Role of Dendrimer in Drug Solubilisation - A Review

Author(s): Ravindra V. Movliya, Pravinkumar M. Patel*.

Journal Name: Drug Delivery Letters

Volume 9 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Objective: Dendrimers, a new class of synthetic polymers proved themselves very useful tools for biomedical application due to their unique characteristics including water solubility, uniform size and shape, defined molecular weight, multivalency, biological compatibility and internal cavities. The hydrophobicity of a drug molecule creates hurdles in the development of effective dosage form and presents insufficient drug delivery to the target site.

Methods: Solubility enhancement is one of the key properties of a dendrimer. The hydrophobic drug molecules are entrapped in the cavities of a dendrimer by complexation and get solubilized in the aqueous solution.

Conclusion: The present article contains information on dendrimer and its biomedical application such as API solubility. The detailed study presents year wise survey of different research articles, research papers, reviews and patents on dendrimer and its application in drug solubility.

Keywords: Dendrimer, solubility, biomedical, complexation, PAMAM, drug carrier.

[1]
Richard, F.; Michelle, A.C.; Luigi, X.C. Pharmacology, 4th ed; Lippincott Williams & Wilkins, 2009.
[2]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[3]
Li, D.; Edward, K. Drug-like Properties: Concepts, Structure Design and Methods In: Solubility, 2008; vol; 12, pp. 56-85.
[4]
Rishton, G.M. Natural products as a robust source of new drugs and drug leads: past successes and present day issues. Am. J. Cardiol., 2008, 101(10A), 43D-49D.
[http://dx.doi.org/10.1016/j.amjcard.2008.02.007] [PMID: 18474274]
[5]
Gupta umesh; Hrushikesh Bharat; Agashe; Abhay Asthana; and N. K. Jain. Dendrimers: novel polymeric nanoarchitec-tures for solubility enhancement. Biomacromolecules 7, 2006: (3) 649-658.
[6]
Bhat, P.A.; Rather, G.M.; Dar, A.A. Effect of surfactant mixing on partitioning of model hydrophobic drug, naproxen, between aqueous and micellar phases. J. Phys. Chem. B, 2009, 113(4), 997-1006.
[http://dx.doi.org/10.1021/jp807229c] [PMID: 19123827]
[7]
Keck, C.M.; Müller, R.H. Drug nanocrystals of poorly soluble drugs produced by high pressure homogenisation. Eur. J. Pharm. Biopharm., 2006, 62(1), 3-16.
[http://dx.doi.org/10.1016/j.ejpb.2005.05.009] [PMID: 16129588]
[8]
Tomalia, DA; Fréchet, JM Introduction to the dendritic state. Dendrimers and other den-dritic polymers, 2001: 1-44.
[9]
Lindenberg, M.; Kopp, S.; Dressman, J.B. Classification of orally administered drugs on the World Health Organization Model list of Essential Medicines according to the biopharmaceutics classification system. Eur. J. Pharm. Biopharm., 2004, 58(2), 265-278.
[http://dx.doi.org/10.1016/j.ejpb.2004.03.001] [PMID: 15296954]
[10]
Burns, H.D. United states pharmacopeial convention. J. Pharm. Sci., 1980, 69(7), 873-873.
[11]
Tomalia, D.A.; Fréchet, J.M. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J. Polym. Sci. A Polym. Chem., 2002, 40(16), 2719-2728.
[http://dx.doi.org/10.1002/pola.10301]
[12]
Marsac, P.J.; Li, T.; Taylor, L.S. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res., 2009, 26(1), 139-151.
[http://dx.doi.org/10.1007/s11095-008-9721-1] [PMID: 18779927]
[13]
Abuchowski, A.; McCoy, J.R.; Palczuk, N.C.; van Es, T.; Davis, F.F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J. Biol. Chem., 1977, 252(11), 3582-3586.
[PMID: 16907]
[14]
Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv. Drug Deliv. Rev., 2012, (64), 37-48.
[http://dx.doi.org/10.1016/j.addr.2012.09.013] [PMID: 11251249]
[15]
Zeuzem, S.; Feinman, S.V.; Rasenack, J.; Heathcote, E.J.; Lai, M.Y.; Gane, E.; O’Grady, J.; Reichen, J.; Diago, M.; Lin, A.; Hoffman, J.; Brunda, M.J. Peginterferon alfa-2a in patients with chronic hepatitis C. N. Engl. J. Med., 2000, 343(23), 1666-1672.
[http://dx.doi.org/10.1056/NEJM200012073432301] [PMID: 11106715]
[16]
Mody; Vicky V. Introduction to polymeric drug delivery. Internet Journal of Medical Update, 2010, 5(2), 1-2.
[17]
Reza, M.S.; Quadir, M.A.; Haider, S.S. Comparative evaluation of plastic, hydrophobic and hydrophilic polymers as matrices for controlled-release drug delivery. J. Pharm. Pharm. Sci., 2003, 6(2), 282-291.
[PMID: 12935440]
[18]
Khadka, P; Ro, J; Kim, H; Kim, I; Kim, JT; Kim, H; Cho, JM; Yun, G Lee, J Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian journal of pharmaceutical sciences. 2014, 9(6): 304-316.
[19]
Marsac, P.J.; Li, T.; Taylor, L.S. Estimation of drug-polymer miscibility and solubility in amorphous solid dispersions using experimentally determined interaction parameters. Pharm. Res., 2009, 26(1), 139-151.
[http://dx.doi.org/10.1007/s11095-008-9721-1] [PMID: 18779927]
[20]
Hans, M.L.; Lowman, A.M. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opin. Solid State Mater. Sci., 2002, 6(4), 319-327.
[http://dx.doi.org/10.1016/S1359-0286(02)00117-1]
[21]
Khorsand Sourkohi, B.; Cunningham, A.; Zhang, Q.; Oh, J.K. Biodegradable block copolymer micelles with thiol-responsive sheddable coronas. Biomacromolecules, 2011, 12(10), 3819-3825.
[http://dx.doi.org/10.1021/bm2011032] [PMID: 21879701]
[22]
Soppimath, K.S.; Aminabhavi, T.M.; Kulkarni, A.R.; Rudzinski, W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 2001, 70(1-2), 1-20.
[http://dx.doi.org/10.1016/S0168-3659(00)00339-4] [PMID: 11166403]
[23]
Bajpai, A.K.; Shukla, S.K.; Bhanu, S.; Kankane, S. Responsive polymers in controlled drug delivery. Prog. Polym. Sci., 2008, 33(11), 1088-1118.
[http://dx.doi.org/10.1016/j.progpolymsci.2008.07.005]
[24]
Yoo, H.S.; Park, T.G. Biodegradable polymeric micelles composed of doxorubicin conjugated PLGA-PEG block copolymer. J. Control. Release, 2001, 70(1-2), 63-70.
[http://dx.doi.org/10.1016/S0168-3659(00)00340-0] [PMID: 11166408]
[25]
Viegas, TX; Bentley, MD; Harris, JM; Fang, Z; Yoon, K; Dizman, B; Weimer, R; Mero, A; Pasut, G; Veronese, FM Polyoxazoline: chemistry, properties, and applications in drug delivery., 2011.
[http://dx.doi.org/10.1021/bc200049d]
[26]
Chauhan, A.S.; Jain, N.K.; Diwan, P.V.; Khopade, A.J. Solubility enhancement of indomethacin with poly(amidoamine) dendrimers and targeting to inflammatory regions of arthritic rats. J. Drug Target., 2004, 12(9-10), 575-583.
[http://dx.doi.org/10.1080/10611860400010655] [PMID: 15621683]
[27]
Wang, Y.; Cao, X.; Guo, R.; Shen, M.; Zhang, M.; Zhu, M.; Shi, X. Targeted delivery of doxorubicin into cancer cells using a folic acid–dendrimer conjugate. Polym. Chem., 2011, 2(8), 1754-1760.
[http://dx.doi.org/10.1039/c1py00179e]
[28]
Pistolis, G.; Malliaris, A.; Tsiourvas, D.; Paleos, C.M. Poly (propyleneimine) dendrimers as pH‐sensitive controlled‐release systems. Chemistry, 1999, 5(5), 1440-1444.
[http://dx.doi.org/10.1002/(SICI)1521-3765(19990503)5:5<1440:AID-CHEM1440>3.0.CO;2-M]
[29]
Bhattarai, N.; Gunn, J.; Zhang, M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv. Drug Deliv. Rev., 2010, 62(1), 83-99.
[http://dx.doi.org/10.1016/j.addr.2009.07.019] [PMID: 19799949]
[30]
Fréchet, J.M.; Hawker, C.J.; Gitsov, I.; Leon, J.W. Dendrimers and hyperbranched polymers: two families of three-dimensional macromolecules with similar but clearly distinct properties. J. Macromol. Sci. Part A Pure Appl. Chem., 1996, 33(10), 1399-1425.
[http://dx.doi.org/10.1080/10601329608014916]
[31]
Van Krevelen, D.W.; Te Nijenhuis, K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions; Elsevier, 2009.
[http://dx.doi.org/10.1016/B978-0-08-054819-7.00001-7]
[32]
Tobolsky, A.V.; Thomas, D. Kallinan. Properties and structure of polymers. J. Electrochem. Soc., 1960, 107(10), 243C-243C.
[http://dx.doi.org/10.1149/1.2427514]
[33]
Savjani, K.T.; Gajjar, A.K.; Savjani, J.K. Drug solubility: importance and enhancement techniques. ISRN Pharm., 2012.2012195727
[http://dx.doi.org/10.5402/2012/195727] [PMID: 22830056]
[34]
Tomalia, D.A.; Fréchet, J.M. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J. Polym. Sci. A Polym. Chem., 2002, 40(16), 2719-2728.
[http://dx.doi.org/10.1002/pola.10301]
[35]
Tomalia, D.A. Starburstr̀ dendrimers—Nanoscopic supermolecules according to dendritic rules and principles. Macromol. Symp., 1996, 101(1), 243-255.
[http://dx.doi.org/10.1002/masy.19961010128]
[36]
Tomalia, D.A.; Christensen, J.B.; Boas, U. Dendrimers, dendrons, and dendritic polymers: discovery, applications, and the future; Cambridge University Press, 2012.
[http://dx.doi.org/10.1017/CBO9781139048859]
[37]
Sherje, A.P.; Jadhav, M.; Dravyakar, B.R.; Kadam, D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm., 2018, 548(1), 707-720.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.030] [PMID: 30012508]
[38]
Jain, N.K.; Gupta, U. Application of dendrimer-drug complexation in the enhancement of drug solubility and bioavailability. Expert Opin. Drug Metab. Toxicol., 2008, 4(8), 1035-1052.
[http://dx.doi.org/10.1517/17425255.4.8.1035] [PMID: 18680439]
[39]
Gupta, U.; Agashe, H.B.; Jain, N.K. Polypropylene imine dendrimer mediated solubility enhancement: effect of pH and functional groups of hydrophobes. J. Pharm. Pharm. Sci., 2007, 10(3), 358-367.
[PMID: 17727799]
[40]
Satija, J.; Gupta, U.; Jain, N.K. Pharmaceutical and biomedical potential of surface engineered dendrimers. Crit. Rev. Ther. Drug Carrier Syst., 2007, 24(3), 257-306.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v24.i3.20] [PMID: 17956215]
[41]
Gupta, U.; Agashe, H.B.; Asthana, A.; Jain, N.K. Dendrimers: novel polymeric nanoarchitectures for solubility enhancement. Biomacromolecules, 2006, 7(3), 649-658.
[http://dx.doi.org/10.1021/bm050802s] [PMID: 16529394]
[42]
Archut, A.; Vögtle, F. Functional cascade molecules. Chem. Soc. Rev., 1998, 27(4), 233-240.
[http://dx.doi.org/10.1039/a827233z]
[43]
Tomalia, D.A.; Dewald, J.; Hall, M.; Martin, S.; Smith, P. Reprints of the 1st SPSJ International Polymer Confer-ence; Soc Polym Sci, 1984, p. 65.
[44]
Zeng, F.; Zimmerman, S.C. Rapid synthesis of dendrimers by an orthogonal coupling strategy. J. Am. Chem. Soc., 1996, 118(22), 5326-5327.
[http://dx.doi.org/10.1021/ja960317s]
[45]
Hübner Gosia, M. Guido Nachtsheim; Qian Yi Li; Christian Seel; Fritz Vögtle. The spatial demand of dendrimers: Deslipping of rotaxanes. Angew. Chem. Int. Ed., 2000, 39(7), 1269-1272.
[http://dx.doi.org/10.1002/(SICI)1521-3773(20000403)39:7<1269:AID-ANIE1269>3.0.CO;2-W]
[46]
Wörner, C.; Mülhaupt, R. Polynitrile‐and polyamine‐functional poly (trimethylene imine) dendrimers. Angew. Chem. Int. Ed. Engl., 1993, 32(9), 1306-1308.
[http://dx.doi.org/10.1002/anie.199313061]
[47]
Esfand, R.; Tomalia, D.A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today, 2001, 6(8), 427-436.
[http://dx.doi.org/10.1016/S1359-6446(01)01757-3] [PMID: 11301287]
[48]
Lee, J.W.; Kim, B.K.; Kim, H.J.; Han, S.C.; Shin, W.S.; Jin, S.H. Convergent synthesis of symmetrical and unsymmetrical PAMAM dendrimers. Macromolecules, 2006, 39(6), 2418-2422.
[http://dx.doi.org/10.1021/ma052526f]
[49]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P.A. A new class of polymers: starburst-dendritic macromolecules. Polym. J., 1985, 17(1), 117.
[http://dx.doi.org/10.1295/polymj.17.117]
[50]
Kalhapure, R.S.; Kathiravan, M.K.; Akamanchi, K.G.; Govender, T. Dendrimers - from organic synthesis to pharmaceutical applications: an update. Pharm. Dev. Technol., 2015, 20(1), 22-40.
[http://dx.doi.org/10.3109/10837450.2013.862264] [PMID: 24299011]
[51]
Kalhapure, R.S.; Kathiravan, M.K.; Akamanchi, K.G.; Govender, T. Dendrimers - from organic synthesis to pharmaceutical applications: an update. Pharm. Dev. Technol., 2015, 20(1), 22-40.
[http://dx.doi.org/10.3109/10837450.2013.862264] [PMID: 24299011]
[52]
Tomalia, D.A.; Naylor, A.M.; Goddard, W.A. III Starburst dendrimers: molecular‐level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem. Int. Ed. Engl., 1990, 29(2), 138-175.
[http://dx.doi.org/10.1002/anie.199001381]
[53]
Tomalia, D.A.; Durst, H.D. Genealogically directed synthesis: Starburst/cascade den-drimers and hyperbranched structures. In Supramolecular Chemistry I—Directed Synthesis and Molecular Recognition, 1993, pp. 193-313.
[54]
Kalhapure, R.S.; Kathiravan, M.K.; Akamanchi, K.G.; Govender, T. Dendrimers - from organic synthesis to pharmaceutical applications: an update. Pharm. Dev. Technol., 2015, 20(1), 22-40.
[http://dx.doi.org/10.3109/10837450.2013.862264] [PMID: 24299011]
[55]
Karak, N.; Maiti, S. Dendrimers and Hyperbranched Polymers: Synthesis to Applications; MD Publications, 2008.
[56]
Massadeh, S.; Al-Aamery, M.; Bawazeer, S.; AlAhmad, O.; AlSubai, R.; Barker, S.; Craig, D. Nano-materials for gene therapy: an efficient way in overcoming challenges of gene delivery. J. Biosens. Bioelectron., 2016, (7), 1-12.
[http://dx.doi.org/10.4172/2155-6210.1000195]
[57]
Grayson, S.M.; Fréchet, J.M. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev., 2001, 101(12), 3819-3868.
[http://dx.doi.org/10.1021/cr990116h] [PMID: 11740922]
[58]
Tomalia, D.A.; Dewald, J.; Hall, M.; Martin, S.; Smith, P. Reprints of the 1st SPSJ International Polymer Confer-ence; Soc Polym Sci, 1984, p. 65.
[59]
Tomalia, D.A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P.A. A new class of polymers: starburst-dendritic macromolecules. Polym. J., 1985, 17(1), 117.
[http://dx.doi.org/10.1295/polymj.17.117]
[60]
Esfand, R.; Tomalia, D.A. Poly(amidoamine) (PAMAM) dendrimers: from biomimicry to drug delivery and biomedical applications. Drug Discov. Today, 2001, 6(8), 427-436.
[http://dx.doi.org/10.1016/S1359-6446(01)01757-3] [PMID: 11301287]
[61]
de Brabander‐van den Berg, E.M.; Meijer, E.W. Poly (propylene imine) dendrimers: large‐scale synthesis by hetereogeneously catalyzed hydrogenations. Angew. Chem. Int. Ed. Engl., 1993, 32(9), 1308-1311.
[http://dx.doi.org/10.1002/anie.199313081]
[62]
Grayson, S.M.; Fréchet, J.M. Convergent dendrons and dendrimers: from synthesis to applications. Chem. Rev., 2001, 101(12), 3819-3868.
[http://dx.doi.org/10.1021/cr990116h] [PMID: 11740922]
[63]
Ihre, H.; Hult, A.; Söderlind, E. Synthesis, characterization, and 1H NMR self-diffusion studies of dendritic aliphatic polyesters based on 2, 2-bis (hydroxymethyl) propionic acid and 1, 1, 1-tris (hydroxyphenyl) ethane. J. Am. Chem. Soc., 1996, 118(27), 6388-6395.
[http://dx.doi.org/10.1021/ja954171t]
[64]
Tomalia, DA; Dewald, JR Dense star polymers having core, core branches, terminal groups., 1985.
[65]
Patel, H.N.; Patel, P.M. Dendrimer applications–a review. Int. J. Pharma Bio Sci., 2013, 4(2), 454-463.
[66]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications—reflections on the field. Adv. Drug Deliv. Rev., 2012, 64, 102-115.
[http://dx.doi.org/10.1016/j.addr.2012.09.030]
[67]
Bosman, A.W.; Janssen, H.M.; Meijer, E.W. About dendrimers: structure, physical properties, and applications. Chem. Rev., 1999, 99(7), 1665-1688.
[http://dx.doi.org/10.1021/cr970069y] [PMID: 11849007]
[68]
Cloninger, M.J. Biological applications of dendrimers. Curr. Opin. Chem. Biol., 2002, 6(6), 742-748.
[http://dx.doi.org/10.1016/S1367-5931(02)00400-3] [PMID: 12470726]
[69]
Fischer, M.; Vögtle, F. Dendrimers: from design to application—a progress report. Angew. Chem. Int. Ed. Engl., 1999, 38(7), 884-905.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19990401)38:7<884:AID-ANIE884>3.0.CO;2-K] [PMID: 29711851]
[70]
Delong, R.; Stephenson, K.; Loftus, T.; Fisher, M.; Alahari, S.; Nolting, A.; Juliano, R.L. Characterization of complexes of oligonucleotides with polyamidoamine starburst dendrimers and effects on intracellular delivery. J. Pharm. Sci., 1997, 86(6), 762-764.
[http://dx.doi.org/10.1021/js960409f] [PMID: 9188063]
[71]
Milhem, O.M.; Myles, C.; McKeown, N.B.; Attwood, D.; D’Emanuele, A. Polyamidoamine Starburst dendrimers as solubility enhancers. Int. J. Pharm., 2000, 197(1-2), 239-241.
[http://dx.doi.org/10.1016/S0378-5173(99)00463-9] [PMID: 10704811]
[72]
Beezer, A.E.; King, A.S.; Martin, I.K.; Mitchel, J.C.; Twyman, L.J.; Wain, C.F. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron, 2003, 59(22), 3873-3880.
[http://dx.doi.org/10.1016/S0040-4020(03)00437-X]
[73]
Devarakonda, B.; Hill, R.A.; de Villiers, M.M. The effect of PAMAM dendrimer generation size and surface functional group on the aqueous solubility of nifedipine. Int. J. Pharm., 2004, 284(1-2), 133-140.
[http://dx.doi.org/10.1016/j.ijpharm.2004.07.006] [PMID: 15454304]
[74]
Devarakonda, B.; Hill, R.A.; Liebenberg, W.; Brits, M.; de Villiers, M.M.; Fang, Y.; Xu, T. Comparison of the aqueous solubilization of practically insoluble niclosamide by polyamidoamine (PAMAM) dendrimers and cyclodextrins. Int. J. Pharm., 2005, 304(1-2), 193-209.
[http://dx.doi.org/10.1016/j.ijpharm.2005.07.023] [PMID: 16198076]
[75]
Bhadra, D; Bhadra, S; Jain, NK Pegylated lysine based copolymeric Dendritic micelles for solubilization and delivery of artemether., 2005.
[76]
Yiyun, C.; Tongwen, X. Dendrimers as potential drug carriers. Part I. Solubilization of non-steroidal anti-inflammatory drugs in the presence of polyamidoamine dendrimers. Eur. J. Med. Chem., 2005, 40(11), 1188-1192.
[http://dx.doi.org/10.1016/j.ejmech.2005.06.010] [PMID: 16153746]
[77]
Yiyun, C.; Tongwen, X.; Rongqiang, F. Polyamidoamine dendrimers used as solubility enhancers of ketoprofen. Eur. J. Med. Chem., 2005, 40(12), 1390-1393.
[http://dx.doi.org/10.1016/j.ejmech.2005.08.002] [PMID: 16226353]
[78]
Yiyun, C.; Tongwen, X. Solubility of nicotinic acid in polyamidoamine dendrimer solutions. Eur. J. Med. Chem., 2005, 40(12), 1384-1389.
[http://dx.doi.org/10.1016/j.ejmech.2005.08.001] [PMID: 16226352]
[79]
Connors, KA; Higuchi, T Phase-solubility techniques., 1965.
[80]
Devarakonda, B.; Otto, D.P.; Judefeind, A.; Hill, R.A.; de Villiers, M.M. Effect of pH on the solubility and release of furosemide from polyamidoamine (PAMAM) dendrimer complexes. Int. J. Pharm., 2007, 345(1-2), 142-153.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.039] [PMID: 17600643]
[81]
Markatou, E.; Gionis, V.; Chryssikos, G.D.; Hatziantoniou, S.; Georgopoulos, A.; Demetzos, C. Molecular interactions between dimethoxycurcumin and Pamam dendrimer carriers. Int. J. Pharm., 2007, 339(1-2), 231-236.
[http://dx.doi.org/10.1016/j.ijpharm.2007.02.037] [PMID: 17428628]
[82]
Yang, W.; Li, Y.; Cheng, Y.; Wu, Q.; Wen, L.; Xu, T.; Xu, T. Evaluation of phenylbutazone and poly(amidoamine) dendrimers interactions by a combination of solubility, 2D-NOESY NMR, and isothermal titration calorimetry studies. J. Pharm. Sci., 2009, 98(3), 1075-1085.
[http://dx.doi.org/10.1002/jps.21519] [PMID: 18680167]
[83]
Cheng, Y.; Li, Y.; Wu, Q.; Zhang, J.; Xu, T. Generation-dependent encapsulation/electrostatic attachment of phenobarbital molecules by poly(amidoamine) dendrimers: Evidence from 2D-NOESY investigations. Eur. J. Med. Chem., 2009, 44(5), 2219-2223.
[http://dx.doi.org/10.1016/j.ejmech.2008.05.031] [PMID: 18635290]
[84]
Borowska, K.; Laskowska, B.; Magoń, A.; Mysliwiec, B.; Pyda, M.; Wołowiec, S. PAMAM dendrimers as solubilizers and hosts for 8-methoxypsoralene enabling transdermal diffusion of the guest. Int. J. Pharm., 2010, 398(1-2), 185-189.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.019] [PMID: 20655371]
[85]
Zhang, X.Z.; Sathitsuksanoh, N.; Zhu, Z.; Percival Zhang, Y.H. One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metab. Eng., 2011, 13(4), 364-372.
[http://dx.doi.org/10.1016/j.ymben.2011.04.003] [PMID: 21549854]
[86]
Filipowicz, A.; Wołowiec, S. Solubility and in vitro transdermal diffusion of riboflavin assisted by PAMAM dendrimers. Int. J. Pharm., 2011, 408(1-2), 152-156.
[http://dx.doi.org/10.1016/j.ijpharm.2011.01.033] [PMID: 21272625]
[87]
Pan, J.; Wen, M.; Yin, D.; Jiang, B.; He, D.; Guo, L. Design and synthesis of novel amphiphilic Janus dendrimers for bone-targeted drug delivery. Tetrahedron, 2012, 68(14), 2943-2949.
[http://dx.doi.org/10.1016/j.tet.2012.02.040]
[88]
Koç, F.E.; Şenel, M. Solubility enhancement of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) using polypolypropylene oxide core PAMAM dendrimers. Int. J. Pharm., 2013, 451(1-2), 18-22.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.062] [PMID: 23628406]
[89]
Zhang, Y.; Xu, M.Y.; Jiang, T.K.; Huang, W.Z.; Wu, J.Y. Low generational polyamidoamine dendrimers to enhance the solubility of folic acid: A “dendritic effect” investigation. Chin. Chem. Lett., 2014, 25(5), 815-818.
[http://dx.doi.org/10.1016/j.cclet.2014.02.004]
[90]
Patel, PM; Patel, R; Wadia, D; Patel, RM Dendritic macromolecules as nano-scale drug carriers: Phase solubility, in vitro drug release, hemolysis and cytotoxicity study. asian journal of pharmaceutical sciences.2015, 10(4): 306-313.
[91]
Singh, M.K.; Pooja, D.; Kulhari, H.; Jain, S.K.; Sistla, R.; Chauhan, A.S. Poly (amidoamine) dendrimer-mediated hybrid formulation for combination therapy of ramipril and hydrochlorothiazide. Eur. J. Pharm. Sci., 2017, 96, 84-92.
[http://dx.doi.org/10.1016/j.ejps.2016.09.005] [PMID: 27614111]
[92]
Xie, Y.; Yao, Y. Octenylsuccinate hydroxypropyl phytoglycogen, a dendrimer-like biopolymer, solubilizes poorly water-soluble active pharmaceutical ingredients. Carbohydr. Polym., 2018, 180, 29-37.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.004] [PMID: 29103508]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 9
ISSUE: 4
Year: 2019
Page: [265 - 276]
Pages: 12
DOI: 10.2174/2210303109666190319165209
Price: $58

Article Metrics

PDF: 29
HTML: 5

Special-new-year-discount