Carbonylation of Aryl Halides in the Presence of Heterogeneous Catalysts

Author(s): Béla Urbán, Máté Papp, Rita Skoda-Földes*.

Journal Name: Current Green Chemistry

Volume 6 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Palladium-catalyzed carbonylation in the presence of organic and organometallic nucleophiles serves as a powerful tool for the conversion of aryl/alkenyl halides or halide equivalents to carbonyl compounds and carboxylic acid derivatives. To circumvent the difficulties in product separation and recovery and reuse of the catalysts, associated with homogeneous reactions, supported counterparts of the homogeneous palladium catalysts were developed. The review intends to summarize the huge development that has been witnessed in recent years in the field of heterogeneous carbonylation. A great plethora of supports, organic modifiers on solid surfaces stabilizing metal particles, transition metal precursors, as well as alternative sources for CO was investigated. In most cases, careful optimization of reaction conditions was carried out. Besides simple model reactions, the synthesis of carbonyl compounds and carboxylic acid derivatives from substrates with different functionalities was performed. In some cases, causes of palladium leaching were clarified with detailed investigations. The advantages of immobilized catalysts were shown by several examples. The possibility of catalystrecycling was proved besides proving that metal contamination of the products could often be kept below the detection limit. At the same time, detailed investigations should be carried out to gain a better insight into the real nature of these processes.

Keywords: Immobilization, supported catalyst, palladium complexes, palladium nanoparticles, catalyst recycling, palladium leaching.

[1]
Schoenberg, A.; Bartoletti, I.; Heck, R.F. Palladium-catalyzed carboalkoxylation of aryl, benzyl, and vinylic halides. J. Org. Chem., 1974, 39, 3318-3326.
[2]
Skoda-Földes, R.; Kollár, L. Synthetic applications of palladium catalysed carbonylation of organic halides. Curr. Org. Chem., 2002, 6, 1097-1119.
[3]
Barnard, C.F.J. Palladium-catalyzed carbonylations - A reaction come of age. Organometallics, 2008, 27, 5402-5422.
[4]
Brennführer, A.; Neumann, H.; Beller, M. Palladium-catalyzed carbonylation reactions of aryl halides and related compounds. Angew. Chem. Int. Ed., 2009, 48, 4114-4133.
[5]
Grigg, R.; Mutton, S.P. Pd-catalysed carbonylations: Versatile technology for discovery and process chemists. Tetrahedron, 2010, 66, 5515-5548.
[6]
Beller, M.; Wu, X.F. Transition metal catalyzed carbonylation reactions carbonylative activation of C–X bonds; Springer: Berlin, Heidelberg, 2013.
[7]
Vasapollo, G.; Mele, G. Synthesis of heterocycles by transition metals-catalyzed cyclocarbonylation reactions. Curr. Org. Chem., 2006, 10, 1397-1421.
[8]
Wu, X.F.; Neumann, H.; Beller, M. Synthesis of heterocycles via palladium-catalyzed carbonylations. Chem. Rev., 2013, 113, 1-35.
[9]
Skoda-Földes, R. Homogeneous carbonylation reactions in the synthesis of compounds of pharmaceutical importance. In: Modern Carbonylation Methods; Kollár, L., Ed.; Wiley-VCH: Weinheim, 2008; pp. 301-320.
[10]
Bai, Y.; Davis, D.C.; Dai, M. Natural product synthesis via palladium-catalyzed carbonylation. J. Org. Chem., 2017, 82, 2319-2328.
[11]
Garrett, C.E.; Prasad, K. The art of meeting palladium specifications in active pharmaceutical ingredients produced by Pd-catalyzed reactions. Adv. Synth. Catal., 2004, 346, 889-900.
[12]
Benaglia, M. Recoverable and recyclable catalysts; John Wiley & Sons: Chichester, 2009.
[13]
Molnár, Á. Efficient, selective, and recyclable palladium catalysts in carbon-carbon coupling reactions. Chem. Rev., 2011, 111, 2251-2320.
[14]
Hallett, J.P.; Welton, T. Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev., 2011, 111, 3508-3576.
