.J.; Oliveira, M.C.; Badoglio, M.; Sharrack, B.; Farge, D.; Snowden, J.A. Haematopoietic stem cell transplantation in autoimmune diseases: From basic science to clinical practice. Curr. Res. Transl. Med., 2016, 64, 71-82.
[152]
Mehta, H.M. Malandra, M.; Corey, S.J. G-CSF and GM-CSF in neutropenia. J. Immunol., 2015, 195, 1341-1349.
[153]
Henk, H.J.; Li, X.; Becker, L.K.; Xu, H.; Gong, Q.; Deeter, R.G.; Barron, R.L. Comparative effectiveness of colony-stimulating factors in febrile neutropenia prophylaxis: how results are affected by research design. J. Comp. Eff. Res., 2015, 4, 37-50.
[154]
Dhayal, S.; Morgan, N.G. Pharmacological characterization of the cytoprotective effects of polyunsaturated fatty acids in insulin-secreting BRIN-BD11 cells. Br. J. Pharmacol., 2011, 162, 1340-1350.
[155]
Li, S.; Tan, H.Y.; Wang, N.; Zhang, Z.J.; Lao, L.; Wong, C.W.; Feng, Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci., 2015, 16, 26087-26124.
[156]
Dhayal, S.; Welters, H.J.; Morgan, N.G. Structural requirements for the cytoprotective actions of mono-unsaturated fatty acids in the pancreatic β-cell line, BRIN-BD11. Br. J. Pharmacol., 2008, 153, 1718-1727.
[157]
Martin, A. Cytoprotective compositions containing pyruvate and antioxidants. WO 1993016690 A1.. Publishing date Sep 2, 1993
[158]
Wilde, M.I.; Faulds, D. Oprelvekin: a review of its pharmacology and therapeutic potential in chemotherapy-induced thrombocytopenia. BioDrugs, 1998, 10, 159-171.
[159]
Sitaraman, S.V.; Gewirtz, A.T. Oprelvekin. Curr. Opin. Investig. Drugs, 2001, 2, 1395-1400.
[160]
Adams, V.R.; Brenner, T.L. Oprelvekin (Neumega®). J. Oncol. Pharm. Pract., 1999, 5, 117-124.
[161]
Berl, T.; Schwertschlag, U. Preclinical pharmacologic basis for clinical use of rhIL11 as an effective platelet-support agent. Oncology (Williston Park), 2000, 14, 12-20.
[162]
Sultani, M.; Stringer, A.M.; Bowen, J.M.; Gibson, R.J. Anti-Inflammatory cytokines: important immunoregulatory factors contributing to chemotherapy-induced gastrointestinal mucositis. Chemother. Res. Pract., 2012. 490804
[163]
Du, X.; Williams, D.A. Interleukin-11: review of molecular, cell biology, and clinical use. Blood, 1997, 89, 3897-3908.
[164]
Jung, Y.; Ahn, H.; Kim, D.S.; Hwang, Y.R.; Ho, S.H.; Kim, J.M.; Kim, S.; Ma, S.; Kim, S. Improvement of biological and pharmacokinetic features of human interleukin-11 by site-directed mutagenesis. Biochem. Biophys. Res. Commun., 2011, 405, 399-404.
[165]
Cantor, S.B.; Elting, L.S.; Hudson, D.V.; Rubenstein, E.B. Pharmacoeconomic analysis of oprelvekin (recombinant human interleukin11) for secondary prophylaxis of thrombocytopenia in solid tumor patients receiving chemotherapy. Cancer, 2003, 97, 3099-3106.
[166]
Baldo, B.A. Side effects of cytokines approved for therapy. Drug Saf., 2014, 37, 921-943.
[167]
Shibuya, M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis. Genes Cancer, 2011, 2, 1097-1105.
[168]
Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med., 2003, 9, 669-676.
[169]
Shimizu, T.; Jayawardana, B.; Tetsuka, M.; Miyamoto, A. Differential effect of follicle-stimulating hormone and estradiol on expression of vascular endothelial growth factor (VEGF)120, VEGF164 and their receptors in bovine granulose cells. J. Reprod. Dev., 2007, 53, 105-112.
[170]
Wulff, C.; Wilson, H.; Wiegand, S.J.; Rudge, J.S.; Fraser, H.M. Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor trap R1R2. Endocrinology, 2002, 143, 2797-2807.
[171]
Senger, D.R.; Galli, S.J.; Dvorak, A.M.; Perruzzi, C.A.; Harvey, V.S.; Dvorak, H.F. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 1983, 219, 983.
