Cellular Stress and General Pathological Processes

Author(s): Eugeny Yu. Gusev, Natalia V. Zotova*.

Journal Name: Current Pharmaceutical Design

Volume 25 , Issue 3 , 2019


Abstract:

From the viewpoint of the general pathology, most of the human diseases are associated with a limited number of pathogenic processes such as inflammation, tumor growth, thrombosis, necrosis, fibrosis, atrophy, pathological hypertrophy, dysplasia and metaplasia. The phenomenon of chronic low-grade inflammation could be attributed to non-classical forms of inflammation, which include many neurodegenerative processes, pathological variants of insulin resistance, atherosclerosis, and other manifestations of the endothelial dysfunction. Individual and universal manifestations of cellular stress could be considered as a basic element of all these pathologies, which has both physiological and pathophysiological significance.

The review examines the causes, main phenomena, developmental directions and outcomes of cellular stress using a phylogenetically conservative set of genes and their activation pathways, as well as tissue stress and its role in inflammatory and para-inflammatory processes.

The main ways towards the realization of cellular stress and its functional blocks were outlined. The main stages of tissue stress and the classification of its typical manifestations, as well as its participation in the development of the classical and non-classical variants of the inflammatory process, were also described.

The mechanisms of cellular and tissue stress are structured into the complex systems, which include networks that enable the exchange of information with multidirectional signaling pathways which together make these systems internally contradictory, and the result of their effects is often unpredictable. However, the possible solutions require new theoretical and methodological approaches, one of which includes the transition to integral criteria, which plausibly reflect the holistic image of these processes.

Keywords: Cellular stress, tissue stress, systemic inflammation, low-grade inflammation, oxidative stress, mitochondrial stress, DNAdamage response, autophagy.

[1]
Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69(1): S4-9.
[2]
Pietzner M, Kaul A, Henning AK, et al. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals. BMC Med 2017; 15: 210.
[3]
Castro AM, Concha LEM, Pantoja-Meléndez CA. Low-grade inflammation and its relation to obesity and chronic degenerative diseases. Rev Med Hosp Gen Méx 2017; 80(2): 101-5.
[4]
Kültz D. Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 2005; 67: 225-67.
[5]
Muralidharan S, Mandrekar P. Cellular stress response and innate immune signaling: integrating pathways in host defense and inflammation. J Leukoc Biol 2013; 94(6): 1167-84.
[6]
Kültz D. Evolution of the cellular stress proteome: from monophyletic origin to ubiquitous function. J Exp Biol 2003; 206: 3119-24.
[7]
Egiazaryan GG, Sudakov KV. Theory of functional systems in the scientific school of P.K. Anokhin. J Hist Neurosci 2007; 16(1-2): 194-205.
[8]
Fulda S, Gorman AM, Hori O, Samali A. Cellular Stress Responses: Cell Survival and Cell Death. Int J Cell Biol 2010; 2010: ID 214074.
[9]
Gusev EYu, Chereshnev VA. Systemic inflammation: theoretical and methodological approaches to the description of the general pathological process model. Part I. General characteristics of the process. Pathol Physiol Exp The 2012; 4: 3-14.
[10]
Guido M, Isabelle J. Cells, Tissues and Disease: Principles of General Pathology Oxford University Press. OUP 2004; p. 1040.
[11]
McEwen BS, Wingfield JC. The concept of allostasis in biology and biomedicine. Horm Behav 2003; 43(1): 2-15.
[12]
Abbas AK, Lichtman AH, Pillai S. Cellular and Molecular Immunology. 9th ed. Elsevier 2018. 579 p.
[13]
Motoshima T, Miura Y, Wakigami N, et al. Phenotypical change of tumor-associated macrophages in metastatic lesions of clear cell renal cell carcinoma. Med Mol Morphol 2018; 51(1): 57-63.
[14]
Zhang H, Zhang W, Sun X, et al. Class A1 scavenger receptor modulates glioma progression by regulating M2-like tumor-associated macrophage polarization. Oncotarget 2016; 7(31): 50099-116.
[15]
Kubota K, Moriyama M, Furukawa S, et al. CD163+CD204+ tumor-associated macrophages contribute to T cell regulation via interleukin-10 and PD-L1 production in oral squamous cell carcinoma. Sci Rep 2017; 7(1): 1755.
[16]
Jones DP. Redefining oxidative stress. Antioxid Redox Signal 2006; 8(9-10): 1865-79.
[17]
Meusser B, Hirsch C, Jarosch E, Sommer T. ERAD: the long road to destruction. Nat Cell Biol 2005; 7: 766-72.
[18]
Yan F, Mo X, Liu J, et al. Thymic function in the regulation of T cells, and molecular mechanisms underlying the modulation of cytokines and stress signaling. Mol Med Rep 2017; 16(5): 7175-84.
[19]
Lei-Leston AC, Murphy AG, Maloy KJ. Epithelial cell inflammasomes in intestinal immunity and inflammation. Front Immunol 2017; 8: 1168.
[20]
Peake J, Della Gatta P, Suzuki K, Nieman D. Cytokine expression and secretion by skeletal muscle cells : regulatory mechanisms and exercise effects. Exerc Immunol Rev 2015; 21: 8-25.
[21]
Nielsen S, Pedersen BK. Skeletal muscle as an immunogenic organ. Curr Opin Pharmacol 2008; 8(3): 346-51.
[22]
Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88(4): 1379-406.
[23]
Senf SM. Skeletal muscle heat shock protein 70: diverse functions and therapeutic potential for wasting disorders. Front Physiol 2013; 4: 330.
[24]
Kim ML, Chae JJ, Park YH, et al. Aberrant actin depolymerization triggers the pyrin inflammasome and autoinflammatory disease that is dependent on IL-18, not IL-1. J Exp Med 2015; 212(6): 927-38.
[25]
Zotova NV, Chereshnev VA, Gusev EYu. Systemic inflammation: methodological approaches to identification of the common pathological process. PLoS One 2016; 11e0155138
[26]
Chimal-Ramírez GK, Espinoza-Sánchez NA, Chávez-Sánchez L, et al. Monocyte Differentiation towards Protumor Activity Does Not Correlate with M1 or M2 Phenotypes. J Immunol Res 2016; 20166031486
[27]
Polisak B, Milisav I. Clinical implications of cellular stress responses. Bosn J Basic Med Sci 2012; 12(2): 122-6.
[28]
Bergmann M. An introduction to many-valued and fuzzy logic: semantics, algebras, and derivation systems. Cambridge, MA: Cambridge University Press, 2008. 342 p. 740
[29]
Milisav I, Poljšak B, Ribarič S. Reduced risk of apoptosis: mechanisms of stress responses. Apoptosis 2017; 22(2): 265-83.
[30]
Randle PJ, Garland PB, Hales CN. EAN The glucose fatty-acid cycle: its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1963; 1(7285): 785-9.
[31]
Minihane AM, Vinoy S, Russel WR, et al. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr 2015; 114(7): 999-1012.
[32]
Milisav I, Poljsak B, Suput D. Adaptive response, evidence of cross-resistance and its potential clinical use. Int J Mol Sci 2012; 13(9): 10771-806.
[33]
Polisak B, Milisav I. Clinical implications of cellular stress responses. Bosn J Basic Med Sci 2012; 12(2): 122-6.
[34]
Kroemer G, Levine B. Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 2008; 9(12): 1004-10.
[35]
Elmore S. Apoptosis: A review of programmed cell death. Toxicol Pathol 2007; 35(4): 495-516.
[36]
Shimamatsu K, Wanless IR. Role of Ischemia in Causing Apoptosis, Atrophy, and Nodular. Hepatology 1997; 26(2): 343-50.
[37]
Dupont-Versteegden EE. Apoptosis in skeletal muscle and its relevance to atrophy. World J Gastroenterol 2006; 12(46): 7463-6.
[38]
Chipuk JE, Green DR. Do inducers of apoptosis trigger caspase-independent cell death? Nat Rev Mol Cell Biol 2005; 6: 268-75.
[39]
Kroemer G, Martin SJ. Caspase-independent cell death. Nat Med 2005; 11: 725-30.
[40]
Wajant H. The Fas signaling pathway: more than a paradigm. Science 2002; 296: 1635-6.
[41]
Schutze S, Tchikov V, Schneider-Brachert W. Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat Rev Mol Cell Biol 2008; 9: 655-62.
[42]
Arya R, White K. Cell death in development: signaling pathways and core mechanisms. Semin Cell Dev Biol 2015; 39: 12-9.
[43]
Adams JM, Cory S. The Bcl-2 Protein Family: Arbiters of Cell Survival. Science 1998; 281: 1322-6.
[44]
Jin Z, El-Deiry WS. Overview of cell death signaling pathways. Cancer Biol Ther 2005; 4(2): 147-71.
[45]
Eefting F, Rensing B, Wigman J. Role of apoptosis in reperfusion injury. Cardiovasc Res 2004; 61(3): 414-26.
[46]
Baig S, Seevasant I, Mochamad J, et al. Potential of apoptotic pathway-targeted cancer therapeutic research: Where do we stand? Cell Death Dis 2016; 7: 2058.
[47]
Pećina-Šlaus N. Wnt signal transduction pathway and apoptosis: A review. Cancer Cell Int 2010; 10: 22.
[48]
Eroglu M, Derry WB. Your neighbours matter - non-autonomous control of apoptosis in development and disease. Cell Death Differ 2016; 23: 1110-8.
[49]
Moreno-Gonzalez G, Vandenabeele P, Krysko DV. Necroptosis: A novel cell death modality and its potential relevance for critical care medicine. Am J Respir Crit Care Med 2016; 194(4): 415-28.
[50]
Galluzzi L, Vitale I, Abrams JM. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19(1): 107-20.
[51]
Sansonetti PJ, Phalipon A, Arondel J, et al. Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 2000; 12: 581-90.
[52]
Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 2009; 7: 99-109.
[53]
De Gassart A, Martinon F. Pyroptosis: Caspase-11 Unlocks the Gates of Death. Immunity 43(5), 2015; 43: 835-7.
[54]
Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303(5663): 1532-5.
[55]
Boe DM, Curtis BJ, Chen MM, et al. Extracellular traps and macrophages: new roles for the versatile phagocyte. J Leukoc Biol 2015; 97(6): 1023-35.
[56]
Uribe Echevarría L, Leimgruber C, García González J, et al. Evidence of eosinophil extracellular trap cell death in COPD: does it represent the trigger that switches on the disease? Int J Chron Obstruct Pulmon Dis 2017; 12: 885-96.
[57]
Fuchs TA, Abed U, Goosmann C, et al. Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 2007; 176(2): 231-41.
[58]
Yousefi S, Gold JA, Andina N, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nat Med 2008; 14: 949-53.
[59]
Remijsen Q, Kuijpers TW, Wirawan E, et al. Dying for a cause: NETosis, mechanisms behind an antimicrobial cell death modality. Cell Death Differ 2011; 18: 581-8.
[60]
Granger V, Faille D, Vfrani V, et al. Human blood monocytes are able to form extracellular traps. J Leukoc Biol 2017; 102(3): 775-81.
[61]
Lipińska-Gediga M. Neutrophils, NETs, NETosis - old or new factors in sepsis and septic shock? Anaesthesiol Intensive Ther 2017; 49(3): 235-4.
[62]
Hakkim A, Furnrohr BC, Amann K, et al. Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 2010; 107(21): 9813-8.
[63]
Wong SL, Demers M, Martinod K, et al. Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 2015; 21: 815-9.
[64]
Chen L, Zhao Y, Lai D, et al. Neutrophil extracellular traps promote macrophage pyroptosis in sepsis. Cell Death Dis 2018; 9(6): 597.
[65]
Pietronigro EC, Della Bianca V, Zenaro E, Constantin G. NETosis in Alzheimer’s disease. Front in Immunol 2017; 8: 211.
[66]
Candi E, Schmidt R, Melino G. The cornified envelope: A model of cell death in the skin. Nat Rev Mol Cell Biol 2005; 6: 328-40.
[67]
Boya P, Gonzalez-Polo RA, Casares N, et al. Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005; 25: 1025-40.
[68]
Weinlich R, Oberst A, Beere HM, Green DR. Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol 2017; 18: 127-36.
[69]
Galluzzi L, Kroemer G. Necroptosis: A Specialized Pathway of Programmed Necrosis. Cell 2008; 135: 1161-3.
[70]
Linkermann A, Green DR. Necroptosis. N Engl J Med 2014; 370(5): 455-65.
[71]
Degterev A, Huang Z, Boyce M, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 2005; 1(2): 112-9.
[72]
Gunther C, Martini E, Wittkopf N, et al. Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 2011; 477(7364): 335-9.
[73]
Wyllie AH, Kerr JF, Currie AR. Cell death: the significance of apoptosis. Int Rev Cytol 1980; 68: 251-306.
[74]
Garg AD, Romano E, Rufo N, Agostinis P. Immunogenic versus tolerogenic phagocytosis during anticancer therapy: mechanisms and clinical translation. Cell Death Differ 2016; 23(6): 938-51.
[75]
Mahajan A, Herrmann M, Muñoz LE. Clearance Deficiency and Cell Death Pathways: A Model for the Pathogenesis of SLE. Front Immunol 2016; 7: 35.
[76]
Patten DA. SCARF1: A multifaceted, yet largely understudied, scavenger receptor. Inflamm Res 2018; 67(8): 627-32.
[77]
Sachet M, Liang YY, Oehler R. The immune response to secondary necrotic cells. Apoptosis 2017; 22: 1189-204.
[78]
Galluzzi L, Maiuri MC, Vitale I, et al. Cell death modalities: classification and pathophysiological implications. Cell Death Differ 2007; 14: 1237-43.
[79]
Kroemer G, Galluzzi L, Vandenabeele P, et al. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16: 3-11.
[80]
Vakifahmetoglu H, Olsson M, Zhivotovsky B. Death through a tragedy: mitotic catastrophe. Cell Death Differ 2008; 15: 1153-62.
[81]
Vitale I, Galluzzi L, Castedo M, Kroemer G. Mitotic catastrophe: A mechanism for avoiding of genomic instability. Nat Rev Mol Cell Biol 2011; 12: 385-92.
[82]
Pasparakis M, Vandenabeele P. Necroptosis and its role in inflammation. Nature 2015; 517(7534): 311-20.
[83]
Man SM, Karki R, Kanneganti T-D. Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunol Rev 2017; 277(1): 61-75.
[84]
Jog NR, Caricchio R. The Role of Necrotic cell death in the pathogenesis of immune mediated nephropathies. Clin Immunol 2014; 153(2): 243-53.
[85]
Hernander C, Hernander P, Schwade RF. Damage-associated molecular patterns in cancer: A double-edged sword. Oncogene 2016; 35(46): 5931-41.
[86]
Ohshima H, Tazawa H, Sylla BS, Sawa T. Prevention of human cancer by modulation of chronic inflammatory processes. Mutat Res 2005; 591: 110-22.
[87]
Chircop M, Speidel D. Cellular Stress Responses in Cancer and Cancer Therapy. Front Oncol 2014; 4: 304.
[88]
Kantono M, Guo B. Inflammasomes and Cancer: The Dynamic Role of the Inflammasome in Tumor Development. Front Immunol 2017; 8: 1132.
[89]
Bishop NA, Lu T, Yankner BA. Neural mechanisms of ageing and cognitive decline. Nature 2010; 464: 529-35.