[15]
Skoda-Földes, R. ILs in transition metal-catalysed alkoxy- and aminocarbonylation. Top. Organomet. Chem., 2015, 51, 145-162.
[16]
Pagliaro, M.; Pandarus, V.; Ciriminna, R.; Béland, F.; Cará, P.D. Heterogeneous versus homogeneous palladium catalysts for cross-coupling reactions. ChemCatChem, 2012, 4, 432-445.
[17]
Gadge, S.T.; Bhanage, B.M. Recent developments in palladium catalysed carbonylation reactions. RSC Adv, 2014, 4, 10367-10389.
[18]
Liu, X.; Ünal, B.; Jensen, K.F. Heterogeneous catalysis with continuous flow microreactors. Cat. Sci. Techn., 2012, 2, 2134-2138.
[19]
Fang, W.; Zhu, H.; Deng, Q.; Liu, S.; Liu, X.; Shen, Y.; Tu, T. Design and development of ligands for palladium-catalyzed carbonylation reactions. Synthesis, 2014, 46, 1689-1708.
[20]
Pârvulescu, V.I.; Hardacre, C. Catalysis in ionic liquids. Chem. Rev., 2007, 107, 2615-2665.
[21]
Fukuyama, T.; Totoki, T.; Ryu, I. Carbonylation in microflow: Close encounters of CO and reactive species. Green Chem., 2014, 16, 2042-2050.
[22]
Pineiro, M.; Dias, L.D.; Damas, L.; Aquino, G.L.B.; Calvete, M.J.F.; Pereira, M.M. Microwave irradiation as a sustainable tool for catalytic carbonylation reactions. Inorg. Chim. Acta, 2017, 455, 364-377.
[23]
Dufaud, V.; Thivolle-Cazat, J.; Basset, J.M. Palladium catalysed carbonylation of aryl chlorides to the corresponding methyl esters. Chem. Commun., 1990, 5, 426-427.
[24]
Davies, W.I.; Matty, L.; Hughes, L.D.; Reider, J.P. Are heterogeneous catalysts precursors to homogeneous catalysts? J. Am. Chem. Soc., 2001, 123, 10139-10140.
[25]
Salvadori, J.; Balducci, E.; Zaza, S.; Petricci, E.; Taddei, M. Microwave-assisted carbonylation and cyclocarbonylation of aryl iodides under ligand free heterogenous catalysis. J. Org. Chem., 2010, 75, 1841-1847.
[26]
Hattori, T.; Ueda, S.; Takakura, R.; Sawama, Y.; Monguchi, Y.; Sajiki, H. Heterogeneous one-pot carbonylation and Mizoroki-Heck reactions in a parallel manner following the cleavage of cinnamaldehyde derivatives. Chem. Eur. J., 2017, 34, 1-8.
[27]
Lei, Y.; Li, Z.; Yali, W.; Zhou, X.Y.; Li, G.; Shi, K. Pd/C: An efficient and reusable catalyst for the synthesis of flavones via carbonylation of aryl halides. Appl. Organomet. Chem., 2017, 3, 1-7.
[28]
Mane, R.S.; Bhanage, B.M. Pd/C-catalyzed facile synthesis of primary aromatic amides by aminocarbonylation of aryl iodides using ammonia surrogates. RSC Adv, 2015, 5, 76122-76127.
[29]
Mane, R.S.; Bhanage, B.M. Pd/C-catalyzed aminocarbonylation of aryl iodides via oxidative C-N bond activation of tertiary amines to tertiary amides. J. Org. Chem., 2016, 81, 1223-1228.
[30]
Satapathy, A.; Gadge, S.T.G.; Sasaki, T.; Bhanage, B.M. Synthesis of polyamides using palladium-on-carbon (Pd/C) as a heterogeneous, reusable and ligand-free catalytic system. RSC Adv, 2015, 5, 93773-93778.
[31]
Natte, K.; Neumann, H.; Wu, X.F. Pd/C as an efficient heterogeneous catalyst for carbonylative four-component synthesis of 4(3H)-quinazolinones. Cat. Sci. Techn., 2015, 5, 4474-4480.
[32]
Lin, Y.S.; Alper, H. A novel approach for the one-pot preparation of α-amino amides by Pd-catalyzed double carbohydroamination. Angew. Chem. Int. Ed., 2001, 40, 779-781.
[33]
Gautam, P.; Kathe, P.; Bhanage, B.M. Pd/C catalyzed phenoxycarbonylation using N-formylsaccharin as a CO surrogate in propylene carbonate, a sustainable solvent. Green Chem., 2017, 19, 823-830.
[34]
Maeda, K.; Yagita, H.; Omata, K.; Fujimoto, K. Liquid phase carbonylation with solid catalyst Part 2. Carboxymethylation of bromobenzene with Group VIII metals supported on active carbon. J. Mol. Catal., 1992, 71, 347-355.
[35]
Ziccarelli, I.; Neumann, H.; Kreyenschulte, H.; Bartolo, G.; Beller, M. Pd-supported on N-doped carbon: Improved heterogeneous catalyst for base-free alkoxycarbonylation of aryl iodides. Chem. Commun., 2016, 52, 12729-12732.
[36]
Polshettiwar, V.; Len, C.; Fihri, A. Silica-supported palladium: Sustainable catalysts for cross-coupling reactions. Coord. Chem. Rev., 2009, 253, 2599-2626.
[37]
Bhattacharyya, S.; Lelong, G.; Saboungi, M.L. Recent progress in the synthesis and selected applications of MCM-41: A short review. J. Exp. Nanosci., 2006, 1, 375-395.
[38]
Sadjadi, S.; Heravi, M.M. Current advances in the utility of functionalized SBA mesoporous silica for developing encapsulated nanocatalysts: State of the art. RSC Adv, 2017, 7, 30815-30838.
[39]
Mane, R.S.; Sasaki, T.; Bhanage, B.M. Silica supported palladium-phosphine as a reusable catalyst for alkoxycarbonylation and aminocarbonylation of aryl and heteroaryl iodides. RSC Adv, 2015, 5, 94776-94785.
[40]
Cai, M.; Zhao, H.; Huang, Y. Carbonylation of aryl halides catalyzed by a silica-supported sulfur and phosphine mixed bidentate palladium complex. J. Mol. Catal. A, 2005, 238, 41-45.
[41]
Cai, M.; Zong, C.; Huang, X. Amidation of aryl halides catalyzed by silica-supported bidentate phosphine palladium complex. Synth. Commun., 1997, 27, 361-366.
[42]
Miller, W.P.; Long, J.N.; de Mello, J.A.; Vilar, R.; Audrain, H.; Bender, D.; Passchier, J.; Gee, A. Rapid multiphase carbonylation reactions by using a microtube reactor: Applications in positron emission tomography 11C-radiolabeling. Angew. Chem. Int. Ed., 2007, 46, 2875-2878.
[43]
Hao, W.; Sha, J.; Sheng, S.; Cai, M. MCM-41-supported bidentate phosphine palladium(II) complex as an efficient catalyst for the carbonylation of aryl halides. Catal. Commun., 2008, 10, 257-260.
[44]
Cai, M.; Zheng, G.; Zha, L.; Peng, J. Carbonylative suzuki-miyaura coupling of arylboronic acids with aryl iodides catalysed by the MCM-41-supported bidentate phosphane palladium(II) complex. Eur. J. Org. Chem., 2009, 10, 1585-1591.
[45]
Cai, M.; Zheng, G.; Ding, G. The first heterogeneous carbonylative Stille coupling of organostannanes with aryl iodides catalyzed by MCM-41-supported bidentate phosphine palladium (0) complex. Green Chem., 2009, 11, 1687-1693.
[46]
Genelot, M.; Dufaud, V.; Djakovitch, L. Carbonylative Sonogashira coupling in the synthesis of ynones: A study of “boomerang” phenomena. Adv. Synth. Catal., 2013, 13, 1-14.
[47]
Genelot, M.; Dufaud, V.; Djakovitch, L. Heterogeneous metallo-organocatalysis for the selective one-pot synthesis of 2-benzylidene-indoxyl and 2-phenyl-4-quinolone. Tetrahedron, 2011, 67, 976-981.
[48]
Antebi, S.; Arya, P.; Manzer, E.L.; Alper, H. Carbonylation reactions of iodoarenes with PAMAM dendrimer-palladium catalysts immobilized on silica. J. Org. Chem., 2002, 67, 6623-6631.
[49]
Lagashi, M.; Moggi, P. Anchoring of Pd on silica functionalized with nitrogen containing chelating groups and applications in catalysis. J. Mol. Catal. A, 2002, 182-183, 61-72.
[50]
Zawartka, W.; Pośpiech, P.; Cypryk, M.; Trzeciak, M.A. Carbonylative suzuki–miyaura coupling catalyzed by palladium supported on aminopropyl polymethylsiloxane microspheres under atmospheric pressure of CO. J. Mol. Catal. A, 2016, 417, 76-80.
[51]
Hao, W.; Liu, H.; Yin, L.; Cai, M. Phosphine-free, heterogeneous palladium-catalyzed atom-efficient carbonylative cross-coupling of triarylbismuths with aryl iodides: Synthesis of biaryl ketones. J. Org. Chem., 2016, 81, 4244-4251.
[52]
You, S.; Xiao, R.; Liu, H.; Cai, M. A phosphine-free, heterogeneous palladium-catalysed atom-efficient carbonylative cross-coupling of triorganoiridiums with aryl halides leading to unsymmetrical ketones. New J. Chem., 2017, 41, 13862-13870.
[53]
Cai, M.; Song, C.; Huang, X. Butoxycarbonylation of aryl halides catalysed by a silica-supported poly [3(2-cyanoethylsulfanyl) propylsiloxane palladium] complex. J. Chem. Soc., 1997, 1, 2273-2274.
[54]
Cai, M.; Huang, Y.; Hu, R.; Song, C. Synthesis of silica-supported poly-diphenylarsinopropylsiloxane palladium complex and its catalytic behavior for Heck carbonylation of aryl halides. J. Mol. Catal. A, 2004, 208, 17-20.
[55]
Cai, M.; Huang, Y.; Hu, R.; Song, C. Synthesis of silica-supported bidentate arsine palladium complex and its catalytic properties for amidation/butoxycarbonylation of aryl halides. J. Mol. Catal. A, 2004, 212, 151-154.
[56]
Cai, M.; Zhou, J.; Zhao, H.; Song, C. Silica-supported poly-γ-methylselenopropylsiloxane palladium complex: An efficient catalyst for Heck carbonylation of aryl halides. React. Funct. Polym., 2002, 50, 191-195.
[57]
Islam, S.M.; Ghosh, K.; Roy, A.S.; Molla, R.A. Polymer supported Pd catalyzed carbonylation of aryl bromides for the synthesis of aryl esters and amides. RSC Adv, 2014, 4, 38986-38999.
[58]
Mansour, A.; Portnoy, M. Efficient heterogeneously catalyzed amidocarbonylation of bromoarenes based on a serinol-derived chelate diphosphine ligand. J. Mol. Catal. A, 2006, 250, 40-43.
[59]
Ibrahim, M.B.; Suleiman, R.; Fettouhi, M.; El Ali, B. Palladium-bisoxazoline supported catalysts for selective synthesis of aryl esters and aryl amides via carbonylative coupling reactions. RSC Adv, 2016, 6, 78826-78837.
[60]
Islam, S.M.; Molla, R.A.; Roy, A.S.; Ghosh, K. Polymer supported Pd catalyzed thioesters synthesis via carbonylation of aryl halides under phosphine free conditions. RSC Adv, 2014, 4, 26181-26192.
[61]
Suzuka, T.; Sueyoshi, H.; Ogihara, K. Polymer-supported terpyridine-palladium complex for the aminocarbonylation in water of aryl iodides using methoxyamine hydrochloride as an ammonia equivalent. Trans. Mater. Res. Soc. Jpn., 2016, 41, 225-228.
[62]
Suzuka, T.; Sueyoshi, H.; Ogihara, K. Recyclable polymer-supported terpyridine-palladium complex for the tandem aminocarbonylation of aryl iodides to primary amides in water using NaN3 as ammonia equivalent. Catalysts, 2017, 107, 1-8.
[63]
Zhu, G.; Ren, H. Porous Organic Frameworks: Design, Synthesis and Their Advanced Applications; Springer: Heidelberg, 2015.
[64]
Lei, Y.; Wu, L.; Zhang, X.; Mei, H.; Gu, Y.; Li, G. Palladium supported on triphenylphosphine functionalized porous organic polymer: A highly active and recyclable catalyst for alkoxycarbonylation of aryl iodides. J. Mol. Catal. A, 2015, 398, 164-169.
[65]
Lei, Y.; Zhang, X.; Gu, Y.; Hu, J.; Li, G.; Shi, K. Palladium supported on triphenylphosphine-functionalized porous organic polymer: an efficient heterogeneous catalyst for aminocarbonylation. Trans. Met. Chem., 2016, 41, 1-7.
[66]
Lei, Y.; Wan, Y.; Li, G.; Zhou, X.; Gu, Y.; Feng, J.; Wang, R. Palladium supported on amphiphilic porous organic polymer: A highly efficient catalyst for aminocarbonylation reaction in water. Mat. Chem. Front., 2017, 1, 1541-1549.
[67]
Deraedt, C.; Astruc, D. “Homeopathic” palladium nanoparticle catalysis of cross carboncarbon coupling reactions. Acc. Chem. Res., 2014, 47, 494-503.
[68]
Hu, Q.; Wang, L.; Wang, C.; Wu, Y.; Ding, Z.; Yuan, R. Ligand-free Pd(0)/SiO2-catalyzed aminocarbonylation of aryl iodides to amides under atmospheric CO pressure. RSC Adv, 2017, 7, 37200-37207.
[69]
Tinnis, F.; Verho, O.; Gustafson, K.P.; Tai, C.W.; Bäckvall, J.E.; Adolfsson, H. Efficient palladium-catalyzed aminocarbonylation of aryl iodides using palladium nanoparticles dispersed on siliceous mesocellular foam. Chem. Eur. J., 2014, 20, 5885-5889.
[70]
Gautam, P.; Dhiman, M.; Polshettiwar, V.; Bhanage, B.M. KCC-1 supported palladium nanoparticles as an efficient and sustainable nanocatalyst for carbonylative Suzuki-Miyaura cross-coupling. Green Chem., 2016, 18, 5890-5899.
[71]
Cacchi, S.; Cotet, L.C.; Fabrizi, G.; Forte, G.; Goggiamani, A.; Martín, L.; Martínez, S.; Molins, E.; Moreno-Mañas, M.; Petrucci, F.; Roig, A.; Vallriberad, A. Efficient hydroxycarbonylation of aryl iodides using recoverable and reusable carbon aerogels doped with palladium nanoparticles as catalyst. Tetrahedron, 2007, 63, 2519-2523.
[72]
Li, Z.; Liu, J.; Huang, Z.; Yang, Y.; Xia, C.; Li, F. One-pot synthesis of Pd nanoparticle catalysts supported on N-doped carbon and the application in the domino carbonylation. ACS Catal., 2013, 3, 839-845.
[73]
Algin, B.O.; Yuanting, K.T.; Hosmane, N.S.; Yinghuai, Z. Synthesis of carboranyl amides catalyzed by recyclable Pd (0) nanoparticles supported on carbon nanotubes (CNTs). J. Organomet. Chem., 2013, 747, 184-188.
[74]
Zhang, Y.; Sun, H.; Zhang, W.; Gao, Z.; Yang, P.; Gu, J.N. N-dimethylformamide solvothermal strategy: From fabrication of palladium nanoparticles supported on reduced graphene oxide nanosheets to their application in catalytic aminocarbonylation reactions. Appl. Catal. A, 2015, 496, 9-16.
[75]
Zhang, Z.; Chen, Y.; He, S.; Zhang, J.; Xu, X.; Yang, Y. Hierarchical Zn/Ni-MOF-2 nanosheet-assembled hollow nanocubes for multicomponent catalytic reactions. Angew. Chem. Int. Ed., 2014, 53, 1-6.