[172]
Johnson, K.E.; Wilgus, T.A. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair. Adv. Wound Care, 2014, 3, 647-661.
[173]
Gora-Kupilas, K.; Josko, J. The neuroprotective function of vascular endothelial growth factor (VEGF). Folia Neuropathol., 2005, 43, 31-39.
[174]
Beazley-Long, N.; Jing Hua, J.; Jehle, T.; Hulse, R.P.; Dersch, R.; Lehrling, C.; Bevan, H.; Qiu, Y.; Lagreze, W.A.; Wynick, D.; Churchill, A.J.; Kehoe, P.; Harper, S.J.; Bates, D.O.; Lucy, F.; Donaldsonz, L.F. VEGF-A165b is an endogenous neuroprotective splice isoform of vascular endothelial growth factor A in vivo and in vitro. Am. J. Pathol., 2013, 183, 918-929.
[175]
Ying Dai, Y.; Xu, M.; Wang, Y.; Pasha, Z.; Li, T.; Ashraf, M. HIF-1α induced-VEGF over-expression in bone marrow stem cells protects cardiomyocytes against ischemia. J. Mol. Cell. Cardiol., 2007, 42, 1036-1044.
[176]
de Vries, E.G.E.; Biesnu, B.; Willemse, P.H.; Mulder, N.H.; Stern, A.C.; Aalders, J.G.; Vellenga, E. A double blind placebo-controlled study with granulocyte-macrophage colony-stimulating factor during chemotherapy for ovarian carcinoma. Cancer Res., 1991, 51, 116-122.
[177]
Shalaby, F.; Rossant, J.; Yamaguchi, T.P.; Gertsenstein, M.; Wu, X.F.; Breitman, M.L.; Schuh, A.C. Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature, 1995, 376, 62-66.
[178]
Forstreuter, F.; Lucius, R.; Mentlein, R. Vascular endothelial growth factor induces chemotaxis and proliferation of microglial cells. J. Neuroimmunol., 2002, 132, 93-98.
[179]
Henriksen, K.; Karsdal, M.A.; Delaisse, J.M.; Engsig, M.T. RANKL and VEGF induce osteoclast chemotaxis through an ERK1/2 dependent mechanism. J. Biol. Chem., 2003, 278, 48745-48753.
[180]
Greenaway, J.; Connor, K.; Pedersen, H.G.; Coomber, B.L.; Lamarre, J.; Petrik, J. Vascular endothelial growth factor and its receptor, Flk-1/KDR, are cytoprotective in the extravascular compartment of the ovarian follicle. Endocrinology, 2004, 145, 2896-2905.
[181]
Movahed, A.; Yu, L.; Thandapilly, S.J.; Louis, X.L.; Netticadan, T. Resveratrol protects adult cardiomyocytes against oxidative stress mediated cell injury. Arch. Biochem. Biophys., 2012, 527, 74-80.
[182]
Xin, Y.; Zhang, S.; Gu, L.; Liu, S.; Gao, H.; You, Z.; Zhou, G.; Wen, L.; Yu, J.; Xuan, Y. Electrocardiographic and biochemical evidence for the cardioprotective effect of antioxidants in acute doxorubicin-induced cardiotoxicity in the beagle dogs. Biol. Pharm. Bull., 2011, 34, 1523-1526.
[183]
Elsherbiny, N.M.; Salama, M.F.; Said, E.; El-Sherbiny, M.; Al-Gayyar, M.M. Crocin protects against doxorubicin-induced myocardial toxicity in rats through down-regulation of inflammatory and apoptic pathways. Chem. Biol. Interact., 2016, 247, 39-48.
[184]
Lamas, D.J.M.; Nicoud, M.B.; Sterle, H.A.; Cremaschi, G.A.; Medina, V.A. Histamine: a potential cytoprotective agent to improve cancer therapy? Cell Death Dis., 2015, 6 e2029
[185]
Asiri, Y.A. Probucol attenuates cyclophosphamide-induced oxidative apoptosis, p53 and Bax signal expression in rat cardiac tissues. Oxid. Med. Cell. Longev., 2010, 3, 308-316.
[186]
Rao, M.S. Inhibition of the renin angiotensin aldosterone system: focus on aliskiren. J. Assoc. Physicians, 2010, 58, 102-108.
[187]
Das, A.; Xi, L.; Kukreja, R.C. Phosphodiesterase-5 inhibitor sildenafil preconditions adult cardiac myocytes against necrosis and apoptosis. J. Biol. Chem., 2005, 280, 12944-12955.