[90]
Kourtis N, Tavernarakis N. Cellular stress response pathways and ageing: intricate molecular relationships. EMBO J 2011; 30(13): 2520-31.
[91]
Rodier F, Campisi J. Four faces of cellular senescence. J Cell Biol 2011; 192(4): 547-56.
[92]
Mather KA, Jorm AF, Parslow RA, Christensen H. Is telomere length a biomarker of aging? A review. J Gerontol Series A Biol Sci Med Sci 2011; 66(2): 202-13.
[93]
Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest 2013; 123: 951-7.
[94]
Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging. Cell 2011; 146: 682-95.
[95]
Yun M, Han YH, Yoon SH, et al. p31comet induces cellular senescence through p21 accumulation and Mad2 disruption. Mol Cancer Res 2009; 7: 371-82.
[96]
Schroen B, Heymans S. Small but smart-microRNAs in the centre of inflammatory processes during cardiovascular diseases, the metabolic syndrome, and ageing. Cardiovasc Res 2012; 93(4): 605-13.
[97]
Jung Y, Brack AS. Cellular Mechanisms of Somatic Stem Cell Aging. Curr Top Dev Biol 2014; 107: 405-38.
[98]
Chen F, Liu Y, Wong N-K, et al. Oxidative Stress in Stem Cell Aging. Cell Transplant 2017; 26(9): 1483-95.
[99]
Yadav UCS, Aguilera-Aguirre L, Ramana KV, et al. Aldose Reductase Inhibition Prevents Metaplasia of Airway Epithelial Cells. PLoS One 2010; 5(12)e14440
[100]
Harada T, Iwabe T, Terakawa N. Role of cytokines in endometriosis. Fertil Steril 2001; 76(1): 1-10.
[101]
Scutiero G, Iannone P, Bernardi G, et al. Oxidative Stress and Endometriosis: A Systematic Review of the Literature. Oxid Med Cell Longev 2017; 20177265238
[102]
Freeman TA, Parvizi J, Valle CJD, Steinbeck MJ. Mast cells and hypoxia drive tissue metaplasia and heterotopic ossification in idiopathic arthrofibrosis after total knee arthroplasty. Fibrogenesis Tissue Repair 2010; 3: 17.
[103]
Park YH, Kim N. Review of Atrophic Gastritis and Intestinal Metaplasia as a Premalignant Lesion of Gastric Cancer. J Cancer Prev 2015; 20(1): 25-40.
[104]
Shennib H, Lough J, Klein HW, Hampson LG. Gastric carcinoma: intestinal metaplasia and tumor growth patterns as indicators of prognosis. Surgery 1986; 100(4): 774-80.
[105]
Cregg JM, DePaul MA, Filous AR, et al. Functional regeneration beyond the glial scar. Exp Neurol 2014; 253: 197-207.
[106]
Anderson MA, Ao Y, Sofroniew MV. Heterogeneity of reactive astrocytes. Neurosci Lett 2014; 565: 23-9.
[107]
Kapetanaki MG, Mora AL, Rojas M. Influence of age on wound healing and fibrosis. J Pathol 2013; 229: 310-22.
[108]
Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Chest 1992; 100(6): 1644-55.
[109]
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002; 192(1): 1-15.
[110]
Gupta RK, Patel AK, Shah N, et al. Oxidative stress and antioxidants in disease and cancer: A review. Asian Pac J Cancer Prev 2014; 15(11): 4405-9.
[111]
Rahal A, Kumar A, Singh V, et al. Oxidative Stress, Prooxidants, and Antioxidants: The Interplay. BioMed Res Int 2014; 2014: ID 761264.
[112]
Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur J Med Chem 2015; 97: 55-74.
[113]
Sies H. Oxidative stress: A concept in redox biology and medicine. Redox Biol 2015; 4: 180-3.
[114]
Sinha N, Dadla PK. Oxidative stress and antioxidants in hypertension-a current review. Curr Hypertens Rev 2015; 11(2): 132-42.
[115]
Nita M, Grzybowski A. The Role of the Reactive Oxygen Species and Oxidative Stress in the Pathomechanism of the Age-Related Ocular Diseases and Other Pathologies of the Anterior and Posterior Eye Segments in Adults. Oxid Med Cell Longev 2016; 20163164734
[116]
Cabello-Verrugio C, Ruiz-Ortega M, Mosqueira M, Simon F. Oxidative Stress in Disease and Aging: Mechanisms and Therapies. Oxid Med Cell Longev 2016; 20168786564
[117]
Ciccia A, Elledge SJ. The DNA damage response: making it safe to play with knives. Mol Cell 2010; 40(2): 179-204.
[118]
Polo SE, Jackson SP. Dynamics of DNA damage response proteins at DNA breaks: A focus on protein modifications. Genes Dev 2011; 25: 409-33.
[119]
Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov 2017; 7(7): 675-93.
[120]
Cao Y, Long J, Liu L, et al. A review of endoplasmic reticulum (ER) stress and nanoparticle (NP) exposure. Life Sci 2017; 186: 33-42.
[121]
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol 2012; 13: 89-102.
[122]
Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol 2017; 3: 477-91.
[123]
Srivastava P. Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2002; 2: 185-94.
[124]
Richter K, Haslbeck M, Buchner J. The Heat Shock Response: Life on the Verge of Death. Mol Cell 2010; 40: 253-66.
[125]
Tkacova J, Angelovicova M. Heat Shock Proteins (HSPs): A Review. Anim Sci Biotechnol 2012; 45(1): 349-53.
[126]
Latz E, Xiao TS, Stutz A. Activation and regulation of the inflammasomes. Nat Rev Immunol 2013; 13: 397-411.
[127]
Broz P, Dixit VM. Inflammasomes: mechanism of assembly, regulation and signaling. Nat Rev Immunol 2016; 16: 407-20.
[128]
Prochnichnicki T, Latz E. Inflammasomes on the Crossroads of Innate Immune Recognition and Metabolic Control. Cell Metab 2017; 26: 71-93.
[129]
Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell 2010; 40(2): 280-93.
[130]
Singh R, Cuervo AM. Autophagy in the Cellular Energetic Balance. Cell Metab 2011; 13: 495-504.
[131]
Ravanan P, Srikumal IF, Talwar P. Autophagy: The spotlight for cellular stress responses. Life Sci 2017; 188: 53-67.
[132]
Samali A, Fulda S, Corman AM. Cell Stress and Cell Death. Int J Cell Biol 2010; 2010245803
[133]
Portt L, Norman G, Clapp C, et al. Anti-apoptosis and cell survival: A review. Biochim Biophys Acta 2011; 1813(1): 238-59.
[134]
Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N. Crosstalk between apoptosis, necrosis and autophagy. Biochim Biophys Acta 2013; 1833: 3448-59.
[135]
Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: How are they linked? Free Radic Biol Med 2010; 49(11): 1603-16.
[136]
Haigis MC, Yankner BA. The Aging Stress Response. Mol Cell 2010; 40(2): 333-44.
[137]
Kattoor AJ, Pothineni NVK, Palagiri D, Mehta JL. Oxidative Stress in Atherosclerosis. Gurr Atheroscler Rep 2017; 19(11): 42.
[138]
Yang X, Li Y, Li Y, et al. Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Front Physiol 2017; 8: 600.
[139]
Marré1 ML, James EA, Piganelli JD. β cell ER stress and the implications for immunogenicity in type 1 diabetes. Front Cell Dev Biol 2015; 3: 67.
[140]
Wright E, Scism-Bacon JL, Glass LC. Oxidative stress in type 2 diabetes: the role of fasting and postprandial glycaemia. Int J Clin Pract 2006; 60(3): 308-14.
[141]
Rodrigo R, Gonzalez J, Paoletto F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens Res 2011; 34: 413-40.
[142]
Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of Inflammation, Oxidative Stress, and Vascular Dysfunction in Hypertension. BioMed Res Int 2014; 2014406960
[143]
Tilg H, Moschen AR. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 2010; 52(5): 1836-46.
[144]
Ginaldi L, DiBenedetto MC, DeMartinis M. Osteoporosis inflammation and ageing. Immun Ageing 2005; 2: 14.
[145]
Yuan Z, Jiang G, Fu S, et al. Correlation between autophagy of osteoblasts and oxidative stress of osteoporosis rats. Int J Clin Exp Pathol 2016; 9(10): 9907-15.
[146]
Adamczyk B, Adamczyk-Sowa M. New Insights into the Role of Oxidative Stress Mechanisms in the Pathophysiology and Treatment of Multiple Sclerosis. Oxid Med Cell Longev 2016; 20161973834
[147]
Pohanka M. Alzheimer’s disease and oxidative stress: A review. Curr Med Chem 2014; 21(3): 356-64.
[148]
Dias V, Junn E, Mouradian MM. The Role of Oxidative Stress in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 461-91.
[149]
Schiavone S, Jaquet V, Trabace L. Krause K-H. Severe Life Stress and Oxidative Stress in the Brain: From Animal Models to Human Pathology. Antioxid Redox Signal 2013; 18(12): 1475-90.
[150]
Hayashi T. Conversion of psychological stress into cellular stress response: Roles of the sigma-1 receptor in the process. Psychiatry Clin Neurosci 2015; 69: 179-91.
[151]
Naidoo N. Cellular Stress/The Unfolded Protein Response: Relevance to Sleep and Sleep Disorders. Sleep Med Rev 2009; 13(3): 195-204.
[152]
Takeuchi O, Akira S. Pattern Recognition Receptors and Inflammation. Cell 2010; 140(6): 805-20.
[153]
Vance RE, Isberg RR, Portnoy DA. Patterns of Pathogenesis: Discrimination of Pathogenic and Nonpathogenic Microbes by the Innate Immune System. Cell Host Microbe 2009; 6: 10-21.
[154]
Land WG. The Role of Damage-Associated Molecular Patterns in Human Diseases: Part I - Promoting inflammation and immunity. Sultan Qaboos Univ Med J 2015; 15(1): e9-e21.
[155]
Oppenheim JJ, Yang D. Alarmins: chemotactic activators of immune responses. Curr Opin Immunol 2005; 17(4): 359-65.
[156]
Bianchi M. DAMPs, PAMPs and alarmins: All we need to know about danger. J Leukoc Biol 2007; 81(1): 1-5.
[157]
Yang D, de la Rosa G, Tewary P, Oppenheim JJ. Alarmins link neutrophils and dendritic cells. Trends Immunol 2009; 30(11): 531-7.
[158]
Fukata M, Vamadevan AS, Abreu MT. Toll-like receptors (TLRs) and Nod-like receptors (NLRs) in inflammatory disorders. Semin Immunol 2009; 21(4): 242-53.
[159]
Park JS, Gamboni-Robertson F, He Q. High mobility group box 1 protein interacts with multiple Toll-like receptors. Am J Physiol Cell Physiol 2006; 290(3): 917-24.
[160]
Mogensen TH. Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses. Clin Microbiol Rev 2009; 22(2): 240-73.
[161]
Tan RST, Ho B, Leung BP, Ding J-L. TLR Cross-talk Confers Specificity to Innate Immunity. Int Rev Immunol 2014; 33(6): 443-53.
[162]
Cao X. Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease. Nat Rev Immunol 2016; 16: 35-50.
[163]
Barry M, Bleackley RC. Cytotoxic T lymphocytes: All roads lead to death. Nat Rev Immunol 2002; 2: 401-9.
[164]
Ve T, Williams SJ, Kobe B. Structure and function of Toll/interleukin-1 receptor/resistance protein (TIR) domains. Apoptosis 2015; 20(2): 250-61.
[165]
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13: 621-34.
[166]
PrabhuDas MR, Baldwin CL, Bollyky PL, et al. A Consensus Definitive Classification of Scavenger Receptors and Their Roles in Health and Disease. J Immunol 2017; 198(10): 3775-89.
[167]
Zani IA, Stephen SL, Mughal NA, et al. Scavenger Receptor Structure and Function in Health and Disease. Cells 2015; 4(2): 178-201.
[168]
Boullier A, Bird DA, Chang MK, et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann N Y Acad Sci 2001; 947: 214-22.
[169]
Stephen SL, Freestone K, Dunn S, et al. Scavenger Receptors and Their Potential as Therapeutic Targets in the Treatment of Cardiovascular Disease Int J Hypertens 2010; 2010: ID 646929.
[170]
Liliensiek B, Weigand MA, Bierhaus A, et al. Receptor for advanced glycation end products (RAGE) regulates sepsis but not the adaptive immune response. J Clin Invest 2004; 113(11): 1641-50.
[171]
Sparvero LJ, Asafu-Adjei D, Kang R, et al. RAGE (Receptor for Advanced Glycation Endproducts), RAGE Ligands, and their role in Cancer and Inflammation. J Transl Med 2009; 7: 17.
[172]
Eugenin J, Veccohiola A, Murgas P, et al. Expression Pattern of Scavenger Receptors and Amyloid-β Phagocytosis of Astrocytes and Microglia in Culture are Modified by Acidosis: Implications for Alzheimer’s Disease. J Alzheimers Dis 2016; 53(3): 857-73.
[173]
Qian L, Li X, Fang R, et al. Class A scavenger receptor deficiency augments angiotensin II-induced vascular remodeling. Biochem Pharmacol 2014; 90(3): 254-64.
[174]
Ma K, Xu Y, Wang C, et al. A cross talk between class A scavenger receptor and receptor for advanced glycation end-products contributes to diabetic retinopathy. Am J Physiol Endocrinol Metab 2014; 307(12): E153-65.
[175]
Vasquez M, Simões I, Consuegra-Fernández M, et al. Exploiting scavenger receptors in cancer immunotherapy: Lessons from CD5 and SR-B1. Eur J Immunol 2017; 47(7): 1108-18.
[176]
Chen F, Wang CC, Kim E, Harrison LE. Hyperthermia in combination with oxidative stress induces autophagic cell death in HT-29 colon cancer cells. Cell Biol Int 2008; 32(7): 715-23.
[177]
Bouquet F, Ousset M, Biard D. A DNA-dependent stress response involving DNA-PK occurs in hypoxic cells and contributes to cellular adaptation to hypoxia. J Cell Sci 2011; 124: 1943-51.
[178]
Finan JD, Guilak F. The effects of osmotic stress on the structure and function of the cell nucleus. J Cell Biochem 2010; 109(3): 460-7.
[179]
Hardie DG. AMP-activated protein kinase: An energy sensor that regulates all aspects of cell function. Genes Dev 2011; 25: 1895-908.
[180]
Rouhanizadeh M, Takabe W, Ai L, et al. Monitoring oxidative stress in vascular endothelial cells in response to fluid shear stress: from biochemical analyses to micro- and nanotechnologies. Methods Enzymol 2008; 441: 111-50.
[181]
Raulet DH. Roles of the NKG2D immunoreceptor and its ligands. Nat Rev Immunol 2003; 3(10): 781-90.
[182]
Zwirner N, Fuertes M, Girart M-V, et al. Cytokinedriven regulation of NK cell function in tumor immunity: role of the MICA-NKG2D system. Cytokine Growth Factor Rev 2007; 18: 159-70.
[183]
Shyy JY-J, Chien S. Role of integrins in cellular responses to mechanical stress and adhesion. Curr Opin Cell Biol 1997; 9(5): 707-13.
[184]
Fouquet S, Lugo-Martínez V-H, Faussat A-M, et al. Early Loss of E-cadherin from Cell-Cell Contacts Is Involved in the Onset of Anoikis in Enterocytes. J Biol Chem 2004; 279(41): 43061-9.
[185]
Parnaud G, Gonelle-Gispert C, Morel Ph, et al. Cadherin Engagement Protects Human β-Cells from Apoptosis. Endocrinology 2011; 152(12): 4601-9.
[186]
Geng F, Zhu W, Anderson RA, et al. Multiple post-translational modifications regulate E-cadherin transport during apoptosis. J Cell Sci 2012; 125(11): 2615-25.
[187]
Wolfl M, Greenberg PD. Antigen-specific activation and cytokine-facilitated expansion of naive, human CD8+ T cells. Nat Protoc 2014; 9(4): 950-66.
[188]
Ermak G, Davies KJ. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 2002; 38(10): 713-21.
[189]
Cerella C, Diederich M, Ghibelli L. The Dual Role of Calcium asMessenger and Stressor in Cell Damage, Death, and Survival. Int J Cell Biol 2010; 2010546163
[190]
Gangwar R, Meena AS, Shukla PK. Calcium-mediated oxidative stress: A common mechanism in tight junction disruption by different types of cellular stress. Biochem J 2017; 474(5): 731-49.
[191]
Pétrilli V, Papin S, Dostert C, et al. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007; 14: 1583-9.
[192]
Lee H, Song M, Shin N. Diagnostic Significance of Serum HMGB1 in Colorectal Carcinomas. PLoS One 2012; 7e34318
[193]
Biswas SK. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxid Med Cell Longev 2016; 20165698931
[194]
Butterfield DA, Drake J, Pocernich C, Castegna A. Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid β-peptide. Trends Mol Med 2001; 7(12): 548-54.
[195]
Onyango IG. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 2008; 33(3): 589-97.
[196]
Kim JIS, Cho I, Kim NH, et al. Oxidative stress and neurodegeneration in prion diseases. Ann N Y Acad Sci 2001; 928: 182-6.
[197]
Tezel G. Oxidative stress in glaucomatous neurodegeneration: mechanisms and consequences. Prog Retin Eye Res 2006; 25(5): 490-513.
[198]
Tabner BJ, El-Agnaf OMA, German MJ, et al. Protein aggregation, metals and oxidative stress in neurodegenerative diseases. Biochem Soc Trans 2005; 33(5): 1082-6.
[199]
Miller MW, Lin AP, Wolf EJ, Miller DR. Oxidative Stress, Inflammation, and Neuroprogression in Chronic PTSD. Harv Rev Psychiatry 2018; 26(2): 57-69.
[200]
Finkel T, Holbrook NJ. Oxidants, oxidative stress and thebiology of ageing. Nature 2000; 408: 239-47.
[201]
Beigrezaei S, Nasri H. Oxidative stress in chronic kidney disease; an updated review on current concepts. J Renal Endocrinol 2017; 3e01
[202]
Tan BL, Norhaizan ME, Liew WPP. Nutrients and Oxidative Stress: Friend or Foe? Oxid Med Cell Longev 2018; 20189719584
[203]
England K, Cotter CT. Direct oxidative modifications of signalling proteins in mammalian cells and their effects on apoptosis. Redox Rep 2005; 10: 237-45.
[204]
Powers SK, Radak Z, Ji LL. Exercise-induced oxidative stress: past, present and future. J Physiol 2016; 15; 594(18): 5081-92.
[205]
Schieber M, Chandel NS. ROS Function in Redox Signaling and Oxidative Stress. Curr Biol 2014; 24: R453-62.
[206]
Solaini G, Baracca A, Lenaz G, Sgarbi G. Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 2010; 1797(6-7): 1171-7.
[207]
Movafagh S, Crook S, Vo K. Regulation of hypoxia-inducible factor-1a by reactive oxygen species: new developments in an old debate. J Cell Biochem 2015; 116(5): 696-703.
[208]
Birben E, Sahiner UM, Sackesen C, et al. Oxidative Stress and Antioxidant Defense. World Allergy Organ J 2012; 5(1): 9-19.
[209]
Cargnello M, Philippe P. Activation and Function of the MAPKs and Their Substrates, the MAPK-Activated Protein Kinases. Microbiol Mol Biol Rev 2011; 75(1): 50-83.
[210]
Barakat DJ, Dvoriantchikova G, Ivanov D, Shestopalov VI. Astroglial NF-κB mediates oxidative stress by regulation of NADPH oxidase in a model of retinal ischemia reperfusion injury. J Neurochem 2012; 120(4): 586-97.
[211]
Connery AH. Pharmacological implications of microsomal enzyme induction. Pharmacol Rev 1967; 19(3): 317-66.
[212]
McDonnell AM, Dang CH. Basic Review of the Cytochrome P450 System. J Adv Pract Oncol 2013; 4(4): 263-8.
[213]
Hauck AK, Bernlohr DA. Oxidative stress and lipotoxicity. J Lipid Res 2016; 57: 1976-86.
[214]
Grimsrud PA, Xie H, Griffin TJ, Bernlohr DA. Oxidative stress and covalent modification of protein with bioactive aldehydes. J Biol Chem 2008; 283: 21837-41.
[215]
Marinhoa HS, Reala C, Cyrnea L, et al. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014; 2: 535-62.
[216]
Peng Q, Deng Z, Pan H, et al. Mitogen-activated protein kinase signaling pathway in oral cancer (Review). Oncol Lett 2018; 15: 1379-88.
[217]
Broom OJ, Widjaya B, Troelsen J, et al. Mitogen activated protein kinases: A role in inflammatory bowel disease? Clin Exp Immunol 2009; 158(3): 272-80.
[218]
Manna PR, Stocco DM. The Role of Specific Mitogen-Activated Protein Kinase Signaling Cascades in the Regulation of Steroidogenesis. J Signal Transduct 2011; 2011821615
[219]
Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life 2006; 58(11): 621-31.
[220]
Lenassi M, Plemenitaš A. The role of p38 MAP kinase in cancer cell apoptosis. Radiol Oncol 2006; 40(1): 51-6.
[221]
Beyfuss K, Hood DA. A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Rep 2018; 23(1): 100-17.
[222]
Webster GA, Perkins ND. Transcriptional Cross Talk between NF-κB and p53. Mol Cell Biol 1999; 19(5): 3485-95.
[223]
Tanaka T, Tsuchiya R, Hozumi Y, et al. Reciprocal regulation of p53 and NF-κB by diacylglycerol kinase ζ. Adv Biol Regul 2016; 60: 15-21.
[224]
Chittiboyina S, Bai Y, Lelievre SA. Microenvironment-Cell Nucleus Relationship in the Context of Oxidative Stress. Front Cell Dev Biol 2018; 6: 23.
[225]
Pyo CW, Choi JH, Oh SM, Choi SY. Oxidative stress-induced cyclin D1 depletion and its role in cell cycle processing. Biochim Biophys Acta 2013; 1830(11): 5316-25.
[226]
Konczol M, Weiss A, Stangenberg E, et al. Cell-Cycle Changes and Oxidative Stress Response to Magnetite in A549 Human Lung Cells. Chem Res Toxicol 2013; 26(5): 693-702.
[227]
Jones DP, Go Y-M. Redox compartmentalization and cellular stress. Diabetes Obes Metab 2010; 12(2): 116-25.
[228]
Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 2014; 39(4): 199-218.
[229]
Kim J, Cha YN, Surh YJ. A protective role of nuclear factor-erythroid 2-related factor-2 (Nrf2) in inflammatory disorder. Mutat Res 2010; 690(1-2): 12-23.
[230]
Tan SM, de Haan JB. Combating oxidative stress in diabetic complications with Nrf2 activators: How much is too much? Redox Rep 2014; 19(3): 107-17.
[231]
Veal EA, Day AM, Morgan BA. Hydrogen Peroxide Sensing and Signaling. Mol Cell 2007; 26(1): 1-14.
[232]
Luiking YC, Engelen MPKJ, Deutz NEP. Regulation of nitric oxide production in health and disease. Curr Opin Clin Nutr Metab Care 2010; 13(1): 97-104.
[233]
Fischer BM, Pavlisko E, Voynow JA. Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis 2011; 6: 413-21.
[234]
Runke ED, Baumeister R, Schulze E. Mitochondrial stress: Balancing friend and foe. Exp Gerontol 2014; 56: 194-201.
[235]
Fu X, Zhang H. Signaling pathway of mitochondrial stress. Front Lab Med 2017; 1(1): 40-2.
[236]
Melber A, Haynes CM. UPRmt regulation and output: A stress response mediated by mitochondrial-nuclear communication. Cell Res 2018; 28(3): 281-95.
[237]
Balaban RS. The Mitochondrial Proteome: A Dynamic Functional Program in Tissues and Disease States. Environ Mol Mutagen 2010; 51(5): 352-9.
[238]
Hu F, Liu F. Mitochondrial stress: A bridge between mitochondrial dysfunction and metabolic diseases? Cell Signal 2011; 23(10): 1528-33.
[239]
Hill S, Remmen H. Mitochondrial stress signaling in longevity: A new role for mitochondrial function in aging. Redox Biol 2014; 2: 936-44.
[240]
Quirós PM, Prado MA, Zamboni N, et al. Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol 2017; 216(7): 2027.
[241]
Zhao Q, Wang J, Levichkin IV. A mitochondrial specific stress response in mammalian cells. EMBO J 2002; 21: 4411-9.
[242]
Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011; 12: 222-30.
[243]
Pinti M, Cevenini E, Nasi M, et al. Circulating mitochondrial DNA increases with age and is a familiar trait: implications for ‘inflamm-aging. Eur J Immunol 2014; 44: 1552-62.
[244]
Khan NA, Nikkanen J, Yatsuga S, et al. mTORC1 regulates mitochondrial integrated stress response and mitochondrial myopathy progression. Cell Metab 2017; 26: 419-28.
[245]
Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 1. Altern Med Rev 2010; 15(3): 245-63.
[246]
Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 2014; 217: 137-43.
[247]
Houtkooper RH, Mouchiroud L, Ryu D, et al. Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 2013; 497: 451-7.
[248]
Schulz AM, Haynes CM. UPR (mt)-mediated cytoprotection and organismal aging. Biochim Biophys Acta 2015; 1847(11): 1448-56.
[249]
Norddahl GL, Pronk CJ, Wahlestedt M, et al. Accumulating mitochondrial DNA mutations drive premature hematopoietic aging phenotypes distinct from physiological stem cell aging. Cell Stem Cell 2011; 8: 499-510.
[250]
Ahlqvist KJ, Hamalainen RH, Yatsuga S, et al. Somatic progenitor cell vulnerability to mitochondrial DNA mutagenesis underlies progeroid phenotypes in Polg mutator mice. Cell Metab 2012; 15: 100-9.
[251]
Schaffer JE. Lipotoxicity: when tissues overeat. Curr Opin Lipidol 2003; 14: 281-7.
[252]
Yuzefovych LV, Solodushko VA, Wilson GL, Rachek LI. Protection from palmitate-induced mitochondrial DNA damage prevents from mitochondrial oxidative stress, mitochondrial dysfunction, apoptosis, and impaired insulin signaling in rat l6 skeletal muscle cells. Endocrinology 2012; 153: 92-100.
[253]
Tumova J, Andel M, Trnka J. Excess of Free Fatty Acids as a Cause of Metabolic Dysfunction in Skeletal Muscle. Physiol Res 2016; 65: 193-207.
[254]
Zambo V, Simon-Szabo L, Szelenyi P, et al. Lipotoxicity in the liver. World J Hepatol 2013; 5(10): 550-7.
[255]
Drosatos K, Schulze PC. Cardiac Lipotoxicity: Molecular Pathways and Therapeutic Implications. Curr Heart Fail Rep 2013; 10(2): 109-21.
[256]
Virkamaki A, Korsheninnikova E, Seppala-Lindroos A, et al. Intramyocellular lipid is associated with resistance to in vivo insulin actions on glucose uptake, antilipolysis, and early insulin signaling pathways in human skeletal muscle. Diabetes 2001; 50: 2337-43.
[257]
Virtue S, Vidal-Puig A. Adipose tissue expandability, lipotoxicity and the Metabolic Syndrome--an allostatic perspective. Biochim Biophys Acta 2010; 1801(3): 338-49.
[258]
Prieur X, Mok CYL, Velagapudi VR, et al. Differential Lipid Partitioning Between Adipocytes and Tissue Macrophages Modulates Macrophage Lipotoxicity and M2/M1 Polarization in Obese Mice. Diabetes 2011; 60(3): 797-809.
[259]
Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta 2011; 1813(7): 1351-9.
[260]
Aon MA, Foster DB. Diabetic Cardiomyopathy and the Role of Mitochondrial Dysfunction: Novel Insights, Mechanisms, and Therapeutic Strategies. Antioxid Redox Signal 2015; 22(17): 1499-501.
[261]
Wajner M, Amaral AU. Mitochondrial dysfunction in fatty acid oxidation disorders: insights from human and animalstudies. Biosci Rep 2016; 36(1)e00281
[262]
Bugger H, Chen D, Riehle C, et al. Tissue-Specific Remodeling of the Mitochondrial Proteome in Type 1 Diabetic Akita Mice. Diabetes 2009; 58(9): 1986-97.
[263]
Supale S, Li N, Brun T, Maechler P. Mitochondrial dysfunction in pancreatic beta cells. Trends Endocrinol Metab 2012; 23: 477-87.
[264]
Begriche K, Massart J, Robin MA. Mitochondrial adaptations and dysfunctions in nonalcoholic fatty liver disease. Hepatology 2013; 58(4): 1497-507.
[265]
Sunny NE, Bril F, Cusi K. Mitochondrial Adaptation in Nonalcoholic Fatty Liver Disease: Novel Mechanisms and Treatment Strategies. Trends Endocrinol Metab 2017; 28(4): 250-60.
[266]
Rubattu S, Stanzione R, Volpe M. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease. Oxid Med Cell Longev 2016; 20161067801
[267]
Johri A, Beal MF. Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 2012; 342(3): 619-30.
[268]
Jiao H, Zhou K, Zhao J, et al. A high-caloric diet rich in soy oil alleviates oxidative damage of skeletal muscles induced by dexamethasone in chickens. Redox Rep 2017; 23(1): 68-82.
[269]
Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci 2016; 73: 79-94.
[270]
Van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol 2008; 9: 112-24.
[271]
Schroder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci 2008; 65: 862-94.
[272]
Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 2005; 115(10): 2656-64.
[273]
Yang L, Zhao D, Ren J, Yang J. Endoplasmic reticulum stress and protein quality control in diabetic cardiomyopathy. Biochim Biophys Acta 2015; 1852: 209-18.
[274]
Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science 2011; 334: 1081-6.
[275]
Vabulas RM, Raychaudhuri S, Hayer-Hartl M, Hartl FU. Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2010; 2A004390
[276]
Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 2006; 7: 880-5.
[277]
Scull CM, Tabas I. Mechanisms of ER Stress-induced Apoptosis in Atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31(12): 2792-7.
[278]
Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim Biophys Acta 2013; 1833: 3460-70.
[279]
Bernales S, McDonald KL, Walter P. Autophagy counterbalances endoplasmic reticulum expansion during the unfolded protein response. PLoS Biol 2006; 4e423
[280]
Taru H, Suzuki T. Regulation of the physiological function and metabolism of AbetaPP by AbetaPP binding proteins. J Alzheimers Dis 2009; 18(2): 253-65.
[281]
Fonseca SG, Burcin M, Gromada J, Urano F. Endoplasmic reticulum stress in beta-cells and development of diabetes. Curr Opin Pharmacol 2009; 9(6): 763-70.
[282]
Cnop M, Foufelle F, Velloso LA. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol Med 2012; 18: 59-68.
[283]
Vendrell J, Maymo-Masip E, Tinahones F, et al. Tumor necrosis-like weak inducer of apoptosis as a proinflammatory cytokine in human adipocyte cells: up-regulation in severe obesity is mediated by inflammation but not hypoxia. J Clin Endocrinol Metab 2010; 95: 2983-92.
[284]
Lefterova MI, Mullican SE, Tomaru T, et al. LazarEndoplasmic reticulum stress regulates adipocyte resistin expression. Diabetes 2009; 58: 1879-86.
[285]
Buchanan J, Mazumder PK, Hu P, et al. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 2005; 146: 5341-9.
[286]
Todd DJ, Lee AH, Glimcher LH. The endoplasmic reticulum stress response in immunity and autoimmunity. Nat Rev Immunol 2008; 8(9): 663-74.
[287]
Koliński T, Marek-Trzonkowska N, Trzonkowski P, Siebert J. Heat shock proteins (HSPs) in the homeostasis of regulatory T cells (Tregs). Cent Eur J Immunol 2016; 41(3): 317-23.
[288]
Morimoto RI. The Heat Shock Response: Systems Biology of Proteotoxic Stress in Aging and Disease. Cold Spring Harb Symp Quant Biol 2011; 76: 91-9.
[289]
Stetler RA, Gan Y, Zhang W, et al. Heat Shock Proteins: Cellular and molecular mechanisms in the CNS. Prog Neurobiol 2010; 92(2): 184-211.
[290]
Tóth ME, Gombos I, Sánth M. Heat shock proteins and their role in human diseases. Acta Biol Szeged 2015; 59(Suppl. 1): 121-41.
[291]
Dubinska-Magiera M, Jablonska J, Saczko J, et al. Contribution of small heat shock proteins to muscle development and function. FEBS Lett 2014; 588: 517-30.
[292]
Kim JS, Lee YH, Choi DY, Yi HK. Expression of Heat Shock Proteins (HSPs) in Aged Skeletal Muscles Depends on the Frequency and Duration of Exercise Training. J Sports Sci Med 2015; 14(2): 347-53.
[293]
Scroggins BT, Robzyk K, Wang D, et al. An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 2007; 25: 151-9.
[294]
Gorenberg EL, Chandra SS. The Role of Co-chaperones in Synaptic Proteostasis and Neurodegenerative Disease. Front Neurosci 2017; 11: 248.
[295]
Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of Heat Shock Proteins in Apoptosis, Oxidative Stress, Human Inflammatory Diseases, and Cancer. Pharmaceuticals 2018; 11(1)e2
[296]
Beere HM. The stress of dying’: The role of heat shock proteins in the regulation of apoptosis. J Cell Sci 2004; 117: 2641-51.
[297]
Mymrikov EV, Seit-Nebi AS, Gusev NB. Large potentials of small heat shock proteins. Physiol Rev 2011; 91(4): 1123-59.
[298]
McIlwain DR, Berger T, Mak TW. Caspase functions in cell death and disease. Cold Spring Harb 2013. Perspect Bio 2013; 5a008656
[299]
Wang X-Y, Subjeck JR. High Molecular Weight Stress Proteins: Identification, Cloning, and Utilization in Cancer Immunotherapy. Int J Hyperthermia 2013; 29(5): 364-75.
[300]
Wilhelmus MM, Otte-Holler I, Wesseling P, et al. Specific association of small heat shock proteins with the pathological hallmarks of Alzheimer’s disease brains. Neuropathol Appl Neurobiol 2006; 32: 119-30.
[301]
Kusaczuk M, Cechowska-Pasko M. Molecular chaperone ORP150 in ER stress-related diseases. Curr Pharm Des 2013; 19(15): 2807-18.
[302]
Gao X, Carroni M, Nussbaum-Krammer C, et al. Human Hsp70 disaggregase reverses Parkinson’s-linked α-synuclein amyloid fibrils. Mol Cell 2015; 59: 781-93.
[303]
Nagle MW, Latourelle JC, Labadorf A, et al. The 4p16.3 Parkinson Disease Risk Locus Is Associated with GAK Expression and Genes Involved with the Synaptic Vesicle Membrane. PLoS One 2016; 11(8)e0160925
[304]
Dattilo S, Mancuso C, Koverech G, et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 2015; 12: 20.
[305]
Akerfelt M, Morimoto RI, Sistonen L. Heat shock factors: integrators of cell stress, development and lifespan. Nat Rev Mol Cell Biol 2010; 11(8): 545-55.
[306]
Klionsky DJ, Baehrecke EH, Brumell JH, et al. A comprehensive glossary of autophagy-related molecules and processes. (2nd edition). Autophagy 2011; 7(11): 1273-94.
[307]
Esclatine A, Chaumorcel M, Codogno P. Macroautophagy signaling and regulation. Curr Top Microbiol Immunol 2009; 335: 33-70.
[308]
Tsukada M, Ohsumi Y. Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Lett 1993; 333: 169-74.
[309]
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self-digestion. Nature 2008; 451: 1069-75.
[310]
Lee J, Giordano S, Zhang J. Autophagy, mitochondria and oxidative stress: cross-talk and redox signaling. Biochem J 2012; 441(2): 523-40.
[311]
Huang J, Klionsky DJ. Autophagy and human disease. Cell Cycle 2007; 6: 1837-49.
[312]
Chen Y, Klionsky DJ. The regulation of autophagy - unanswered questions. J Cell Sci 2011; 124: 161-70.
[313]
Burger AM, Seth AK. The ubiquitin-mediated protein degradation pathway in cancer: therapeutic implications. Eur J Cancer 2004; 40: 2217-29.
[314]
Lilienbaum A. Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 2013; 4(1): 1-26.
[315]
Klionsky DJ. Look people, “Atg” is an abbreviation for “autophagy-related.” That’s it. Autophagy 2012; 8(9): 1281-2.
[316]
Sengupta S, Peterson TR, Sabatini DM. Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress. Mol Cell 2010; 40: 310-22.
[317]
Farrell F, Rustem TE, Stenmark H. Phosphoinositide 3-kinases as accelerators and brakes of autophagy. FEBS J 2013; 280(24): 6322-37.
[318]
Rafalski VA, Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol 2011; 93(2): 182-203.
[319]
Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in Cancer. Front Oncol 2014; 4: 64.
[320]
Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2008; 90: 313-23.
[321]
Kroemer G, Marino G, Levine B. Autophagy and the integrated stress response. Mol Cell 2012; 40: 280-93.
[322]
Hashimoto M, Rockenstein E, Crews L, Masliah E. Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer’s and Parkinson’s diseases. Neuro Mol Med 2003; 4: 21-36.
[323]
Yu WH, Cuervo AM, Kumar A, et al. Macroautophagy: A novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 2005; 171: 87-98.
[324]
Chimin P, Andrade ML, Belchior T, et al. Adipocyte mTORC1 deficiency promotes adipose tissue inflammation and NLRP3 inflammasome activation via oxidative stress and de novo ceramide synthesis. J Lipid Res 2017; 58(9): 1797-807.
[325]
Shacka JJ, Roth KA, Zhang J. The autophagy-lysosomal degradation pathway: role in neurodegenerative disease and therapy. Front Biosci 2008; 13: 718-36.
[326]
Maiuri MC, Zalckvar E, Kimchi A, Kroemer G. Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 2007; 8(9): 741-52.
[327]
Kuballa P, Nolte WM, Castoreno AB, Xavier RJ. Autophagy and the immune system. Annu Rev Immunol 2012; 30: 611-46.
[328]
Subauste CS. Autophagy as an antimicrobial strategy. Expert Rev Anti Infect Ther 2009; 7(6): 743-52.
[329]
Sanjuan MA, Dillon CP, Tait SW, et al. Tait Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007; 450(7173): 1253-7.
[330]
Zhou R, Yazdi AS, Menu P, Tshopp J. A role for mitochondria in NLRP3 inflammasome activation. Nature 2011; 469(7329): 221-5.
[331]
Shi CS, Shenderov K, Huang NN, et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 2012; 13(3): 255-63.
[332]
Chiu HW, Chen CH, Chang JN, et al. Far-infrared promotes burn wound healing by suppressing NLRP3 inflammasome caused by enhanced autophagy. J Mol Med (Berl) 2016; 94(7): 809-19.
[333]
Lamkanfi M, Dixit VM. Mechanisms and Functions of Inflammasomes. Cell 2014; 157: 1013-22.
[334]
Indramohan M, Stehlik C, Dorfleutner A. COP и POPs Patrol Inflammasome Activation. J Mol Biol 2018; 430(2): 153-73.
[335]
Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol 2012; 13: 333-2.
[336]
Dos Santos G, Kutuzov MA, Ridge KM. The inflammasome in lung diseases. Am J Physiol Lung Cell Mol Physiol 2012; 303: L627-33.
[337]
Nasti TH, Timares L. Inflammasome activation of IL-1 family mediators in response to cutaneous photodamage. Photochem Photobiol 2012; 88(5): 1111-25.
[338]
Khare S, Ratsimandresy RA, de Almeida L, et al. The PYRIN domain‐only protein POP3 inhibits ALR inflammasomes and regulates responses to infection with DNA viruses. Nat Immunol 2014; 15: 343-53.
[339]
Cox DJ, Field RH, Williams DG, et al. DNA sensors are expressed in astrocytes and microglia in vitro and are upregulated during gliosis in neurodegenerative disease. Glia 2015; 63(5): 812-25.
[340]
Rathinam VA, Fitzgera KA. Inflammasome Complexes: Emerging Mechanisms and Effector Functions. Cell 2016; 165: 792-800.
[341]
Hornung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008; 9: 847-56.
[342]
Zhou R, Tardivel A, Thorens B, et al. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 2011; 11: 136-40.
[343]
Bauernfeind F, Bartok E, Rieger A, et al. Cutting edge: reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol 2011; 187: 613-7.
[344]
Nakaya Y, Lilue J, Stavrou S, et al. AIM2-Like Receptors Positively and Negatively Regulate the Interferon Response Induced by Cytosolic DNA. MBio 2017; 8(4): e00944-17.
[345]
Rathinam VAK, Jiang Z, Waggoner SN, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 2010; 11: 395-402.
[346]
Kerur N, Veettil MV, Sharma-Walia N, et al. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi Sarcoma-associated herpesvirus infection. Cell Host Microbe 2011; 9(5): 363-75.
[347]
Chavarria-Smith J, Vance RE. The NLRP1 inflammasomes. Immunol Rev 2015; 265(1): 22-34.
[348]
Arthur JC, Lich JD, Ye Z, et al. Cutting edge: NLRP12 controls dendritic and myeloid cell migration to affect contact hypersensitivity. J Immunol 2010; 185(8): 4515-9.
[349]
Khare S, Dorfleutner A, Bryan NB, et al. An NLRP7-Containing Inflammasome Mediates Recognition of Microbial Lipopeptides in Human Macrophages. Immunity 2012; 36(3): 464-76.
[350]
Hari A, Zhang Y, Tu Z, et al. Activation of NLRP3 inflammasome by crystalline structures via cell surface contact. Sci Rep 2014; 4: 7281.
[351]
Heid ME, Keyel PA, Kamga C, et al. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol 2013; 191(10): 5230-8.
[352]
Franchi L, Munoz-Planillo R, Nunez G. Sensing and reacting to microbes through the inflammasomes. Nat Immunol 2012; 13: 325-32.
[353]
Harris J, Lang T, Thomas JPW, et al. Autophagy and inflammasomes. Mol Immunol 2017; 86: 10-5.
[354]
Levin TC, Wickliffe KE, Leppla SH, Moayeri M. Heat shock inhibits caspase-1 activity while also preventing its inflammasome-mediated activation by anthrax lethal toxin. Cell Microbiol 2008; 10(12): 2434-46.
[355]
Yao Y, Chen S, Cao M, et al. Antigen-specific CD8+ T cell feedback activates NLRP3 inflammasome in antigen-presenting cells through perforin. Nat Commun 2017; 8: 15402.
[356]
Dostert C, Ludigs K, Guarda G. Innate and adaptive effects of inflammasomes on T cell responses. Curr Opin Immunol 2013; 25(3): 359-65.
[357]
Arbore G, West EE, Spolski R, et al. T helper 1 immunity requires complement-driven NLRP3 inflammasome activity in CD4+ T cells. Science 2016; 352(6292)Aad1210
[358]
Ali MF, Dasari H, Van Keulen VP, Carmona EM. Canonical Stimulation of the NLRP3 Inflammasome by Fungal Antigens Links Innate and Adaptive B-Lymphocyte Responses by Modulating IL-1β and IgM Production. Front Immunol 2017; 8: 1504.
[359]
Nakamura Y, Kambe N, Saito M, et al. Mast cells mediate neutrophil recruitment and vascular leakage through the NLRP3 inflammasome in histamine-independent urticaria. J Exp Med 2009; 206(5): 1037-46.
[360]
Lin H, Li Z, Lin D, et al. Role of NLRP3 Inflammasome in Eosinophilic and Non-eosinophilic Chronic Rhinosinusitis with Nasal Polyps. Inflammation 2016; 39(6): 2045-52.
[361]
Bakele M, Joos M, Burdi S, et al. Localization and functionality of the inflammasome in neutrophils. J Biol Chem 2014; 289(8): 5320-9.
[362]
Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 2011; 29: 707-35.
[363]
Chen GY, Nunez G. Inflammasomes in intestinal inflammation and cancer. Gastroenterology 2011; 141: 1986-99.
[364]
Dupaul-Chicoine J, Yeretssian G, Doiron K, et al. Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity 2010; 32: 367-78.
[365]
Guo B, Fu S, Zhang J, Liu B, Li Z. Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 2016; 6: 36107.
[366]
Xia M, Boini KM, Abais JM, et al. Endothelial NLRP3 Inflammasome Activation and Enhanced Neointima Formation in Mice by Adipokine Visfatin. Am J Pathol 2014; 184(5): 1617-28.
[367]
Chen Y, Wang L, Pitzer AL, et al. Contribution of redox-dependent activation of endothelial Nlrp3 inflammasomes to hyperglycemia-induced endothelial dysfunction. J Mol Med (Berl) 2016; 94(12): 1335-47.
[368]
Wang S, Xie X, Lei T, et al. Statins Attenuate Activation of the NLRP3 Inflammasome by Oxidized LDL or TNFα in Vascular Endothelial Cells through a PXR-Dependent Mechanism. Mol Pharm 2017; 92(3): 256-64.
[369]
Zhou Z, Wang Z, Guan Q, et al. PEDF Inhibits the Activation of NLRP3 Inflammasome in Hypoxia Cardiomyocytes through PEDF Receptor/Phospholipase A2. Niessen HWM, ed. Int J Mol Sci 2016; 17(12): 2064.
[370]
Lippai D, Bala S, Petrasek J, et al. Alcohol-induced IL-1β in the brain is mediated by NLRP3/ASC inflammasome activation that amplifies neuroinflammation. J Leukoc Biol 2013; 94(1): 171-82.
