Novel Amide Derivatives as Potent Tyrosinase Inhibitors; In-vitro, In-vivo Antimelanogenic Activity and Computational Studies

Author(s): Anser Ali, Zaman Ashraf, Muhammad Rafiq, Ajeet Kumar, Farukh Jabeen, Goon Joon Lee, Fahad Nazir, Mushtaq Ahmed, Myungchull Rhee, Eun Ha Choi*.

Journal Name: Medicinal Chemistry

Volume 15 , Issue 7 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Tyrosinase is involved in the melanin biosynthesis and the abnormal accumulation of melanin pigments leading to hyperpigmentation disorders. Controlling the melanogenesis could be an important strategy for treating abnormal pigmentation.

Methods: In the present study, a series of amide derivatives (3a-e and 5a-e) were synthesized aiming to inhibit tyrosinase activity and melanin production. All derivatives were screened for tyrosinase inhibition in a cell-free system. The possible interactions of amide derivatives with tyrosinase enzyme and effect of these interactions on tyrosinase structure were checked by molecular docking in silico and by Circular Dichroism (CD) studies, respectively. The most potent amide derivative (5c) based on cell-free experiments, was further tested for cellular ROS inhibition and for tyrosinase activity using mouse skin melanoma (B16F10) cells.

Results: The tyrosinase inhibitory concentration (IC50) for tested compounds was observed between the range of 68 to 0.0029 µg/ml with a lowest IC50 value of compound 5c which outperforms the reference arbutin and kojic acid. The cellular tyrosinase activity and melanin quantification assay demonstrate that 15µg/ml of 5c attenuates 36% tyrosinase, 24% melanin content of B16F10 cells without significant cell toxicity. Moreover, the zebrafish in vivo assay reveals that 5c effectively reduces melanogenesis without perceptible toxicity. Furthermore, the molecular docking demonstrates that compound 5c interacts with copper ions and multiple amino acids in the active site of tyrosinase with best glide score (-5.387 kcal/mol), essential for mushroom tyrosinase inhibition and the ability to diminish the melanin synthesis in-vitro and in-vivo.

Conclusion: Thus, we propose compound 5c as a potential candidate to control tyrosinase rooted hyperpigmentation in the future.

Keywords: Amide derivatives, antimelanogenic activity, amino acids, tyrosinase, melanin, mouse skin melanoma (B16F10) cells.

[1]
Chen, Q.X.; Kubo, I.J. Kinetics of mushroom tyrosinase inhibition by quercetin. J. Agric. Food Chem., 2002, 50, 4108-4112.
[2]
Maeda, K.; Fukuda, M.J. Arbutin: Mechanism of its depigmenting action in human melanocyte culture. J. Pharmacol. Exp. Ther., 1996, 276(2), 765-769.
[3]
Matsuura, R.; Ukeda, H.; Sawamura, M.J. Tyrosinase inhibitory activity of citrus essential oil. J. Agric. Food Chem., 2006, 54(6), 22309-22313.
[4]
Nihei, K.; Kubo, I. Identification of oxidation product of arbutin in mushroom tyrosinase assay system. Bioorg. Med. Chem. Lett., 2003, 13, 2409.
[5]
Seo, S.Y.; Sharma, V.K.; Sharma, N.J. Mushroom tyrosinase: Recent prospects. J. Agric. Food Chem., 2003, 51, 2837-2853.
[6]
Tsuji-Naito, K.; Hatani, T.; Okada, T.; Tehara, T. Modulating effects of a novel skinlightening agent, alpha-lipoic acid derivative, on melanin production by the formation of DOPA conjugate products. Bioorg. Med. Chem., 2007, 15, 1967-1975.
[7]
Maeda, L.; Yoshizaki, K. Intestinal term pregnancy without rupture. Nippon Sanka Fujinka Gakkai Zasshi, 1991, 43, 361-363.
[8]
Paul, M.; Jennifer, R. Radiative relaxation quantum yields for synthetic eumelanin. Photochem. Photobiol., 2007, 79, 211-216.
[9]
Vandamme, M. Antitumor effect of plasma treatment on u87 glioma xenografts: Preliminary results. Plasma Process. Polym., 2010, 7, 264-273.
[10]
Cooksey, C.J.; Garratt, P.J.; Land, E.J.; Pavel, S.; Ramsden, C.A.; Riley, P.A.; Smit, N.P. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. Biol. Chem., 1997, 272, 29226-29235.
[11]
Hearing, V.J.; Jimenez, M. Analysis of mammalian pigmentation at the molecular level. Pigment Cell Res., 1989, 2, 75-85.
[12]
Fairhead, M.; Thony-Meyer, L.N. Bacterial tyrosinase: Old enzymes with new relevance to biotechnology. Biotechnol., 2012, 29, 183-191.
[13]
Cordes, P.; Sun, W.; Wolber, R.; Kolbe, L.; Klebe, G.; Ro¨hm, K.H. Expression in nonmelanogenic systems and purification of soluble variants of human tyrosinase. Biol. Chem., 2013, 394, 685-693.
[14]
Fogal, S.; Carotti, M.; Giaretta, L.; Lanciai, F.; Nogara, L.; Bubacco, L.; Bergantino, E. Human tyrosinase produced in insect cells: A landmark for the screening of new drugs addressing its activity. Mol. Biotechnol., 2015, 57, 45-57.
[15]
Lai, X.; Soler-Lopez, M.; Wichers, H.J.; Dijkstra, B.W. Large-scale recombinant expression and purification of human tyrosinase suitable for structural studies. PLoS One, 2016, 110161697
[16]
Garcia-Molina, F.; Hiner, A.N.; Fenoll, L.G.; Rodriguez-Lopez, J.N.; Garcia-Ruiz, P.A.; Garcia-Canovas, F. Mushroom tyrosinase: Catalase activity, inhibition, and suicide inactivation. J. Agric. Food Chem., 2005, 53, 3702-3709.
[17]
Buyukokuroglu, M.E. Gulçİn, İ.; Oktay, M.; Küfrevİoğlu, Ö.İ. In vitro antioxidant properties of dantrolene sodium. Pharmacol. Res., 2001, 44, 491-494.
[18]
Shahidi, F.; Janitha, P.K.; Wanasundara, P.D. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr., 1992, 32, 67-103.
[19]
Gülçin, İ.; Oktay, M.; Küfrevioğlu, Ö.İ.; Aslan, A.J. Determination of antioxidant activity of lichen Cetraria islandica (L) Ach. J. Ethnopharmacol., 2002, 79, 325-329.
[20]
Yasui, H.; Sakurai, H. Age-dependent generation of reactive oxygen species in the skin of live hairless rats exposed to UVA light. Exp. Dermatol., 2003, 12, 655-661.
[21]
Garcia, A.; Fulton, J.E., Jr The combination of glycolic acid and hydroxyquinone or kojic acid for the treatment of melasma and related conditions. Dermatol. Surg., 1996, 22, 443-447.
[22]
Hermanns, J.F.; Petit, L.; Pierard-Franchimont, C.; Paquet, P.; Pierard, G.E. Assessment of topical hypopigmenting agents on solar lentigines of Asian women. Dermatology, 2002, 204, 281-286.
[23]
Kameyama, K.; Sakai, C.; Kondoh, S.; Yonemoto, K.; Nishiyama, S.; Tagawa, M.; Murata, T.; Ohnuma, T.; Quigley, J.; Dorsky, A.; Bucks, D.; Blanock, K. Inhibitory effect of magnesium L-ascorbyl-2-phosphate (VC-PMG) on melanogenesis in vitro and in vivo. J. Am. Acad. Dermatol., 1996, 34, 29-33.
[24]
Nakajima, M.; Shinoda, I.; Fukuwatari, Y.; Hayasawa, H. Arbutin increases the pigmentation of cultured human melanocytes through mechanisms other than the induction of tyrosinase activity. Pigment Cell Res., 1998, 11, 12-17.
[25]
Yoshimura, K.; Tsukamoto, K.; Okazaki, M.; Virador, V.M.; Lei, T.C.; Suzuki, Y.; Uchida, G.; Kitano, Y.; Harii, K. Effects of all-trans retinoic acid on melanogenesis in pigmented skin equivalents and monolayer culture of melanocytes. Dermatol. Sci., 2001, 27, 68-75.
[26]
Ito, N.; Hirose, M.; Fukushima, S.; Tsuda, H.; Shirai, T.; Tatematsu, M. Studies on antioxidants: Their carcinogenic and modifying effects on chemical carcinogenesis. Food Chem. Toxicol., 1986, 24, 1071-1082.
[27]
Ashraf, Z.; Rafiq, M.; Seo, S.Y.; Kwon, K.S.; Babar, M.M.; Zaidi, N.S.S. Kinetic and in silico studies of novel hydroxy-based thymol analogues as inhibitors of mushroom tyrosinase. Eur. J. Med. Chem., 2015, 98, 203-211.
[28]
Ashraf, Z.; Rafiq, M.; Seo, S.Y.; Babar, M.M.; Zaidi, N.S.S. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem., 2015, 23, 5870-5880.
[29]
Seo, W.D.; Ryu, Y.B.; Curtis-Long, M.J.; Lee, C.W.; Ryu, H.W.; Jang, K.C.; Park, K.H. Evaluation of anti-pigmentary effect of synthetic sulfonylamino chalcone. Eur. J. Med. Chem., 2010, 45, 2010-2017.
[30]
Chiari, M.E.; Vera, D.M.A.; Palacios, S.M.; Carpinella, M.C. Tyrosinase inhibitory activity of a 6-isoprenoid-substituted flavanone isolated from Dalea elegans. Bioorg. Med. Chem., 2011, 19, 3474-3482.
[31]
Rafiq, M.; Saleem, M.; Hanif, M.; Kang, S.K.; Seo, S.Y.; Lee, K.H. Synthesis, structural elucidation and bioevaluation of 4-amino-1,2,4 triazole-3-thione’s Schiff base derivatives. Arch. Pharm. Res., 2016, 39, 161-171.
[32]
Wang, Q.; Qiu, L.; Chen, X.R.; Song, K.K.; Shi, Y.; Chen, Q.X. Inhibitory effects of phloridzin dihydrate on the activity of mushroom (Agaricus bisporus) tyrosinase. Bioorg. Med. Chem., 2007, 15, 1568-1571.
[33]
Zhiyong, C.; Dachuan, C.; Dehai, M.; Qin, Y.; Yifeng, S.; Wenlong, P.; Yiqian, W.; Huacan, S.; Wei, Yi. Design, synthesis and biological evaluation of hydroxy- or methoxy-substituted 5-benzylidene (thio) barbiturates as novel tyrosinase inhibitors. Bioorg. Med. Chem., 2014, 22, 3279-3284.
[34]
Attri, P.; Venkatesu, P.; Kumar, A. Activity and stability of α-chymotrypsin in biocompatible ionic liquids: Enzyme refolding by triethyl ammonium acetate. Phys. Chem. Chem. Phys., 2011, 13, 2788-2796.
[35]
Gheibi, N.; Saboury, A.A.; Haghbeen, K.; Moosavi-Movahedi, A.A. Activity and structural changes of mushroom tyrosinase induced by n-alkyl sulfates. Colloids Surf. B Biointerfaces, 2005, 45, 104-107.
[36]