[76]
Solano, V.M.; Miera, G.G.; Pascanu, V.; Inge, A.K.; Martín-Matute, B. Versatile Heterogeneous palladium catalysts for diverse carbonylation reactions under atmospheric CO pressure. ChemCatChem, 2017, 10, 1-7.
[77]
Dang, T.T.; Yinghuai, Z.; Ghosh, S.C.; Anqi, C.; Chai, C.L.L.; Seayad, A.M. Atmospheric pressure aminocarbonylation of aryl iodides using palladium nanoparticles supported on MOF-5. Chem. Commun., 2012, 48, 1805-1807.
[78]
Urbán, B.; Papp, M.; Srankó, D.; Skoda-Földes, R. Phosphine-free atmospheric carbonylation of aryl iodides with aniline derivatives in the presence of a reusable silica-supported palladium catalyst. J. Mol. Catal. A, 2015, 397, 150-157.
[79]
Papp, M.; Szabó, P.; Srankó, D.; Sáfrán, G.; Kollár, L.; Skoda-Földes, R. Mono- and double carbonylation of aryl iodides with amine nucleophiles in the presence of recyclable palladium catalysts immobilised on a supported dicationic ionic liquid phase. RSC Adv, 2017, 7, 44587-44597.
[80]
Jiao, N.; Li, Z.; Wang, Y.; Liu, J.; Xia, C. Palladium nanoparticles immobilized onto supported ionic liquid-like phases (SILLPs) for the carbonylative Suzuki coupling reactions. RSC Adv, 2015, 5, 26913-26922.
[81]
Natour, S.; Abu-Reziq, R. Functionalized magnetic mesoporous silica nanoparticle supported palladium catalysts for carbonylative Sonogashira coupling reactions of aryl iodides. ChemCatChem, 2015, 7, 2230-2240.
[82]
Prasad, A.S.; Satyanarayana, B. Fe3O4 supported Pd(0) nanoparticles catalyzed alkoxycarbonylation of aryl halides. J. Mol. Catal. A, 2013, 370, 205-209.
[83]
Vavasori, A.; Calgaro, L.; Quartarone, G.; Ronchin, L.; Tortato, C. New magnetically recoverable palladium-based catalysts active in the alkoxycarbonylation of iodobenzene. Pure Appl. Chem., 2016, 88, 445-455.
[84]
Hajipour, A.; Tavangar-Rizi, Z.; Iranpoor, N. Palladium catalysed Carbonylation of aryl halides: An efficient, heterogenous and phosphine-free catalytic system for aminocarbonylation and alkoxycarbonylation employing Mo(CO)6 as a solid carbon monoxide source. RSC Adv, 2016, 6, 78468-78476.
[85]
Niu, J.; Liu, M.; Wang, P.; Long, Y.; Xie, M.; Li, R.; Ma, J. Stabilizing Pd(II) on hollow magnetic mesoporous spheres: A highly active and recyclable catalyst for carbonylative cross-coupling and Suzuki coupling reaction. New J. Chem., 2014, 38, 1471-1476.
[86]
Sun, X.; Zheng, Y.; Sun, L.; Lin, Q.; Su, H.; Qi, C. Immobilization of palladium (II) complexes on ethylenediamine functionalized core-shell magnetic nanoparticles: An efficient and recyclable catalyst for aerobic oxidation of alcohols and carbonylative Suzuki coupling reaction. Nano-Struct. Nano-Obj., 2016, 5, 7-14.
[87]
Wittmann, S.; Schätz, A.; Grass, N.R.; Stark, J.W.; Reiser, O. A recyclable nanoparticle-supported palladium catalyst for the hydroxyl carbonylation of aryl halides in water. Angew. Chem. Int. Ed., 2010, 49, 1867-1870.
[88]
Omar, S.; Abu-Reziq, R. Palladium nanoparticles supported on magnetic organic-silica hybrid nanoparticles. J. Phys. Chem. C, 2014, 118, 30045-30056.
[89]
Dutta, B.; Omar, S.; Natour, S.; Abu-Reziq, R. Palladium nanoparticles immobilized on magnetic nanoparticles: An efficient semi-heterogeneous catalyst for carbonylation of aryl bromides. Catal. Commun., 2015, 61, 31-36.
[90]
Eremin, D.B.; Ananikov, V.P. Understanding active species in catalytic transformations: From molecular catalysis to nanoparticles, leaching, “Cocktails” of catalysts and dynamic systems. Coord. Chem. Rev., 2017, 346, 2-19.
[91]
Urbán, B.; Szabó, P.; Srankó, D.; Sáfrán, G.; Kollár, L.; Skoda-Földes, R. Double carbonylation of iodoarenes in the presence of reusable palladium catalysts immobilised on supported phosphonium ionic liquid phases. Mol. Catal., 2018, 445, 195-205.
[92]
Mei, H.; Xiao, S.; Zhu, T.; Lei, Y.; Li, G. Alkoxycarbonylation and phenoxycarbonylation reactions catalyzed by a palladium(II) organometallic complex encaged in Y zeolite. Trans. Met. Chem. , 2014, 39, 443-450.
[93]
Zhang, Y.; Xiong, Y.; Ge, J.; Lin, R.; Chen, C.; Peng, Q.; Wang, D.; Li, Y. Porous organic cage stabilized palladium nanoparticles: Efficient heterogeneous catalysts for carbonylation reaction of aryl halides. Chem. Commun., 2018, 54, 2796-2799.
[94]
Ullah, E.; McNulty, J.; Sliwinski, M.; Robertson, A. One-step synthesis of reusable, polymer-supported tri-alkyl phosphine ligands. Application in Suzuki–Miyaura and alkoxycarbonylation reactions. Tetrahedron Lett., 2012, 53, 3990-3993.
[95]
Hu, Y.; Liu, Y.; Wang, Z.; Zhang, B. Spontaneous electroless deposition of ultrafine Pd nanoparticles on poly(phenylene butadiynylene)s for the hydroxycarbonylation of aryl iodides. Chem. Select Commun., 2016, 1, 1832-1836.
[96]
Roy, S.; Roy, S.; Gribble, G.W. Metal-catalyzed amidation. Tetrahedron, 2012, 68, 9867-9923.
[97]
De Risi, C.; Pollini, G.P.; Zanirato, V. Recent developments in general methodologies for the synthesis of α-ketoamides. Chem. Rev., 2016, 116, 3241-3305.
[98]
Gaudino, C.E.; Carnaroglio, D.; Martina, K.; Palmisano, G.; Penoni, A.; Cravotto, G. Highly efficient microwave-assisted CO aminocarbonylation with a recyclable Pd(II)/TPP-β-cyclodextrin cross linked catalyst. Org. Proc Res. Dev., 2015, 19, 499-505.
[99]
Mei, H.; Hu, J.; Xiao, S.; Lei, Y.; Li, G. Palladium-1, 10-phenanthroline complex encaged in Y zeolite: An efficient and highly recyclable heterogeneous catalyst for aminocarbonylation. Appl. Catal. A, 2014, 475, 40-47.
[100]
Dang, T.T.; Chen, A.; Seayad, A.M. An efficient synthesis of Weinreb amides and ketones via palladium nanoparticles on ZIF-8 catalysed carbonylative coupling. RSC Adv, 2014, 4, 30019-30027.
[101]
Molla, R.A.; Iqubal, M.A.; Ghosh, K.; Roy, A.S. Kamaluddin; Islam, S. M. Mesoporous poly-melamine-formaldehyde stabilized palladium nanoparticle (Pd@mPMF) catalyzed mono and double carbonylation of aryl halides with amines. RSC Adv, 2014, 4, 48177-48190.
[102]
Chen, B.; Li, F.; Huang, Z.; Lua, T.; Yuan, G. Stability or flexibility: Metal nanoparticles supported over cross-linked functional polymers as catalytic active sites for hydrogenation and carbonylation. Appl. Catal. A, 2014, 481, 54-63.
[103]
Papp, M.; Urbán, B.; Drotár, E.; Skoda-Földes, R. Mono- and double carbonylation of iodobenzene in the presence of reusable supported palladium catalysts. Green Proc. Synth., 2015, 4, 103-115.
[104]
Sharma, N.; Sekara, G. Stable and reusable binaphthyl-supported palladium catalyst for aminocarbonylation of aryl iodides. Adv. Synth. Catal., 2016, 358, 314-320.
[105]
Khedkar, M.V.; Shindea, A.R.; Sasaki, T.; Bhanage, B.M. Immobilized palladium metal containing ionic liquid catalyzed one step synthesis of isoindole-1,3-diones by carbonylative cyclization reaction. J. Mol. Catal. A, 2014, 385, 91-97.
[106]
Urbán, B.; Srankó, D.; Sáfrán, D.; Ürge, L.; Darvas, F.; Bakos, J.; Skoda-Földes, R. Evaluation of SILP-Pd catalysts for Heck reactions in a microfluidics-based high throughput flow reactor. J. Mol. Catal. A, 2014, 395, 364-372.
[107]
Papp, M.; Szabó, P.; Srankó, D.; Skoda-Földes, R. Solvent-free aminocarbonylation of iodobenzene in the presence of SILP-palladium catalysts. RSC Adv, 2016, 6, 45349-45356.
[108]
Balogh, J.; Kuik, Á.; Ürge, L.; Darvas, F.; Bakos, J.; Skoda-Földes, R. Double carbonylation of iodobenzene in a microfluidics-based high throughput flow reactor. J. Mol. Catal. A, 2009, 302, 76-79.
[109]
Papp, M.; Skoda-Földes, R. Phosphine-free double carbonylation of iodobenzene in the presence of reusable supported palladium catalysts. J. Mol. Catal. A, 2013, 378, 193-199.
[110]
Takács, E.; Varga, C.; Skoda-Földes, R.; Kollár, L. Facile synthesis of primary amides and ketoamides via a palladium-catalysed carbonylation-deprotection reaction sequence. Tetrahedron Lett., 2007, 48, 2453-2456.
[111]
Wang, Z.; Liu, C.; Huang, Y.; Hu, Y.; Zhang, B. Covalent triazine framework-supported palladium as a ligand-free catalyst for the selective double carbonylation of aryl iodides under ambient pressure of CO. Chem. Commun., 2016, 52, 2960-2963.
[112]
Chavan, S.P.; Varadwaj, G.B.B.; Parida, K.M., and ; Bhanage, B.M. Palladium anchored on amine-functionalized K10 as an efficient heterogeneous and reusable catalyst for carbonylative Sonogashira reaction. Appl. Catal. A, 2015, 506, 237-245.
[113]
Chavan, S.P.; Varadwaj, G.B.B.; Parida, K.M., and ; Bhanage, B.M. Solvent-switchable regioselective synthesis of aurones and flavones using palladium-supported amine-functionalized montmorillonite as heterogeneous catalyst. ChemCatChem, 2016, 8, 1-11.
[114]
Fehér, C.; Papp, M.; Gömöry, Á.; Nagy, L.; Wouters, J.; Lendvay, G.; Skoda-Földes, R. Synthesis of 2-ureido-4-ferrocenyl pyrimidine guests. Investigation of complementary molecular recognition of 2,6-diaminopyridine. Organometallics, 2016, 35, 4023-4032.
[115]
Hassan, J.; Sévignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Aryl-Aryl Bond Formation One Century after the Discovery of the Ullmann Reaction. Chem. Rev., 2002, 102, 1359-1470.
[116]
Blangetti, M.; Rosso, H.; Prandi, C.; Deagostino, A.; Venturello, P. Suzuki-miyaura cross-coupling in acylation reactions, scope and recent developments. Molecules, 2013, 18, 1188-1213.
[117]
Hübner, S.; de Vries, J.G.; Farina, V. Why does industry not use immobilized transition metal complexes as catalysts? Adv. Synth. Catal., 2016, 358, 3-25.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 6
ISSUE: 2
Year: 2019
Page: [78 - 95]
Pages: 18
DOI: 10.2174/2213346106666190321141550

Article Metrics

PDF: 21
HTML: 3

Special-new-year-discount