[371]
Song L, Pei L, Yao S, Wu Y, Shang Y. NLRP3 Inflammasome in Neurological Diseases, from Functions to Therapies. Front Cell Neurosci 2017; 11: 63.
[372]
Tan MS, Tan L, Jiang T, et al. Amyloid-β induces NLRP1-dependent neuronal pyroptosis in models of Alzheimer’s disease. Cell Death Dis 2014; 5e1382
[373]
Salminen A, Ojala J, Kaarniranta K, Kauppinen A. Mitochondrial dysfunction and oxidative stress activate inflammasomes: impact on the aging process and age-related diseases. Cell Mol Life Sci 2012; 69: 2999-3013.
[374]
Wu PJ, Liu HY, Huang TN, Hsueh YP. AIM 2 inflammasomes regulate neuronal morphology and influence anxiety and memory in mice. Sci Rep 2016; 6: 32405.
[375]
Varghese GP, Folkersen L, Strawbridge RJ, et al. NLRP3 Inflammasome Expression and Activation in Human Atherosclerosis. J Am Heart Assoc 2016; 5(5)e003031
[376]
Hoseini Z, Sepahvand F, Rashidi B, et al. NLRP3 inflammasome: Its regulation and involvement in atherosclerosis. J Cell Physiol 2018; 233(3): 2116-32.
[377]
Cannito S, Morello E, Bocca C, et al. Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: A pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis. PLoS One 2017; 12(3)e0172575
[378]
Wree A, Eguchi A, McGeough MD, et al. NLRP3 inflammasome activation results in hepatocyte pyroptosis, liver inflammation and fibrosis. Hepatology 2014; 59(3): 898-910.
[379]
DeSantis DA, Ko C-W, Wang L, et al. Constitutive Activation of the Nlrc4 Inflammasome Prevents Hepatic Fibrosis and Promotes Hepatic Regeneration after Partial Hepatectomy. Mediators Inflamm 2015; 2015 Article ID 909827.
[380]
Jourdan T, Godlewski G, Cinar R, et al. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 2013; 19(9): 1132-40.
[381]
Stienstra R, Joosten LA, Koenen T, et al. The inflammasome-mediated caspase-1 activation controls adipocyte differentiation and insulin sensitivity. Cell Metab 2010; 12(6): 593-605.
[382]
Artlett CM, Sassi-Gaha S, Rieger JL, et al. The inflammasome activating caspase 1 mediates fibrosis and myofibroblast differentiation in systemic sclerosis. Arthritis Rheum 2011; 63(11): 3563-74.
[383]
Li Y, Zheng J-Y, Liu J-Q, et al. Succinate/NLRP3 Inflammasome Induces Synovial Fibroblast Activation: Therapeutical Effects of Clematichinenoside AR on Arthritis. Front Immunol 2016; 7: 532.
[384]
Feldmeyer L, Werner S, Frencha LE, Beer HD. Interleukin-1, inflammasomes and the skin. Eur J Cell Biol 2010; 89(9): 638-44.
[385]
Dai X, Tohyama M, Murakami M, Sayama K. Epidermal keratinocytes sense dsRNA via the NLRP3 inflammasome, mediating interleukin (IL)-1β and IL-18 release. Exp Dermatol 2017; 26(10): 904-11.
[386]
Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol 2009; 27: 229-65.
[387]
Bendtzen K. Danger signals and inflammasomes in autoinflammatory and autoimmune diseases. Ugeskr Laeger 2011; 173(38): 2340-3.
[388]
Pinkerton JW, Kim RY, Robertson AAB, et al. Inflammasomes in the lung. Mol Immunol 2017; 86: 44-55.
[389]
Hosseinian N, Cho Y, Lockey RF, Kolliputi N. The role of the NLRP3 inflammasome in pulmonary diseases. Ther Adv Respir Dis 2015; 9(4): 188-97.
[390]
Shahzad K, Bock F, Dong W, et al. Nlrp3-inflammasome activation in non-myeloid-derived cells aggravates diabetic nephropathy. Kidney Int 2015; 87: 74-84.
[391]
Chang A, Ko K, Clark MR. The Emerging Role of the Inflammasome in Kidney Diseases. Curr Opin Nephrol Hypertens 2014; 23(3): 204-10.
[392]
Oh JY, Ko JH, Lee YJ, et al. Mesenchymal stem/stromal cells inhibit the NLRP3 inflammasome by decreasing mitochondrial reactive oxygen species. Stem Cells 2014; 32(6): 1553-63.
[393]
Ranson N, Eri R. The Role of Inflammasomes in Intestinal Inflammation. Am J Med Biol Res 2013; 1(3): 64-76.
[394]
Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011; 145(5): 745-57.
[395]
Wlodarska M, Thaiss CA, Nowarski R, et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014; 156(5): 1045-59.
[396]
Zmora N, Levy M, Pevsner-Fishcer M, Elinav E. Inflammasomes and intestinal inflammation. Mucosal Immunol 2017; 10(4): 865-83.
[397]
Elinav E, Strowig T, Kau AL, et al. NLRP6 inflammasome is a regulator of colonic microbial ecology and risk for colitis. Cell 2011; 145(5): 745-57.
[398]
Anand PK, Kanneganti TD. NLRP6 in Infection and Inflammation. Microbes Infect 2013; 15(10-11): 661-8.
[399]
Liao KC, Mogridge J. Expression of Nlrp1b Inflammasome components in human fibroblasts confers susceptibility to anthrax lethal toxin Infect immune 2009; 77(10): 4455-62.
[400]
Anand PK, Malireddi RK, Lukens JR, et al. NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 2012; 488: 389-93.
[401]
Neven B, Callebaut I, Prieure AM. Molecular basis of the spectral expression of CIAS1 mutations assotiated with phagocytic cell-mediated autoinflammatory disorders CINCA/NOMID, MWS and FCU. Blood 2004; 103: 2809-15.
[402]
Jackson SP, Bartek J. The DNA-damage response in human biology and disease. Nature 2009; 461(7267): 1071-8.
[403]
Delia D, Mizutani S. The DNA damage response pathway in normal hematopoiesis and malignancies. Int J Hematol 2017; 106: 328-34.
[404]
Lindahl T, Barnes DE. Repair of endogenous DNA damage. Cold Spring Harb Symp Quant Biol 2000; 65: 127-33.
[405]
Khanna KK, Jackson SP. DNA double-trand breaks: signaling, repair and the cancer connection. Nat Genet 2001; 27: 247-54.
[406]
Elledge SJ. The DNA Damage Response - Self-awareness for DNA. JAMA 2015; 314(11): 1111-2.
[407]
Bartek J, Lukas J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr Opin Cell Biol 2007; 19: 238-45.
[408]
O’Hagan HM, Mohammad HP, Baylin SB. Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island. PLoS Genet 2008; 4(8)e1000155
[409]
Loeb LA, Monnat RJ Jr. DNA polymerases and human disease. Nat Rev Genet 2008; 9(8): 594-604.
[410]
Barnum KJ, O’Connell MJ. Cell Cycle Regulation by Checkpoints. Methods Mol Biol 2014; 1170: 29-40.
[411]
Bernstein H, Payne CM, Bernstein C, et al. (2008). Cancer and aging as consequences of un-repaired DNA damage. In: New Research on DNA Damages (Editors: Honoka Kimura and Aoi Suzuki) Nova Science Publishers, Inc., New York, 2008; Chapter 1: 1- 47.
[412]
Freitas AA, de Magalhães JP. A review and appraisal of the DNA damage theory of ageing. Mutat Res 2011; 728(1-2): 12-22.
[413]
Hoeijmakers JH. DNA damage, aging, and cancer. N Engl J Med 2009; 361(15): 1475-85.
[414]
Jiang Y, Qi X, Liu X, et al. Fbxw7 haploinsufficiency loses its protection against DNA damage and accelerates MNU-induced gastric carcinogenesis. Oncotarget 2017; 8(20): 33444-56.
[415]
Roos WP, Kaina B. DNA damage-induced cell death by apoptosis. Trends Mol Med 2006; 12(9): 440-50.
[416]
Sun X, Li Y. LiW, et al. Selective induction of necrotic cell death in cancer cells by beta-lapachone through activation of DNA damage response pathway. Cell Cyte 2006; 5(17): 2019-35.
[417]
Carroll SB, Wessler SR. Griffiths AJFl, Lewontin RC Introduction to genetic analysis. New York: W.H. Freeman and Co 2008; p. 534.
[418]
Nakad R, Schumacher B. DNA Damage Response and Immune Defense: Links and Mechanisms. Front Genet 2016; 7: 147.
[419]
Edifizi D, Schumacher B. Genome instability in development and aging: insights from nucleotide excision repair in humans, mice, and worms. Biomolecules 2015; 5: 1855-69.
[420]
Bauer NC, Corbett AH, Doetsch PW. The current state of eukaryotic DNA base damage and repair. Nucleic Acids Res 2015; 43: 10083-101.
[421]
Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet 2008; 9: 619-31.
[422]
Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev 2004; 18: 2046-59.
[423]
Meulmeester E, Kunze M, Hsiao HH, et al. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol Cell 2008; 30: 610-9.
[424]
Jalal D, Chalisserry J, Hassan AH. Genome maintenance in Saccharomyces cerevisiae: the role of SUMO and SUMO-targeted ubiquitin ligases. Nucleic Acids Res 2017; 45(5): 2242-61.
[425]
Zilio N, Eifler-Olivi K, Ulrich HD. Functions of SUMO in the Maintenance of Genome Stability. Adv Exp Med Biol 2017; 963: 51-87.
[426]
Jiricny J. The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 2006; 7(5): 335-46.
[427]
David SS, O’Shea VL, Kundu S. Base-excision repair of oxidative DNA damage. Nature 2007; 447(714): 941-50.
[428]
Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol 2015; 5(4)150018
[429]
Lindstrom MS. NPM1/B23: A Multifunctional Chaperone in Ribosome Biogenesis and Chromatin Remodeling. Biochem Res Int 2011; 2011: 195-209.
[430]
Colombo E, Alcalay M, Pelicci PG. Nucleophosmin and its complex network: A possible therapeutic target in hematological diseases. Oncogene 2011; 30: 2595-09.
[431]
Lee SB, Nguyen TLX, Choi JW, et al. Nuclear At interacts with B23/NPM and protects it from proteolytic cleavage, enhancing cell survival. Proc Natl Acad Sci 2008; 105: 16584-9.
[432]
Al-Ejeh F, Kumar R, Wiegmans A, et al. Harnessing the complexity of DNA-damage response pathways to improve cancer treatment outcomes. Oncogene 2010; 29(46): 6085-98.
[433]
Shortt J, Martin BP, Newbold A, et al. Combined inhibition of PI3K-related DNA damage response kinases and mTORC1 induces apoptosis in MYC-driven B-cell lymphomas. Blood 2013; 121(15): 2964-74.
[434]
Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem Sci 2011; 36(6): 320-8.
[435]
Garofalo RS, Orena SJ, Rafidi K, et al. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest 2003; 112(2): 197-208.
[436]
Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 2006; 7: 85-96.
[437]
Weinstein-Oppenheimer CR, Blalock WL, Steelman LS, et al. The Raf signal transduction cascade as a target for chemotherapeutic intervention in growth factor-responsive tumors. Pharmacol Ther 2000; 88(3): 229-79.
[438]
Huang X, Halicka HD, Darzynkiewicz Z. Detection of histone H2AX phosphorylation on Ser-139 as an indicator of DNA damage (DNA double-strand breaks). Curr Protoc Cytom 2004; 7: 7.27.
[439]
Kurz EU, Lees-Miller SP. DNA damage-induced activation of ATM and ATM-dependent signaling pathways. DNA Repair (Amst) 2004; 3(8-9): 889-900.
[440]
Carr MI, Jones SN. Regulation of the Mdm2-p53 signaling axis in the DNA damage response and tumorigenesis. Transl Cancer Res 2016; 5(6): 707-24.
[441]
Centurione L, Aiello FB. DNA Repair and Cytokines: TGF-β, IL-6, and Thrombopoietin as Different Biomarkers of Radioresistance. Front Oncol 2016; 6: 175.
[442]
Valentin-Vega YA, Maclean KH, Tait-Mulder J, et al. Mitochondrial dysfunction in ataxia-telangiectasia. Blood 2012; 119(6): 1490-500.
[443]
Giglia-Mari G, Zotter A, Vermeulen W. DNA Damage Response. Cold Spring Harb Perspect Biol 2011; 3(1)A000745
[444]
Sirbu BM, Cortez D. DNA damage response: three levels of DNA repair regulation. Cold Spring Harb Perspect 2013; 5(8)A012724
[445]
Jazayeri A, Falck J, Lukas C, et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 2006; 8(1): 37-45.
[446]
Huen MS, Chen J. The DNA damage response pathways: At the crossroad of protein modifications. Cell Res 2008; 18(1): 8-16.
[447]
Niida H, Tsuge S, Katsuno Y, et al. Depletion of Chk1 leads to premature activation of Cdc2-cyclinB and mitotic catastrophe. J Biol Chem 2005; 280: 39246-52.
[448]
O’Driscoll M. Diseases Associated with Defective Responses to DNA Damage. Cold Spring Harb Perspect Biol 2012; 4(12)A012773
[449]
Stratton MR, Campbell PJ, Futreal PA. The cancer genome. Nature 2009; 458(7239): 719-24.
[450]
Mouw KW, Goldberg MS, Konstantinopoulos PA, D’Andrea AD. DNA Damage and Repair Biomarkers of Immunotherapy Response. Cancer Discov 2017; 7(7): 675-93.
[451]
Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med 2008; 14(11): 1197-213.
[452]
Verdun RE, Karlseder J. Replication and protection of telomeres. Nature 2007; 447(714): 924-31.
[453]
Longhese MP. DNA damage response at functional and dysfunctional telomeres. Genes Dev 2008; 22(2): 125-40.
[454]
Schumacher B, Garinis GA, Hoeijmakers JH. Age to survive: DNA damage and aging. Trends Genet 2008; 24(2): 77-85.
[455]
Herbig U, Ferreira M, Condel L, Carey D, Sedivy JM. Cellular senescence in aging primates. Science 2006; 311(5765): 1257.
[456]
Jeyapalan JC, Sedivy JM. Cellular senescence and organismal aging. Mech Ageing Dev 2008; 129(7-8): 467-74.
[457]
Campisi J, d’Adda di Fagagna F. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8(9): 729-40.
[458]
Rass U, Ahel I, West SC. Defective DNA repair and neurodegenerative disease. Cell 2007; 130(6): 991-1004.
[459]
Kulkarni A, Wilson DM III. The involvement of DNA-damage and -repair defects in neurological dysfunction. Am J Hum Genet 2008; 82(3): 539-66.
[460]
Higo T, Naito AT, Sumida T, et al. DNA single-strand break-induced DNA damage response causes heart failure. Nat Commun 2017; 8: 15104.
[461]
International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature 2004; 431(7011): 931-45.
[462]
Sharma S, Lu HC. microRNAs in Neurodegeneration: Current Findings and Potential Impacts. J Alzheimers Dis Parkinsonism 2018; 8(1): 420.
[463]
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12: 861-74.
[464]
Finch ML, Marquardt JU, Yeoh GC, Callus BA. Regulation of microRNAs and their role in liver development, regeneration and disease. Int J Biochem Cell Biol 2014; 54: 288-303.
[465]
Peterson SM, Thompson JA, Ufkin ML, et al. Common features of microRNA target prediction tools. Front Genet 2014; 5: 23.
[466]
Ambros V, Bartel B, Bartel DP, et al. A uniform system for microRNA annotation. RNA 2003; 9(3): 277-9.
[467]
Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19(1): 92-105.
[468]
Sohel MH. Extracellular/circulating MicroRNAs: release mechanisms, functions and challenges. Achiev Life Sci 2016; 10(2): 175-86.
[469]
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120(1): 15-20.
[470]
Lewis BP, Shih IH, Jones-Rhoades MW, et al. Prediction of mammalian microRNA targets. Cell 2003; 115(7): 787-98.
[471]
Krek A, Grün D, Poy MN, et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37(5): 495-500.
[472]
Koscianska E, Starega‐Roslan J, Krzyzosiak WJ. The role of Dicer protein partners in the processing of microRNA precursors. PLoS One 2011; 6e28548
[473]
Macrae I, Zhou K, Li F, et al. Structural basis for double-stranded RNA processing by Dicer. Science 2006; 311(5758): 195-8.
[474]
Rana TM. Illuminating the silence: understanding the structure and function of small RNAs. Nat Rev Mol Cell Biol 2007; 8(1): 23-36.
[475]
Morozova N, Zinovyev A, Nonne N, et al. Kinetic signatures of microRNA modes of action. RNA 2012; 18(9): 1635-55.
[476]
Tenenbaum SA, Christiansen J, et al. The post-transcriptional operon. Methods Mol Biol 2011; 703: 237-45.
[477]
Marsit CJ, Eddy K, Kelsey KT. MicroRNA Responses to Cellular Stress. Cancer Res 2006; 66(22): 10843-8.
[478]
Babar IA, Slack FJ, Weidhaas JB. miRNA modulation of the cellular stress response. Future Oncol 2008; 4(2): 289-98.
[479]
Regazzi R. Diabetes mellitus reveals its micro-signature. Circ Res 2010; 107(6): 686-8.
[480]
Srivastava D. Making or breaking the heart: from lineage determination to morphogenesis. Cell 2006; 126(6): 1037-48.
[481]
Small EM, Olson EN. Pervasive roles of microRNAs in cardiovascular biology. Nature 2011; 469(7330): 336-42.
[482]
Bushati N, Cohen SM. MicroRNAs in neurodegeneration. Curr Opin Neurobiol 2008; 18(3): 292-6.
[483]
Schober A, Nazari-Jahantigh M, Weber C. MicroRNA-mediated mechanisms of the cellular stress response in atherosclerosis. Nat Rev Cardiol 2015; 12(6): 361-74.
[484]
Bu H, Wedel S, Cavinato M, Jansen-Dürr P. MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence. Oxid Med Cell Longev 2017; 20172398696
[485]
Ibanez‐Ventoso C, Driscoll M. MicroRNAs in C. elegans aging: molecular insurance for robustness? Curr Genomics 2009; 10(3): 144-53.
[486]
Minones‐Moyano E, Porta S, Escaramis G, et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR‐34b/c which modulate mitochondrial function. Hum Mol Genet 2011; 20: 3067-78.
[487]
Olivieri F, Capri M, Bonafe M, et al. Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging. Mech Ageing Dev 2017; 165(Pt B): 162-70.
[488]
Smith-Vikos T, Liu Z, Parsons C, et al. A serum miRNA profile of human longevity: findings from the Baltimore Longitudinal Study of Aging (BLSA). Aging (Albany NY) 2016; 8(11): 2971-87.
[489]
Menghini R, Casagrande V, Cardellini M, et al. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 2009; 120(16): 1524-32.
[490]
Bai XY, Ma Y, Ding R, et al. miR-335 and miR-34a promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 2011; 22(7): 1252-61.
[491]
Pan Q, Liao X, Liu H, et al. MicroRNA-125a-5p alleviates the deleterious effects of ox-LDL on multiple functions of human brain microvessel endothelial cells. Am J Physiol Cell Physiol 2017; 312(2): C119-30.
[492]
Embe A, Hornstein E. miRNAs at the interface of cellular stress and disease. EMBO 2014; 33(13): 1428-37.
[493]
Mori MA, Raghavan P, Thomou T, et al. Role of microRNA processing in adipose tissue in stress defense and longevity. Cell Metab 2012; 16: 336-47.
[494]
Lim DH, Oh CT, Lee L, et al. The endogenous siRNA pathway in Drosophila impacts stress resistance and lifespan by regulating metabolic homeostasis. FEBS Lett 2011585: 3079-85.
[495]
Cheng S, Zhang C, Xu C, et al. Age-dependent neuron loss is associated with impaired adult neurogenesis in forebrain neuron-specific dicer conditional knockout mice. Int J Biochem Cell Biol 2014; 57: 186-96.
[496]
Hébert SS, Papadopoulou AS, Smith P, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration. Hum Mol Genet 2010; 19: 3959-69.
[497]
Wang X, Guo B, Li Q, Peng J, et al. miR*214 targets ATF4 to inhibit bone formation. Nat Med 2013; 19: 93-100.
[498]
Byrd AE, Aragon IV, Brewer JW. MicroRNA* 30c* 2* limits expression of proadaptive factor XBP1 in the unfolded protein response. J Cell Biol 2012; 196: 689-98.
[499]
Upton JP, Wang L, Han D, et al. IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase* 2. Science 2012338: 818-22.
[500]
Byrd AE, Brewer JW. Micro(RNA)managing endoplasmic reticulum stress. IUBMB Life 2013; 65: 373-81.
[501]
Chitnis N, Pytel D, Diehl JA. UPR‐inducible miRNAs contribute to stressful situations. Trends Biochem Sci 2013; 38(9): 447-52.
[502]
Maurel M, Chevet E. Endoplasmic reticulum stress signaling: the microRNA connection. Am J Physiol Cell Physiol 2013; 304: 1117-26.
[503]
Le MTN, Teh C, Shyh-Chang N, et al. MicroRNA-125b is a novel negative regulator of p53. Genes Dev 2009; 23(7): 862-76.
[504]
Jones MF, Lal A. MicroRNAs, wild-type and mutant p53: More questions than answers. RNA Biol 2012; 9(6): 781-91.
[505]
Navarro F, Lieberman J. miR-34 and p53: New Insights into a Complex Functional Relationship. PLoS One 2015; 10(7)e0132767
[506]
Okada N, Lin CP, Ribeiro MC, et al. A positive feedback between p53 and miR-34 miRNAs mediates tumor suppression. Genes Dev 2014; 28(5): 438-50.
[507]
He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network—another piece in the tumour-suppression puzzle. Nat Rev Cancer 2007; 7(11): 819-22.
[508]
Liu X, Fu B, Chen D, et al. miR-184 and miR-150 promote renal glomerular mesangial cell aging by targeting Rab1a and Rab31. Exp Cell Res 2015; 336(2): 192-203.
[509]
O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D. Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 2010; 10: 111-22.
[510]
Leung AK, Sharp PA. MicroRNA functions in stress responses. Mol Cell 2010; 40: 205-15.
[511]
Bardwell L, Zou X, Nie Q, Komarova NL. Mathematical models of specificity in cell signaling. Biophys J 2007; 92(10): 3425-41.
[512]
Benayoun BA, Veitia RA. A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol 2009; 19: 189-97.
[513]
Jensen ON. Modification-specific proteomics: characterization of post-translational modifications by mass spectrometry. Curr Opin Chem Biol 2004; 8: 33-41.
[514]
Duan G, Walther D. The Roles of Post-translational Modifications in the Context of Protein Interaction Networks. PLOS Comput Biol 2015; 11(2)e1004049
[515]
Sakamoto K, Holman GD. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic. Am J Physiol Endocrinol Metab 2008; 295(1): E29-37.
[516]
Kousteni S. FoxO1: A molecule for all seasons. J Bone Miner Res 2011; 26(5): 912-7.
[517]
Mihaylova MM, Shaw RJ. The AMP-activated protein kinase (AMPK) signaling pathway coordinates cell growth, autophagy, & metabolism. Nat Cell Biol 2011; 13(9): 1016-23.
[518]
Zaborske JM, Narashimhan J, Jiang L, et al. Genome-wide analysis of tRNA charging and activation of the eIF2 kinase Gcn2p. J Biol Chem 2009; 284(37): 25254-67.
[519]
Hotamisligil GS. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease. Cell 2010; 140(6): 900-17.
[520]
García MA, Gil J, Ventoso I, et al. Impact of protein kinase PKR in cell biology: from antiviral to antiproliferative action. Microbiol Mol Biol Rev 2006; 70(4): 1032-60.
[521]
Anda S, Zach R, Grallert B. Activation of Gcn2 in response to different stresses. PLoS One 2017; 12(8)e0182143
[522]
Manieri E, Sabio G. Stress kinases in the modulation of metabolism and energy balance. J Mol Endocrinol 2015; 55(2): R11-22.
[523]
Sabio G, Davis RJ. TNF and MAP kinase signalling pathways. Semin Immunol 2014; 26(3): 237-45.
[524]
Paul A, Wilson S, Belham CM, et al. Stress-activated protein kinases: Activation, regulation and function. Cell Signal 1997; 9(6): 403-10.
[525]
Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 2002; 420(6913): 333-6.
[526]
Vernia S, Cavanagh-Kyros J, Garcia-Haro L, et al. The PPARα-FGF21 hormone axis contributes to metabolic regulation by the hepatic JNK signaling pathway. Cell Metab 2014; 20(3): 512-25.
[527]
Sabio G, Cavanagh-Kyros J, Ko HJ, et al. Prevention of steatosis by hepatic JNK1. Cell Metab 2009; 10(6): 491-8.
[528]
Zhou D, Huang C, Lin Z, et al. Macrophage polarization and function with emphasis on the evolving roles of coordinated regulation of cellular signaling pathways. Cell Signal 2014; 26(2): 192-7.
[529]
Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation and metabolic disease. Cell Metab 2011; 13(1): 11-22.
[530]
Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112(12): 1821-30.
[531]
Yang H, Youm YH, Vandanmagsar B, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 2010; 185(3): 1836-45.
[532]
Chiang SH, Bazuine M, Lumen CN, et al. The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 2009; 138(5): 961-75.
[533]
Ke B, Zhao Z, Ye X, et al. Inactivation of NF-κB p65 (RelA) in Liver Improves Insulin Sensitivity and Inhibits cAMP/PKA Pathway. Diabetes 2015; 64(10): 3355-62.
[534]
Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11(2): 191-8.
[535]
Lark DS, Wasserman DH. Meta-fibrosis links positive energy balance and mitochondrial metabolism to insulin resistance. F1000 Res 2017; 6: 1758.
[536]
Selye H. Stress and the general adaptation syndrome. Br Med J 1950; 1: 1383-92.
[537]
Goldberg GI, Eisen AZ, Bauer EA. Tissue stress and tumor promotion. Possible relevance to epidermolysis bullosa. Arch Dermatol 1988; 124(5): 737-41.
[538]
Besedovsky HO, del Rey A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev 1996; 17(1): 64-102.
[539]
Borg M, Brincat S, Camilleri G, et al. The role of cytokines in skin aging. Climacteric 2013; 16(5): 514-21.
[540]
Michaud M, Balardy L, Moulis G, et al. Proinflammatory cytokines, aging, and age-related diseases. J Am Med Dir Assoc 2013; 14(12): 877-82.
[541]
Herder C, Schneitler S, Rathmann W, et al. Low-grade inflammation, obesity, and insulin resistance in adolescents. J Clin Endocrinol Metab 2007; 92(12): 4569-74.
[542]
Wedell-Neergaard A-S, Eriksen L, Grønbæk M, et al. Low fitness is associated with abdominal adiposity and low-grade inflammation independent of BMI. PLoS One 2018; 13(1)e0190645
[543]
McPoil TG, Hunt GC. Evaluation and management of foot and ankle disorders: present problems and future directions. J Orthop Sports Phys Ther 1995; 21(6): 381-8.
[544]
Mueller MJ, Maluf KS. Tissue adaptation to physical stress: A proposed “Physical Stress Theory” to guide physical therapist practice, education, and research. Phys Ther 2002; 82(4): 383-403.
[545]
Elbakidze GM, Elbakidze AG. Principles of Tissue Growth Intratissue Regulation. Collierville: USA 2009. 163 p.
[546]
Gilman AG. G proteins: transducers of receptor-generated signals. Annu Rev Biochem 1987; 56(1): 615-49.
[547]
Basu S. Bioactive eicosanoids: role of prostaglandin F(2α) and F*-isoprostanes in inflammation and oxidative stress related pathology. Mol Cells 2010; 39(5): 383-91.
[548]
Hannun YA. Functions of ceramide in coordinating cellular responses to stress. Science 1996; 274(5294): 1855-9.
[549]
Williams MJ. Drosophila hemopoiesis and Cellular Immunity. J Immunol 2007; 178(8): 4711-6.
[550]
Reiber CL, McGaw IJ. A Review of the “Open” and “Closed” Circulatory Systems: New Terminology for Complex Invertebrate Circulatory Systems in Light of Current Findings. Int J Zool 2009; 2009: 01284.
[551]
Palade GE, Simionescu M, Simionescu N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand Suppl 1979; 463: 11-32.
[552]
Kumar P, Shen Q, Pivetti CD, et al. Molecular mechanisms of endothelial hypermeability: implications in inflammation. Expert Rev Mol Med 2009; 11e19
[553]
Madry H, Luyten FP, Facchini A. Biological aspects of early osteoarthritis. Knee Surg Sports Traumatol Arthrosc 2012; 20(3): 407-22.
[554]
Tanchev P. Osteoarthritis or Osteoarthrosis: Commentary on Misuse of Terms. Reconstr Rev 2017; 7(1)
[http://dx.doi.org/10.15438/rr.7.1.178]
[555]
Yu X, Guo C, Fisher PB, et al. Scavenger receptors: emerging roles in cancer biology and immunology. Adv Cancer Res 2015; 128: 309-64.
[556]
Mills CD, Kincaid K, Alt JM, Heilman MJ, Hill AM. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol 2000; 164(12): 6166-73.
[557]
Martinez FO, Gordon S. The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep 2014; 6: 13.
[558]
Auffray C, Sieweke MH, Geissmann F. Blood monocytes: development, heterogeneity, and relationship with dendritic cells. Annu Rev Immunol 2009; 27: 669-92.
[559]
Vignali DA, Collison LW, Workman CJ. How regulatory T cells work. Nat Rev Immunol 2008; 8(7): 523-32.
[560]
Murray PJ, Allen JE, Biswas SK, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014; 41(1): 14-20.
[561]
Geissmann F, Manz MG, Jung S, et al. Development of monocytes, macrophages, and dendritic cells. Science 2010; 327(5966): 656-61.
[562]
Yamaguchi T, Takizawa F, Fisher U, Dijkstra JM. Along the axis between Type 1 and Type 2 immunity; principles conserved in evolution from fish to mammals. Biology (Basel) 2015; 4: 814-59.
[563]
Wang Y, Souabni A, Flavell RA, Wan YY. An intrinsic mechanism predisposes Foxp3-expressing regulatory T cells to Th2 conversion in vivo. J Immunol 2010; 185: 5983-92.
[564]
Luckheeram RV, Zhou R, Verma AD. Xia B. CD4+T cells: differentiation and functions. Clin Dev Immunol 2012; 2012925135
[565]
Olson NC, Sallam R, Doyle MF, et al. T Helper Cell Polarization in Healthy People: Implications for Cardiovascular Disease. J Cardiovasc Transl Res 2013; 6(5): 772-86.
[566]
Hirahara K, Nakayama T. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm. Int Immunol 2016; 28(4): 163-71.
[567]
Nahrendorf M, Swirski FK. Abandoning M1/M2 for a Network Model of Macrophage Function. Circ Res 2016; 119(3): 414-7.
[568]
Lloyd CM, Hessel EM. Functions of T cells in asthma: more than just T(H)2 cells. Nat Rev Immunol 2010; 10(12): 838-48.
[569]
Wu HJ, Wang AHJ, Jennings MP. Discovery of virulence factors of pathogenic bacteria. Curr Opin Chem Biol 2008; 12(1): 93-101.
[570]
Romagnani S. Type 1 T helper and type 2 T helper cells: Functions, regulation and role in protection and disease. Int J Clin Lab Res 1992; 21(2-4): 152-8.
[571]
Nishimura T, Iwakabe K, Sekimoto M. Distinct role of antigen-specific T helper type 1 (Th1) and Th2 cells in tumor eradication in vivo. J Exp Med 1999; 190(5): 617-27.
[572]
Dohg C, Flavell RA. Cell fate decision: T-helper 1 and 2 subsets in immune responses. Arthritis Res 2000; 2(3): 179-88.
[573]
Georas SN, Guo J, De Fanis U, Casolaro V. T-helper cell type-2 regulation in allergic disease. Eur Respir J 2005; 26(6): 1119-37.
[574]
Ouyang W, Kolls JK, Zheng Y. The biological functions of T helper 17 cell effector cytokines in inflammation. Immunity 2008; 28(4): 454-67.
[575]
Banchereau J, Pascual V, O’Garra A. From IL-2 to IL-37: the expanding spectrum of anti-inflammatory cytokines. Nat Immunol 2012; 13(10): 925-31.
[576]
Murthy S, Larson-Casey JL, Ryan AJ, et al. Alternative activation of macrophages and pulmonary fibrosis are modulated by scavenger receptor, macrophage receptor with collagenous structure. FASEB J 2015; 29(8): 3527-36.
[577]
Xu Z, Xu L, Li W, et al. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection. Nat Commun 2017; 8: 16035.
[578]
Mehta JL, Li D. Identification, regulation and function of a novel lectin-like oxidized low-density lipoprotein receptor. J Am Coll Cardiol 2002; 39(9): 1429-35.
[579]
De Siqueira J, Abdul Zani I, Russell DA, et al. Clinical and Preclinical Use of LOX-1-Specific Antibodies in Diagnostics and Therapeutics. J Cardiovasc Transl Res 2015; 8(8): 458-65.
[580]
Armengol C, Bartolí R, Sanjurjo L, et al. Role of scavenger receptors in the pathophysiology of chronic liver diseases. Crit Rev Immunol 2013; 33(1): 57-96.
[581]
Rahman N, Pervin M, Kuramochi M, et al. M1/M2-macrophage polarization-based hepatotoxicity in d-galactosamine-induced acute liver injury in rats. Toxicol Pathol 2018; 46(7): 764-76.
[582]
Yu X, Kasprick A, Petersen F. Revisiting the role of mast cells in autoimmunity. Autoimmun Rev 2015; 14(9): 751-9.
[583]
Rosvall M, Engstrom G, Janzon L, et al. The role of low grade inflammation as measured by C-reactive protein levels in the explanation of socioeconomic differences in carotid atherosclerosis. Eur J Public Health 2007; 17(4): 340-7.
[584]
Adams LA, Angulo P, Lindor KD. Nonalcoholic fatty liver disease. CMAJ 2005; 172(7): 899-905.
[585]
Pereira ENGDS, Silvares RR, Flores EEI, et al. Hepatic microvascular dysfunction and increased advanced glycation end products are components of non-alcoholic fatty liver disease. PLoS One 2017; 12(6)e0179654
[586]
Van Grunsven LA 3D. in vitro models of liver fibrosis. Adv Drug Deliv Rev 2017; 121: 133-46.
[587]
Anders HJ, Schaefer L. Beyond tissue injury-damage-associated molecular patterns, toll-like receptors, and inflammasomes also drive regeneration and fibrosis. J Am Soc Nephrol 2014; 25(7): 1387-400.
[588]
Cui H, Kong Y, Zhang H. Oxidative Stress, Mitochondrial Dysfunction, and Aging. J Signal Transduct 2012; 2012646354
[589]
Murea M, Freedman BI, Parks JS, et al. Lipotoxicity in Diabetic Nephropathy: The Potential Role of Fatty Acid Oxidation. Clin J Am Soc Nephrol 2010; 5(12): 2373-9.
[590]
Schaffer JE. Lipotoxicity: Many Roads to Cell Dysfunction and Cell Death: Introduction to a Thematic Review Series. J Lipid Res 2016; 57(8): 1327-8.
[591]
Newgard CB. Interplay between lipids and branched-chain amino acids in development of insulin resistance. Cell Metab 2012; 15(5): 606-14.
[592]
Hu W, Sun L, Gong Y, et al. Relationship between Branched-Chain Amino Acids, Metabolic Syndrome, and Cardiovascular Risk Profile in a Chinese Population: A Cross-Sectional Study. Int J Endocrinol 2016; 20168173905
[593]
Catena C, Colussi G, Nait F, et al. Elevated Homocysteine Levels Are Associated With the Metabolic Syndrome and Cardiovascular Events in Hypertensive Patients. Am J Hypertens 2015; 28(7): 943-50.
[594]
Hohensinner PJ, Niessner A, Huber K, et al. Inflammation and cardiac outcome. Curr Opin Infect Dis 2011; 24: 259-64.
[595]
Senn JJ. Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol Chem 2006; 281(37): 26865-75.
[596]
Lara-Guzman OJ, Gil-Izquierdo A, Medina S, et al. Oxidized LDL triggers changes in oxidative stress and inflammatory biomarkers in human macrophages. Redox Biol 2018; 15: 1-11.
[597]
Manzel A, Muller DN, Hafler DA, et al. Role of “Western diet” in inflammatory autoimmune diseases. Curr Allergy Asthma Rep 2014; 14(1): 404.
[598]
Hajer GR, van Haeften TW, Visseren FL. Adipose tissue dysfunction in obesity, diabetes, and vascular diseases. Eur Heart J 2008; 29(24): 2959-71.
[599]
Almawi WY, Tamim H, Azar ST. Clinical review 103: T helper type 1 and 2 cytokines mediate the onset and progression of type I (insulin-dependent) diabetes. J Clin Endocrinol Metab 1999; 84(5): 1497-502.
[600]
Tsai S, Clemente-Casares X, Revelo XS, et al. Are obesity-related insulin resistance and type 2 diabetes autoimmune diseases? Diabetes 2015; 64(6): 1886-97.
[601]
Xia C, Rao X, Zhong J. Role of T Lymphocytes in Type 2 Diabetes and Diabetes-Associated Inflammation. J Diabetes Res 2017; 20176494795
[602]
Pennock ND, White JT, Cross EW, et al. T cell responses: naive to memory and everything in between. Adv Physiol Educ 2013; 37(4): 273-83.
[603]
De Miguel C, Rudemiller NP, Abais JM, Mattson DL. Inflammation and hypertension: new understandings and potential therapeutic targets. Curr Hypertens Rep 2015; 17(1): 507.
[604]
Gilgun-Sherki Y, Melamed E, Offen D. Anti-inflammatory drugs in the treatment of neurodegenerative diseases: current state. Curr Pharm Des 2006; 12(27): 3509-19.
[605]
Chen X, Pan W. The Treatment Strategies for Neurodegenerative Diseases by Integrative Medicine. Integr Med Int 2014; 1: 223-5.
[606]
Esser N, Paquot N, Scheen AJ. Anti-inflammatory agents to treat or prevent type 2 diabetes, metabolic syndrome and cardiovascular disease. Expert Opin Investig Drugs 2015; 24(3): 283-307.
[607]
Pollack RM, Donath MY, LeRoith D, Leibowitz G. Anti-inflammatory Agents in the Treatment of Diabetes and Its Vascular Complications. Diabetes Care 2016; 39(2): S244-52.
[608]
Merone L, McDermott R. Nutritional anti-inflammatories in the treatment and prevention of type 2 diabetes mellitus and the metabolic syndrome. Diabetes Res Clin Pract 2017; 127: 238-53.
[609]
Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis. Circ Res 2016; 118(4): 653-67.
[610]
De Paoli F, Staels B, Chinetti-Gbaguidi G. Macrophage phenotypes and their modulation in atherosclerosis. Circ J 2014; 78(8): 1775-81.
[611]
Carniglia L, Ramírez D, Durand D, et al. Neuropeptides and microglial activation in inflammation, pain, and neurodegenerative diseases. Mediators Inflamm 2017; 20175048616
[612]
Harwani SC. Macrophages under pressure: the role of macrophage polarization in hypertension. Transl Res 2018; 191: 45-63.
[613]
Morawietz H, Duerrschmidt N, Niemann B, et al. Induction of the oxLDL receptor LOX-1 by endothelin-1 in human endothelial cells. Biochem Biophys Res Commun 2001; 284(4): 961-5.
[614]
Youg AB. Four decades of neurodegenerative disease research: how far we have come! J Neurosci 2009; 29(41): 12722-8.
[615]
Levenson RW, Sturm VE, Haase CM. Emotional and behavioral symptoms in neurodegenerative disease: A model for studying the neural bases of psychopathology. Annu Rev Clin Psychol 2014; 10: 581-606.
[616]
Baquero M, Martin N. Depressive symptoms in neurodegenerative diseases. World J Clin Cases 2015; 3(8): 682-93.
[617]
Martin LJ, Al-Abdulla NA, Brambrink AM, et al. Neurodegeneration in excitotoxicity, global cerebral ischemia, and target deprivation: A perspective on the contributions of apoptosis and necrosis. Brain Res Bull 1998; 46(4): 281-309.
[618]
Wang X, Li J, Wu D, Bu X, Qiao Y. Hypoxia promotes apoptosis of neuronal cells through hypoxia-inducible factor-1α-microRNA-204-B-cell lymphoma-2 pathway. Exp Biol Med (Maywood) 2016; 241(2): 177-83.
[619]
Akbar M, Essa MM, Daradkeh G, et al. Abdelmegeed MA, Choi Y, Mahmood L, Song BJ. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress. Brain Res 2016; 1637: 34-55.
[620]
Goedert M. NEURODEGENERATION. Alzheimer’s and Parkinson’s diseases: The prion concept in relation to assembled Aβ, tau, and α-synuclein. Science 2015; 349(6248)1255555
[621]
Wilkinson K, El Khoury J. Microglial scavenger receptors and their roles in the pathogenesis of Alzheimer’s disease. Int J Alzheimers Dis 2012; 2012489456
[622]
Eugenín J, Vecchiola A, Murgas P, Arroyo P, Cornejo F, von Bernhardi R. Expression pattern of scavenger receptors and amyloid-β phagocytosis of astrocytes and microglia in culture are modified by acidosis: implications for Alzheimer’s disease. J Alzheimers Dis 2016; 53(3): 857-73.
[623]
Linden R, Martins VR, Prado MAM, et al. Physiology of the prion protein. Physiol Rev 2008; 88: 673-728.
[624]
Imran M, Mahmood S. An overview of human prion diseases. Virol J 2011; 8: 559.
[625]
Creteur J, De Backer D, Sakr Y, Koch M, Vincent J. Sublingual capnometry tracks microcirculatory changes in septic patients. Intensive Care Med 2006; 32(4): 516-23.
[626]
De Backer D, Ospina-Tascon G, Salgado D, et al. Monitoring the microcirculation in the critically ill patient: current methods and future approaches. Intensive Care Med 2010; 36(11): 1813-25.
[627]
Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995; 75(3): 519-60.
[628]
Walley KR. Heterogeneity of oxygen delivery impairs oxyge6n extraction by peripheral tissues: theory. J Appl Physiol 1996; 81(2): 885-94.
[629]
Yang S, Cioffi WG, Bland KI, et al. Differential alterations in systemic and regional oxygen delivery and consumption during the early and late stages of sepsis. J Trauma 1999; 47: 706-12.
[630]
Rackow EC, Kaufmann BS, Falk JL, et al. Hemodynamic response to fluid repletion in patients with septic shock: evidence for early depression of cardiac performance. Circ Shock 1987; 22(1): 11-22.
[631]
Dellinger RP. Cardiovascular management of septic shock. Crit Care Med 2003; 31(3): 946-55.
[632]
Karimova A, Pinsky DJ. The endothelial response to oxygen deprivation: biology and clinical implications. Intensive Care Med 2001; 27(1): 19-31.
[633]
Vallet B. Microthrombosis in sepsis. Minerva Anestesiol 2001; 67(4): 298-301.
[634]
Hotchkiss RS, Moldawer LL, Opal SM, et al. Sepsis and septic shock. Nat Rev Dis Primers 2016; 2: 16045.
[635]
Seeley EJ, Sutherland RE, Kim SS, Wolters PJ. Systemic mast cell degranulation increases mortality during polymicrobial septic peritonitis in mice. J Leukoc Biol 2011; 90(3): 591-7.
[636]
Cai C, Cfo Z, Loughran PA, et al. Mast cells play a critical role in the systemic inflammatory response and end-organ injury resulting from trauma. J Am Coll Surg 2011; 213(5): 604-15.
[637]
Deutschman CS, Tracey KJ. Sepsis: Current dogma and new perspectives. Immunity 2014; 40(4): 463-75.
[638]
Singer M. The role of mitochondrial dysfunction in sepsis-induced multi-organ failure. Virulence 2014; 5(1): 66-72.
[639]
Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340(6): 448-54.
[640]
Taccone FS, Su F, Pierrakos C, He X, et al. Cerebral microcirculation is impaired during sepsis: An experimental study. Crit Care 2010; 14(4): R140.
[641]
Sharshar T, Polito A, Checinski A, Stevens RD. Septic-associated encephalopathy - everything starts at a microlevel. Crit Care 2010; 14(5): 199.
[642]
Soleimanpour H, Safari S, Rahmani F, et al. Hepatic Shock Differential Diagnosis and Risk Factors: A Review Article. Hepat Mon 2015; 15(10)e27063
[643]
Zarjou A, Agarwal A. Sepsis and acute kidney injury. J Am Soc Nephrol 2011; 22(6): 999-1006.
[644]
Jentzer JC, Chonde MD, Dezfulian C. Myocardial Dysfunction and Shock after Cardiac Arrest. BioMed Res Int 2015; 2015314796
[645]
Cortés DO, Rahmania L, Irazabal M, et al. Microvascular reactivity is altered early in patients with acute respiratory distress syndrome. Respir Res 2016; 17: 59.
[646]
Siddall E, Khatri M, Radhakrishnfn J. Capillary leak syndrome: etiologies, pathophysiology, and management. Kidney Int 2017; 92(1): 37-46.
[647]
Gando S, Levi M, Toh CH. Disseminated intravascular coagulation. Nat Rev Dis Primers 2016; 2: 16037.
[648]
Fujishima S. Organ dysfunction as a new standard for defining sepsis. Inflamm Regen 2016; 36: 24.
[649]
Roumen RM, Hendriks T, van der Ven-Jongekrijg J, et al. Cytokine patterns in patients after major vascular surgery, hemorrhagic shock, and severe blunt trauma. Relation with subsequent adult respiratory distress syndrome and multiple organ failure. Ann Surg 1993; 218(6): 769-76.
[650]
Drewry AM, Hotchkiss RS. Sepsis: Revising definitions of sepsis. Nat Rev Nephrol 2015; 11: 326-8.
[651]
Takala A, Jousela I, Olkkola KT, et al. Systemic inflammatory response syndrome without systemic inflammation in acutely ill patients admitted to hospital in a medical emergency. Clin Sci (Lond) 1999; 96: 287-95.
[652]
Richter DC, Heininger A, Brenner T, et al. Bacterial sepsis: Diagnostics and calculated antibiotic therapy. Anaesthesist 2017; 66(10): 737-61.
[653]
Kaukonen KM, Bailey M, Pilcher D, et al. Systemic inflammatory response syndrome criteria in defining severe sepsis. N Engl J Med 2015; 372(17): 1629-38.
[654]
Singer M, Deutschman CS, Seymour CW, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA 2016; 315(8): 801-10.
[655]
Rajagopalan S. Crush Injuries and the Crush Syndrome. Med J Armed Forces India 2010; 66(4): 317-20.
[656]
Hardaway RM, Dumke R, Gee T, et al. The danger of hemolysis in shock. Ann Surg 1979; 189(3): 373-6.
[657]
Khalid L, Dhakam SH. A review of cardiogenic shock in acute myocardial infarction. Curr Cardiol Rev 2008; 4(1): 34-40.
[658]
Bouglé A, Harrois A, Duranteau J. Resuscitative strategies in traumatic hemorrhagic shock. Ann Intensive Care 2013; 3(1): 1.
[659]
Haljamae H. Microcirculation and hemorrhagic shock. Am J Emerg Med 1984; 2(1): 100-7.
[660]
Kemp SF, Lockey RF. Anaphylaxis: A review of causes and mechanisms. J Allergy Clin Immunol 2002; 110(3): 341-8.
[661]
Kaur K, Bhardwaj M, Kumar P, et al. Amniotic fluid embolism. J Anaesthesiol Clin Pharmacol 2016; 32(2): 153-9.
[662]
Hifumi T, Sakai A, Kondo Y, et al. Venomous snake bites: clinical diagnosis and treatment. J Intensive Care 2015; 3(1): 16.
[663]
Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo 2013; 27(6): 669-84.
[664]
Schulte W, Bernhagen J, Bucala R. Cytokines in sepsis: potent immunoregulators and potential therapeutic targets - an updated view. Mediators Inflamm 2013; 2013165974
[665]
Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78(6): 539-52.
[666]
Wise WC, Cook JA, Temhel GE, et al. et al. The rat in sepsis and endotoxic shock. Prog Clin Biol Res 1989; 299: 243-52. ---(703
[667]
Fink MP, Heard SO. The rat in sepsis and endotoxic shock. Prog Clin Biol Res 1989; 299: 243-52. ---(703 [667] Fink MP, Heard SO. Laboratory models of sepsis and septic shock. J Surg Res 1990; 49(2): 186-96. ---(704
[668]
Elmer L, DeGowin MD. Hemolytic shock following blood transfusion JAMA 1936; 107(8): 605-6. ---(705
[669]
Gusev EY, Yurchenko LN, Chereshnev VA, Zotova NV, Kopalova YuA. The method for diagnosis and prognosis of Systemic Inflammation with phases and stages verification. In: RAS IoiapU, editor. Bulletin N28. IPC7 G01N 33/53 ed. Russian Federation: Institute of immunology and physiology UB RAS. 2008. p. 56.
[670]
Bonanno FG. Physiopathology of shock. J Emerg Trauma Shock 2011; 4(2): 222-32.
[671]
Schaefer L. Complexity of danger: the diverse nature of damage-associated molecular patterns. J Biol Chem 2014; 289(51): 35237-45.
[672]
Stearns-Kurosawa DJ, Osuchowski MF, Valentine C, et al. The pathogenesis of sepsis. Annu Rev Pathol 2011; 6: 19-48.
[673]
Tennenberg SD, Solomkin JS. Neutrophil activation in sepsis. The relationship between fmet-leu-phe receptor mobilization and oxidative activity. Arch Surg 1988; 123(2): 171-5.
[674]
Wang X, Qin W, Sun B. New strategy for sepsis: Targeting a key role of platelet-neutrophil interaction. Burns Trauma 2014; 28; 2(3): 114-20.
[675]
Finsterbusch M, Hall P, Li A, et al. Patrolling monocytes promote intravascular neutrophil activation and glomerular injury in the acutely inflamed glomerulus. Proc Natl Acad Sci USA 2016; 113(35): E5172-81.
[676]
Nesseler N, Launey Y, Aninat C, et al. Clinical review: The liver in sepsis. Crit Care 2012; 16(5): 235.
[677]
Bilgili B, Haliloglu M, Cinel I. Sepsis and Acute Kidney Injury. Turk J Anaesthesiol Reanim 2014; 42(6): 294-301.
[678]
Fukui H. Increased Intestinal Permeability and Decreased Barrier Function: Does It Really Influence the Risk of Inflammation? Inflamm Intest Dis 2016; 1: 135-45.
[679]
Sertaridou E, Papaioannou V, Kolios G, Pneumatikos I. Gut failure in critical care: old school versus new school. Ann Gastroenterol 2015; 28(3): 309-22.
[680]
Bischoff SC, Barbara G, Buurman W, et al. Intestinal permeability - a new target for disease prevention and therapy. BMC Gastroenterol 2014; 14: 189.
[681]
Okusawa S, Gelfand JA, Ikejima T, et al. Interleukin 1 induces a shock-like state in rabbits. Synergism with tumor necrosis factor and the effect of cyclooxygenase inhibition. J Clin Invest 1988; 81(4): 1162-72.
[682]
Mallick AA, Ishizaka A, Stephens KE, et al. Multiple organ damage caused by tumor necrosis factor and prevented by prior neutrophil depletion. Chest 1989; 95(5): 1114-20.
[683]
Luo L, Zhang S, Wang Y, et al. Proinflammatory role of neutrophil extracellular traps in abdominal sepsis. Am J Physiol Lung Cell Mol Physiol 2014; 307(7): L586-96.
[684]
Pravda J. Metabolic theory of septic shock. World J Crit Care Med 2014; 3(2): 45-54.
[685]
Preiser JC, Ichai C, Orban JC, Groeneveld AB. Metabolic response to the stress of critical illness. Br J Anaesth 2014; 113(6): 945-54.
[686]
Kimmoun A, Novy E, Auchet T, et al. Hemodynamic consequences of severe lactic acidosis in shock states: from bench to bedside. Crit Care 2015; 19: 175.
[687]
Jeschke MG. Post-burn hypermetabolism: past, present and future. J Burn Care Res 2016; 37(2): 86-96.
[688]
Williams FN, Jeschke MG, Chinkes DL, et al. Modulation of the hypermetabolic response to trauma: temperature, nutrition, and drugs. J Am Coll Surg 2009; 208(4): 489-502.
[689]
Vincent JL. Metabolic support in sepsis and multiple organ failure: more questions than answers .... Crit Care Med 2007; 35(9)(Suppl.): S436-40.
[690]
Al-Banna N, Lehmann C. Oxidized LDL and LOX-1 in experimental sepsis. Mediators Inflamm 2013; 2013761789
[691]
Askim A, Moser F, Gustad LT, et al. Poor performance of quick-SOFA (qSOFA) score in predicting severe sepsis and mortality - a prospective study of patients admitted with infection to the emergency department. Scand J Trauma Resusc Emerg Med 2017; 25: 56.
[692]
Polat G, Ugan RA, Cadirci E, Halici Z. Sepsis and Septic Shock: Current Treatment Strategies and New Approaches. Eurasian J Med 2017; 49: 53-8.
[693]
Pockley AG, Muthana M, Calderwood SK. The dual immunoregulatory roles of stress proteins. Trends Biochem Sci 2008; 33: 71-9.
[694]
Pierrakos C, Vincent JL. Sepsis biomarkers: A review. Crit Care 2010; 14: R15.
[695]
De Backer D, Donadello K, Taccone FS, et al. Microcirculatory alterations: potential mechanisms and implications for therapy. Ann Intensive Care 2011; 1: 27.
[696]
Bezemer R, Bartels SA, Bakker J, Ince C. Clinical review: Clinical imaging of the sublingual microcirculation in the critically ill--where do we stand? Crit Care 2012; 16: 224.
[697]
Wada H, Matsumoto T, Yamashita Y. Diagnosis and treatment of disseminated intravascular coagulation (DIC) according to four DIC guidelines. J Intensive Care 2014; 2: 15.
[698]
Bossi F, Peerschke EI, Ghebrehiwet B, Tedesco F. Cross-talk between the complement and the kinin system in vascular permeability. Immunol letters 2011; 140: 7-13.
[699]
Ricklin D, Reis ES, Lambris JD. Complement in disease: A defence system turning offensive. Nat Rev Nephrol 2016; 12: 383-401.
[700]
Metcalfe DD, Baram D, Mekori YA. Mast cells. Physiol Rev 1997; 77(4): 1033-79.
[701]
Guilarte M, Sala-Cunill A, Luengo O, et al. The Mast Cell, Contact, and Coagulation System Connection in Anaphylaxis. Front Immunol 2017; 8: 846.
[702]
Metcalfe DD. Mast cells and mastocytosis. Blood 2008; 112(4): 946-56.
[703]
Ramos L, Pena G, Cai B, et al. Mast cell stabilization improves survival by preventing apoptosis in sepsis. J Immunol 2010; 185(1): 709-16.
[704]
Guo L, Song Z, Li M, Wu Q, et al. Scavenger receptor bi protects against septic death through its role in modulating inflammatory response. J Biol Chem 2009; 284(30): 19826-34.
[705]
Guo L, Zheng Z, Ai J, Huang B, Li XA. Hepatic scavenger receptor BI protects against polymicrobial-induced sepsis through promoting LPS clearance in mice. J Biol Chem 2014; 289(21): 14666-73.
[706]
Hoffmeister KM, Falet H. Platelet clearance by the hepatic Ashwell-Morrell receptor: mechanisms and biological significance. Thromb Res 2016; 141(2): S68-72.
[707]
Cho J, Kim H, Song J, et al. Platelet storage induces accelerated desialylation of platelets and increases hepatic thrombopoietin production. J Transl Med 2018; 16(1): 199.
[708]
Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev 2012; 249(1): 158-75.
[709]
Lillis AP, Van Duyn LB, Murphy-Ullrich JE, Strickland DK. LDL receptor-related protein 1: unique tissue-specific functions revealed by selective gene knockout studies. Physiol Rev 2008; 88(3): 887-918.
[710]
Vincent JL, Beumier M. Diagnostic and prognostic markers in sepsis. Expert Rev Anti Infect Ther 2013; 11: 265-75.
[711]
Das U. HLA-DR expression, cytokines and bioactive lipids in sepsis. Arch Med Sci 2014; 10: 325-35.
[712]
Wu J-F, Ma J, Chen J, et al. Changes of monocyte human leukocyte antigen-DR expression as a reliable predictor of mortality in severe sepsis. Crit Care 2011; 15: R220.
[713]
Sharma D, Kanneganti TD. The cell biology of inflammasomes: Mechanisms of inflammasome activation and regulation. J Cell Biol 2016; 213: 617-29.
[714]
Karlsson S, Pettilä V, Tenhunen J, et al. Vascular Endothelial Growth Factor in Severe Sepsis and Septic Shock. Anesth & Analg 2008; 106: 1820-6.
[715]
Valenzuela-Sánchez F, Valenzuela-Méndez B, Rodríguez-Gutiérrez JF, Estella-García Á, González-García MÁ. New role of biomarkers: mid-regional pro-adrenomedullin, the biomarker of organ failure. Ann Transl Med 2016; Sep 4(17): 329.
[716]
Rødgaard-Hansen S, Rafique A, Christensen PA, et al. A soluble form of the macrophage-related mannose receptor (MR/CD206) is present in human serum and elevated in critical illness. Clin Chem Lab Med 2014; 52(3): 453-61.
[717]
Dunne WM. Laboratory Diagnosis of Sepsis? No SIRS, Not Just Yet. J Clin Microbiol 2015; 53: 2404-9.
[718]
Kiral E, Dinleyici EC, Bozkurt-Turhan A, et al. Serum endocan levels in children with febrile neutropenia. Hematol Rep 2016; 8: 6110.
[719]
Huang W, Tang Y, Li L. HMGB1, a powerful pro-inflammatory cytokines in sepsis. Cytokine 2010; 51: 119-26.
[720]
Mat-Nor MB, Md Ralib A, Abdulah NZ, Pickering JW. The diagnostic ability of procalcitonin and interleukin-6 to differentiate infectious from noninfectious systemic inflammatory response syndrome and to predict mortality. J Crit Care 2016; 33: 245-51.
[721]
Dalli J, Colas RA, Quintana C, et al. Human sepsis eicosanoid and proresolving lipid mediator temporal profiles: correlations with survival and clinical outcomes. Crit Care Med 2017; 45: 58-68.
[722]
Ayala A, Chaudra IH. Platelet activating factor and its role in trauma, shock, and sepsis. New Horiz 1996; 4: 265-75.
[723]
Clodfelter WH, Basu S, Bolden C, et al. The relationship between plasma and salivary NOx. Nitric Oxide 2015; 47: 85-90.
[724]
Borgen L. Total parenteral nutrition in adults. Am J Nurs 1978; 78(2): 224-8.
[725]
Houston MC. Pathophysiology of shock. Crit Care Nurs Clin North Am 1990; 2(2): 143-9.
[726]
Kreimeier U. Pathophysiology of fluid imbalance. Crit Care 2000; 4(2): S3-7.
[727]
Haljamae H. Rationale for the use of colloids in the treatment of shock and hypovolemia. Acta Anaesthesiol Scand Suppl 1985; 82: 48-54.
[728]
Kyttaris VC. Systemic lupus erythematosus: from genes to organ damage. Methods Mol Biol 2010; 662: 265-83.
[729]
Wright SAO, Prey FM, Rea DJ, et al. Microcirculatory hemodynamics and endothelial dysfunction in systemic lupus erythematosus. Arterioscler Thromb Vasc Biol 2006; 26(10): 2281-7.
[730]
Inoh M, Tokuda M, Kiuchi H, et al. Evaluating systemic lupus erythematosus disease activity using molecular markers of hemostasis. Arthritis Rheum 1996; 39(2): 287-91.
[731]
Leffler J, Bengtsson AA, Blom AM. The complement system in systemic lupus erythematosus: An update. Ann Rheum Dis 2014; 73(9): 1601-6.
[732]
Ponticelli C, Meroni PL. Kallikreins and lupus nephritis. J Clin Invest 2009; 119(4): 768-71.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 25
ISSUE: 3
Year: 2019
Page: [251 - 297]
Pages: 47
DOI: 10.2174/1381612825666190319114641
Price: $58

Article Metrics

PDF: 25
HTML: 5
EPUB: 1

Special-new-year-discount