[188]
Vaiopoulos, A.G.; Marinou, K.; Christodoulides, C.; Koutsilieris, M. The role ofadiponectin in human vascular physiology. Int. J. Cardiol., 2012, 155, 188-193.
[189]
Ueng, S. Rasburicase (Elitek): A novel agent for tumor lysis syndrome. Proc. Bayl. Univ. Med. Cent., 2005, 18, 275-279.
[191]
Chaveli-Lopez, B.; Bagan-Sebastian, J.V. Treatment of oral mucositis due to chemotherapy. J. Clin. Exp. Dent., 2016, 8, e201-e209.
[192]
Ghassemi-Barghi, N.; Varshosaz, J.; Etebari, M.; Dehkordi, A.J. Role of recombinant human erythropoietin loading chitosan-tripolyphosphate nanoparticles in busulfan-induced genotoxicity: Analysis of DNA fragmentation via comet assay in cultured HepG2 cells. Toxicol. In Vitro, 2016, 36, 46-52.
[193]
Kreidieh, F.Y.; Moukadem, H.A.; El Saghir, N.S. Overview, prevention and management of chemotherapy extravasation. World J. Clin. Oncol., 2016, 7, 87-97.
[194]
Bhattacharya, A. Methylselenocysteine: a promising antiangiogenic agent for overcoming drug delivery barriers in solid malignancies for therapeutic synergy with anticancer drugs. Expert Opin. Drug Deliv., 2011, 8, 749-763.
[195]
Akbulut, S.; Elbe, H.; Eris, C.; Dogan, Z.; Toprak, G.; Otan, E.; Erdemli, E.; Turkoz, Y. Cytoprotective effects of amifostine, ascorbic acid and N-acetylcysteine against methotrexate-induced hepatotoxicity in rats. World J. Gastroenterol., 2014, 20, 10158-10165.
[196]
Olah, G.; Modis, K.; Gero, D.; Suzuki, K.; Dewitt, D.; Traber, D.L.; Szabo, C. Cytoprotective effect of γ-tocopherol against tumor necrosis factor α induced cell dysfunction in L929 cells. Int. J. Mol. Med., 2011, 28, 711-720.
[197]
Carr, A.C.; Vissers, M.C.; Cook, J.S. The effect of intravenous vitamin C on cancer- and chemotherapy-related fatigue and quality of life. Front. Oncol., 2014, 4, 283.
[198]
Pacini, N.; Borziani, F. Oncostatic-cytoprotective effect of melatonin and other bioactive molecules: A common target in mitochondrial respiration. Int. J. Mol. Sci., 2016, 17, 341.
[199]
Kalaiselvi, P.; Rajashree, K.; Bharathi Priya, L.; Padma, V.V. Cytoprotective effect of epigallocatechin-3-gallate against deoxynivalenol-induced toxicity through anti-oxidative and anti-inflammatory mechanisms in HT-29 cells. Food Chem. Toxicol., 2013, 56, 110-118.
[200]
Yuan, B.; Webster, T.J.; Roy, A.K. Cytoprotective effects of cerium and selenium nanoparticles on heat-shocked human dermal fibroblasts: an in vitro evaluation. Int. J. Nanomedicine, 2016, 11, 1427-1433.
[201]
Trivedi, P.P.; Tripathi, D.N.; Jena, G.B. Hesperetin protects testicular toxicity of doxorubicin in rat: role of NFκB, p38 and caspase-3. Food Chem. Toxicol., 2011, 49, 838-847.
[202]
Basu, A.; Bhattacharjee, A.; Bhattacharya, S. chemoprotectants in cancer chemotherapy: an update. Biomed. Res. J., 2016, 3, 157-181.
[203]
Raman, T.; Ramar, M.; Arumugam, M.; Nabavi, S.M.; Varsha, M.K. Cytoprotective mechanism of action of curcumin against cataract. Pharmacol. Rep., 2016, 68, 561-569.
[204]
Zhang, X.; Gao, S.; Tanaka, M.; Zhang, Z.; Huang, Y.; Mitsui, T.; Kamiyama, M.; Koizumi, S.; Fan, J.; Takeda, M.; Yao, J. Carbenoxolone inhibits TRPV4 channel‐initiated oxidative urothelial injury and ameliorates cyclophosphamide‐induced bladder dysfunction. J. Cell. Mol. Med., 2017, 21, 1791-1802.
[205]
Sun, B.; Luo, C.; Cui, W.; Sun, J.; He, Z. Chemotherapy agent-unsaturated fatty acid prodrugs and prodrug-nanoplatforms for cancer chemotherapy. J. Control. Release, 2017, 264, 145-159.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy