Functional Nanomaterials and Their Potential Applications in Antibacterial Therapy

Author(s): Le Hong, Shu-Han Luo, Chen-Hao Yu, Yu Xie, Meng-Ying Xia, Ge-Yun Chen, Qiang Peng*.

Journal Name: Pharmaceutical Nanotechnology

Volume 7 , Issue 2 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

In the past decades, nanomaterials have shown great potential in biomedical fields, especially in drug delivery, imaging and targeted therapy. Recently, the development of novel functional nanomaterials for antibacterial application has attracted much attention. Compared to the traditional direct use of antibiotics, antibacterial nanomaterials either as drug delivery systems or active agents have a higher efficacy and lower side effects. Herein, we will focus on the antibacterial applications of four commonly used nanomaterials, including metal-based nanomaterials, polymeric nanoparticles, graphene oxides or carbon-based nanomaterials and nanogels.

Keywords: Antimicrobial, drug delivery, infection, microbiology, nanomaterials, nanoparticles.

[1]
Yao Y, Liao W, Yu R, Du Y, Zhang T, Peng Q. Potentials of combining nanomaterials and stem cell therapy in myocardial repair. Nanomedicine 2018; 13(13): 1623-38.
[2]
Liu J, Dong J, Zhang T, Peng Q. Graphene-based nanomaterials and their potentials in advanced drug delivery and cancer therapy. J Control Release 2018; 286: 64-73.
[3]
Shao X-R, Wei X-Q, Zhang S, et al. Effects of micro-environmental ph of liposome on chemical stability of loaded drug. Nanoscale Res Lett 2017; 12(1): 504.
[4]
Zhang T, Zhu G, Lu B, Peng Q. Oral nano-delivery systems for colon targeting therapy. Pharm Nanotechnol 2017; 5(2): 83-94.
[5]
Couillaud BM, Espeau P, Mignet N, Corvis Y. State of the art of pharmaceutical solid forms: from crystal property issues to nanocrystals formulation. ChemMedChem 2019; 14(1): 8-23.
[6]
Shrestha A, Kishen A. Antibacterial nanoparticles in endodontics: a review. J Endod 2016; 42(10): 1417-26.
[7]
Niemirowicz K, Durnaś B, Piktel E, Bucki R. Development of antifungal therapies using nano-materials. Nanomedicine 2017; 12(15): 1891-905.
[8]
Zhu G-Y, Lu B-Y, Zhang T-X, et al. Antibiofilm effect of drug-free and cationic poly(D,L-lactide-co-glycolide)nanoparticles via nano-bacteria interactions. Nanomedicine 2018; 13(10): 1093-106.
[9]
Aggarwal S. Nanotechnology in endodontics: Current and potential clinical applications. Endodontology 2016; 28(1): 78.
[10]
Cohen ML. Nanotubes, nanoscience, and nanotech-nology. Mater Sci Eng C 2001; 15(1-2): 1-11.
[11]
Thomas V, Yallapu MM, Sreedhar B, Bajpai SK. Fabrication, characterization of chitosan/nanosilver film and its potential antibacterial application. J Biomater Sci Polym Ed 2009; 20(14): 2129-44.
[12]
Gilbertson LM, Zimmerman JB, Plata DL, Hutchison JE, Anastas PT. Designing nanomaterials to maximize performance and minimize undesirable implications guided by the principles of green chemistry. Chem Soc Rev 2015; 44(16): 5758-77.
[13]
Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M. Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 2006; 56(5): 300-6.
[14]
Manivasagan P, Venkatesan J, Sivakumar K, Kim S-K. Actinobacteria mediated synthesis of nanoparticles and their biological properties: a review. Crit Rev Microbiol 2016; 42(2): 209-21.
[15]
Naesens L, Vanderlinden E, Rőth E, et al. Anti-influenza virus activity and structure-activity relation-ship of aglycoristocetin derivatives with cyclobutene-dione carrying hydrophobic chains. Antivir Res 2009; 82(1): 89-94.
[16]
Padovani GC, Feitosa VP, Sauro S, et al. Advances in dental materials through nanotechnology: facts, pers-pectives and toxicological aspects. Trends Biotechnol 2015; 33(11): 621-36.
[17]
Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem 2017. (In Press)
[18]
Garcia A, Sparks C, Martinez K, Topmiller JL, Eastlake A, Geraci CL. Nano-metal oxides: exposure and engineering control assessment. J Occup Environ Hyg 2017; 14(9): 727-37.
[19]
Turos E, Shim J-Y, Wang Y, et al. Antibiotic-conju-gated polyacrylate nanoparticles: new opportunities for development of anti-MRSA agents. Bioorg Med Chem Lett 2007; 17(1): 53-6.
[20]
Mohammadi G, Valizadeh H, Barzegar-Jalali M, et al. Development of azithromycin-PLGA nano-particles: physicochemical characterization and anti-bacterial effect against Salmonella typhi. ‎. Colloids Surf B 2010; 80(1): 34-9.
[21]
Turos E, Reddy GSK, Greenhalgh K, et al. Penicillin-bound polyacrylate nanoparticles: restoring the activity of β-lactam antibiotics against MRSA. Bioorg Med Chem Lett 2007; 17(12): 3468-72.
[22]
Pepla E, Besharat LK, Palaia G, Tenore G, Migliau G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Ann Stomatol 2014; 5(3): 108-14.
[23]
McMahon RE, Wang L, Skoracki R, Mathur AB. Development of nanomaterials for bone repair and regeneration. J Biomed Mater Res B 2012; 101B(2): 387-97.
[24]
Huber F-X, Belyaev O, Hillmeier J, et al. First histological observations on the incorporation of a novel nanocrystalline hydroxyapatite paste OSTIM® in human cancellous bone. BMC Musculoskel Dis 2006; 7(1): 50.
[25]
Shih C-J, Lin S, Sharma R, Strano MS, Blankschtein D. Understanding the ph-dependent behavior of graphene oxide aqueous solutions: a comparative experimental and molecular dynamics simulation study. Langmuir 2012; 28(1): 235-41.
[26]
Hu W, Peng C, Luo W, et al. Graphene-based antibacterial paper. ACS Nano 2010; 4(7): 4317-23.
[27]
Szekely G, Didaskalou C. 7 - biomimics of metalloenzymes via imprinting. In: Li S, Cao S, Piletsky SA, Turner APF, Eds. Molecularly Imprinted Catalysts. Amsterdam: Elsevier 2016; pp. 121-58.
[28]
Sun TL, Kurokawa T, Kuroda S, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater 2013; 12: 932.
[29]
Sun J-Y, Zhao X, Illeperuma WRK, et al. Highly stretchable and tough hydrogels. Nature 2012; 489: 133.
[30]
Besinis A, De Peralta T, Tredwin CJ, Handy RD. Review of nanomaterials in dentistry: interactions with the oral microenvironment, clinical applications, hazards, and benefits. ACS Nano 2015; 9(3): 2255-89.
[31]
Aziz SG-G, Akbarzadeh A. Advances in silver nanotechnology: an update on biomedical applica-tions and future perspectives. Drug Res 2017; 67(4): 198-203.
[32]
Ahrari F, Eslami N, Rajabi O, Ghazvini K, Barati S. The antimicrobial sensitivity of Streptococcus mutans and Streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes. Dent Res J 2015; 12(1): 44.
[33]
Huang J, Li X, Koller G, Di Silvio L, Vargas-Reus M, Allaker R. Electrohydrodynamic deposition of nanotitanium doped hydroxyapatite coating for medical and dental applications. J Mater Science Mater Med 2011; 22(3): 491-6.
[34]
Hanan NA, Chiu HI, Ramachandran MR, et al. Cytotoxicity of plant-mediated synthesis of metallic nanoparticles: a systematic review. Int J Mol Sci 2018; 19(6): 1725.
[35]
Rai M, Birla S, Ingle Avinash P, et al. Nanosilver: an inorganic nanoparticle with myriad potential applications. Nanotechnol Rev 2014; 3: 281-309.
[36]
Shen M, Liang G, Gu A, Yuan L. Development of high performance dental resin composites with outstanding antibacterial activity, high mechanical properties and low polymerization shrinkage based on a SiO2 hybridized tetrapod-like zinc oxide whisker with C=C bonds. RSC Adv 2016; 6(61): 56353-64.
[37]
Zhang R, Zhang W, Bai X, et al. Discussion on the development of nano Ag/TiO2 coating bracket and its antibacterial property and biocompatibility in orthodontic treatment. Pak J Pharm Sci 2015; 28: 807-10.
[38]
Pandurangan M, Kim DH. In vitro toxicity of zinc oxide nanoparticles: a review. J Nanopart Res 2015; 17(3): 158.
[39]
Memarzadeh K, Sharili AS, Huang J, Rawlinson SC, Allaker RP. Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J Biomed Mater Res A 2015; 103(3): 981-9.
[40]
Berdan AS, Luke H. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J Biomed Mater Res B 2010; 94B(1): 22-31.
[41]
Hojati ST, Alaghemand H, Hamze F, et al. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent Mater 2013; 29(5): 495-505.
[42]
Dibrov P, Dzioba J, Gosink KK, Hase CC. Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 2002; 46(8): 2668-70.
[43]
Emmanuel R, Palanisamy S, Chen S-M, et al. Antimicrobial efficacy of green synthesized drug blended silver nanoparticles against dental caries and periodontal disease causing microorganisms. Mater Sci Eng C 2015; 56: 374-9.
[44]
Kathiraven T, Sundaramanickam A, Shanmugam N, Balasubramanian T. Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci 2015; 5(4): 499-504.
[45]
Zhang X-F, Liu Z-G, Shen W, Gurunathan S. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9)
[46]
Stark WJ, Stoessel PR, Wohlleben W, Hafner A. Industrial applications of nanoparticles. Chem Soc Rev 2015; 44(16): 5793-805.
[47]
Franci G, Falanga A, Galdiero S, et al. Silver nanoparticles as potential antibacterial agents. Molecules 2015; 20(5): 8856-74.
[48]
Noronha VT, Paula AJ, Duran G, et al. Silver nanoparticles in dentistry. Dent Mater 2017; 33(10): 1110-26.
[49]
Jazayeri MH, Amani H, Pourfatollah AA, Pazoki-Toroudi H, Sedighimoghaddam B. Various methods of gold nanoparticles(GNPs)conjugation to antibo-dies. Sensing Bio-Sensing Res 2016; 9: 17-22.
[50]
Chen Y, Xianyu Y, Jiang X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc Chem Res 2017; 50(2): 310-9.
[51]
Zhao Y, Chen Z, Chen Y, Xu J, Li J, Jiang X. Synergy of non-antibiotic drugs and pyrimidinethiol on gold nanoparticles against superbugs. J Am Chem Soc 2013; 135(35): 12940-3.
[52]
Chamundeeswari M, Sobhana SL, Jacob JP, et al. Preparation, characterization and evaluation of a biopolymeric gold nanocomposite with antimicrobial activity. Biotechnol Appl Biochem 2010; 55(1): 29-35.
[53]
Saha B, Bhattacharya J, Mukherjee A, et al. In vitro structural and functional evaluation of gold nano-particles conjugated antibiotics. Nanoscale Res Lett 2007; 2(12): 614.
[54]
Akira M, Yoshio S, Hisashi O, Shuzo Y. Perva-poration separation of water/ethanol mixtures through polysaccharide membranes. I. The effects of salts on the permselectivity of cellulose membrane in pervaporation. J Appl Polym Sci 1989; 37(12): 3357-74.
[55]
Zhao Y, Tian Y, Cui Y, Liu W, Ma W, Jiang X. Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J Am Chem Soc 2010; 132(35): 12349-56.
[56]
Nirmala Grace A, Pandian K. Antibacterial efficacy of aminoglycosidic antibiotics protected gold nano-particles-A brief study. ‎. Colloids Surf A 2007; 297(1): 63-70.
[57]
Balasundaram G, Webster TJ. Nanotechnology and biomaterials for orthopedic medical applications. Nanomedicine 2006; 1: 169-76.
[58]
Tian L, Hammond PT. Comb-dendritic block copo-lymers as tree-shaped macromolecular amphiphiles for nanoparticle self-assembly. Chem Mater 2006; 18(17): 3976-84.
[59]
Kurtoglu YE, Navath RS, Wang B, Kannan S, Romero R, Kannan RM. Poly(amidoamine)dendri-mer-drug conjugates with disulfide linkages for intracellular drug delivery. Biomaterials 2009; 30(11): 2112-21.
[60]
Stuart MAC, Huck WTS, Genzer J, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater 2010; 9: 101.
[61]
Ma M, Cheng Y, Xu Z, et al. Evaluation of polyamidoamine(PAMAM)dendrimers as drug carri-ers of anti-bacterial drugs using sulfamethoxazole (SMZ) as a model drug. Eur J Med Chem 2007; 42(1): 93-8.
[62]
Abeylath SC, Turos E, Dickey S, Lim DV. Glyconanobiotics: novel carbohydrated nanoparticle antibiotics for MRSA and Bacillus anthracis. Bioorg Med Chem 2008; 16(5): 2412-8.
[63]
Nguyen PM, Zacharia NS, Verploegen E, Hammond PT. Extended release antibacterial layer-by-layer films incorporating linear-dendritic block copolymer micelles. Chem Mater 2007; 19(23): 5524-30.
[64]
Szymańska E, Winnicka K. Stability of chitosan-a challenge for pharmaceutical and biomedical appli-cations. Mar Drugs 2015; 13(4): 1819-46.
[65]
Agnihotri SA, Mallikarjuna NN, Aminabhavi TM. Recent advances on chitosan-based micro-and nanoparticles in drug delivery. J Control Release 2004; 100(1): 5-28.
[66]
Machida Y, Nagai T, Abe M, Sannan T. Use of chitosan and hydroxypropylchitosan in drug formula-tions to effect sustained release. Drug Des Deliv 1986; 1(2): 119-30.
[67]
Tan W, Krishnaraj R, Desai TA. Evaluation of nanostructured composite collagen-chitosan matrices for tissue engineering. Tissue Eng 2001; 7(2): 203-10.
[68]
Bui KV, Park D, Lee Y-C. Chitosan combined with zno, tio2 and ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers 2017; 9(1): 21.
[69]
Ding S-J. Preparation and properties of chitosan/ calcium phosphate composites for bone repair. Dent Mater J 2006; 25(4): 706-12.
[70]
Boynueğri D, Özcan G, Şenel S, et al. Clinical and radiographic evaluations of chitosan gel in perio-dontal intraosseous defects: a pilot study. J Biomed Mater Res B 2009; 90B(1): 461-6.
[71]
DaSilva L, Finer Y, Friedman S, Basrani B, Kishen A. Biofilm formation within the interface of bovine root dentin treated with conjugated chitosan and sealer containing chitosan nanoparticles. J Endodont 2013; 39(2): 249-53.
[72]
Grigorenko AN, Polini M, Novoselov KS. Graphene plasmonics. Nat Photon 2012; 6: 749.
[73]
Guazzo R, Gardin C, Bellin G, et al. Graphene-based nanomaterials for tissue engineering in the dental field. Nanomaterials 2018; 8(5): 349.
[74]
Zarafu I, Turcu I, Culiță D, et al. Antimicrobial features of organic functionalized graphene-oxide with selected amines. Materials 2018; 11(9): 1704.
[75]
Liu S, Zeng TH, Hofmann M, et al. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano 2011; 5(9): 6971-80.
[76]
Tu Y, Lv M, Xiu P, et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat Nanotechnol 2013; 8(8): 594.
[77]
Zhao J, Deng B, Lv M, et al. Graphene Oxide-Based Antibacterial Cotton Fabrics. Adv Healthc Mater 2013; 2(9): 1259-66.
[78]
Chen J, Peng H, Wang X, Shao F, Yuan Z, Han H. Graphene oxide exhibits broad-spectrum antimic-robial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation. Nanoscale 2014; 6(3): 1879-89.
[79]
Ruiz ON, Fernando KAS, Wang B, et al. Graphene Oxide: A nonspecific enhancer of cellular growth. ACS Nano 2011; 5(10): 8100-7.
[80]
Some S, Ho S-M, Dua P, et al. Dual functions of highly potent graphene derivative–poly-l-lysine composites to inhibit bacteria and support human cells. ACS Nano 2012; 6(8): 7151-61.
[81]
Liu L, Liu J, Wang Y, Yan X, Sun DD. Facile synthesis of monodispersed silver nanoparticles on graphene oxide sheets with enhanced antibacterial activity. New J Chem 2011; 35(7): 1418-23.
[82]
Bao Q, Zhang D, Qi P. Synthesis and characterization of silver nanoparticle and graphene oxide nanosheet composites as a bactericidal agent for water disin-fection. J Colloid Interface Sci 2011; 360(2): 463-70.
[83]
de Faria AF, de Moraes ACM, Marcato PD, et al. Eco-friendly decoration of graphene oxide with biogenic silver nanoparticles: antibacterial and antibiofilm activity. J Nanopart Res 2014; 16(2): 2110.
[84]
Zhang X, Yin J, Peng C, et al. Distribution and biocompatibility studies of graphene oxide in mice after intravenous administration. Carbon 2011; 49(3): 986-95.
[85]
Kim H-M, Kim K-M, Lee K, Kim YS, Oh J-M. Nano–bio interaction between graphite oxide nanoparticles and human blood components. Eur J Inorgan Chem 2012; 2012(32): 5343-9.
[86]
Singh SK, Singh MK, Nayak MK, et al. Thrombus inducing property of atomically thin graphene oxide sheets. ACS Nano 2011; 5(6): 4987-96.
[87]
Singh SK, Singh MK, Kulkarni PP, Sonkar VK, Grácio JJA, Dash D. Amine-modified graphene: thrombo-protective safer alternative to graphene oxide for biomedical applications. ACS Nano 2012; 6(3): 2731-40.
[88]
Ali-Boucetta H, Bitounis D, Raveendran-Nair R, Servant A, Van den Bossche J, Kostarelos K. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv Healthc Mater 2012; 2(3): 433-41.
[89]
Seabra AB, Paula AJ, de Lima R, Alves OL, Durán N. Nanotoxicity of graphene and graphene oxide. Chem Res Toxicol 2014; 27(2): 159-68.
[90]
Tollas S, Bereczki I, Sipos A, et al. Nano-sized clusters of a teicoplanin ψ-aglycon-fullerene conjugate. Synthesis, antibacterial activity and aggregation studies. Eur J Med Chem 2012; 54: 943-8.
[91]
Pintér G, Batta G, Kéki S, et al. Diazo transfer−click reaction route to new, lipophilic teicoplanin and ristocetin aglycon derivatives with high antibacterial and anti-influenza virus activity: an aggregation and receptor binding study. J Med Chem 2009; 52(19): 6053-61.
[92]
Zhang E-Y, Wang C-R. Fullerene self-assembly and supramolecular nanostructures. Curr Opin Colloid Interface Sci 2009; 14(2): 148-56.
[93]
Morkhande VK, Pentewar R, Gapat SV, et al. A review on hydrogel. Pharm Res 2016; 6: 4678.
[94]
Kumar M. Hydrogels used as a potential drug delivery system: a review. Int J Pharm Biolog Arch 2011; 2(4): 1068-76.
[95]
Okada M, Hiramatsu D, Okihara T, Matsumoto T. Adsorption and desorption behaviors of cetylpyridinium chloride on hydroxyapatite nanoparticles with different morphologies. Dent Mater J 2016; 35(4): 651-8.
[96]
Kantharia N, Naik S, Apte S, Kheur M, Kheur S, Kale B. Nano-hydroxyapatite and its contemporary applications. Bone 2014; 34(15.2): 1-71.
[97]
Krishnan V, Bhatia A, Varma H. Development, characterization and comparison of two strontium doped nano hydroxyapatite molecules for enamel repair/regeneration. Dent Mater 2016; 32(5): 646-59.
[98]
Tschoppe P, Zandim DL, Martus P, Kielbassa AM. Enamel and dentine remineralization by nano-hydroxyapatite toothpastes. J Dent 2011; 39(6): 430-7.
[99]
Chaudhry AA, Yan H, Gong K, et al. High-strength nanograined and translucent hydroxyapatite mono-liths via continuous hydrothermal synthesis and optimized spark plasma sintering. Acta Biomater 2011; 7(2): 791-9.
[100]
Turon P, del Valle JL, Alemán C, Puiggalí J. Biodegradable and biocompatible systems based on hydroxyapatite nanoparticles. Appl Sci 2017; 7(1): 60.
[101]
Martinez LR, Han G, Chacko M, et al. Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against staphylococcus aureus skin infection. J Invest Dermatol 2009; 129(10): 2463-9.
[102]
Han G, Martinez LR, Mihu MR, Friedman AJ, Friedman JM, Nosanchuk JD. Nitric oxide releasing nanoparticles are therapeutic for staphylococcus aureus abscesses in a murine model of infection. PLoS One 2009; 4(11): 7804.
[103]
Barraud N, Hassett DJ, Hwang S-H, Rice SA, Kjelleberg S, Webb JS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 2006; 188(21): 7344-53.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 7
ISSUE: 2
Year: 2019
Page: [129 - 146]
Pages: 18
DOI: 10.2174/2211738507666190320160802

Article Metrics

PDF: 12
HTML: 4
EPUB: 1