Ismaya, W.T.; Rozeboom, H.J.; Weijn, A.; Mes, J.J.; Fusetti, F.; Wichers, H.J.; Dijkstra, B.W. Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochem., 2011, 50, 5477-5479.
[37]
Schrödinger, Release. 2016-4: Protein Preparation Wizard; Schrödinger: New York, 2016.
[38]
Schrödinger, Release. 2016-4: Ligand Docking protocol; Glide; Schrödinger: New York, 2016.
[39]
Kumar, N.; Attri, P.; Yadav, D.K.; Choi, J.; Choi, E.H.; Uhm, H.S. Induced apoptosis in melanocytes cancer cell and oxidation in biomolecules through deuterium oxide generated from atmospheric pressure non-thermal plasma jet. Sci. Rep., 2014, 4, 7589.
[40]
Park, J.H.; Kumar, N.; Park, D.H.; Yusupov, M.; Neyts, E.C.; Verlackt, C.C.; Bogaerts, A.; Kang, M.H.; Uhm, H.S.; Choi, E.H.; Attri, P. A comparative study for the inactivation of multidrug resistance bacteria using dielectric barrier discharge and nano-second pulsed plasma. Sci. Rep., 2015, 5, 13849.
[41]
Ryu, Y.H.; Kim, Y.H.; Lee, J.Y.; Shim, G.B.; Uhm, H.S.; Pazrk, G.; Choi, E.H. Effects of background fluid on the efficiency of inactivating yeast with non-thermal atmospheric pressure plasma. PLoS One, 2013, 8e66231
[42]
Sasaki, M.; Kizawa, K.; Igarashi, S.; Horikoshi, T.; Uchiwa, H.; Miyachi, Y. Suppression of melanogenesis by induction of endogenous intracellular metallothionein in human melanocytes. Exp. Dermatol., 2004, 13, 465-471.
[43]
Huang, H.C.; Hsieh, W.Y.; Niu, Y.L.; Chang, T.M. Inhibitory effects of adlay extract on melanin production and cellular oxygen stress in B16F10 melanoma cells. Int. J. Mol. Sci., 2014, 15, 16665-16679.
[44]
Kumar, N.; Attri, P.; Choi, E.H.; Uhm, H.S. Influence of water vapour with non-thermal plasma jet on the apoptosis of SK-BR-3 breast cancer cells. RSC Advances, 2015, 5, 14670-14677.
[45]
Westerfield, M. The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio): Eugene, 2007.
[46]
Ali, A.; Ashraf, Z.; Kumar, N.; Rafiq, M.; Jabeen, F.; Park, J.H.; Choi, K.H.; Lee, S.H.; Seo, S.Y.; Choi, E.H.; Attri, P. Sci. Rep., 2016, 6, 21779-21799.
[47]
Bagherzadeh, K.; Shirgahi, T.F.; Sharifi, A.; Ganjali, M.R.; Saboury, A.A.; Amanlou, M.J. A new insight into mushroom tyrosinase inhibitors: Docking, pharmacophore-based virtual screening, and molecular modeling studies. Biomol. Struct. Dyn., 2015, 33, 487-501.
[48]
Ha, Y.M.; Park, Y.J.; Lee, J.Y.; Park, D.; Choi, Y.J.; Lee, E.K.; Kim, J.M.; Kim, J.A.; Park, J.Y.; Lee, H.J.; Moon, H.R.; Chung, H.Y. Design, synthesis and biological evaluation of 2-(substituted phenyl) thiazolidine-4-carboxylic acid derivatives as novel tyrosinase inhibitors. Biochimie, 2012, 94, 533-540.
[49]
Quigley, I.K.; Parichy, D.M. Pigment pattern formation in zebrafish: A model for developmental genetics and the evolution of form. Microsc. Res. Tech., 2002, 58, 442-455.
[50]
Jeong, Y.M.; Oh, W.K.; Tran, T.L.; Kim, W.K.; Sung, S.H. Aglycone of Rh4 inhibits melanin synthesis in B16 melanoma cells: Possible involvement of the protein kinase: A pathway. Biosci. Biotechnol. Biochem., 2013, 77, 119-125.
[51]
Peng, H.Y.; Lin, C.C.; Wang, H.Y.; Shih, Y.; Chou, S.T. The melanogenesis alteration effects of Achillea millefolium l. Essential oil and linalyl acetate: Involvement of oxidative stress and the jnk and erk signaling pathways in melanoma cells. PLoS One, 2014, 9e95186
[52]
Funasaka, Y.; Komoto, M.; Ichihashi, M. Depigmenting effect of alpha-tocopheryl ferulate on normal human melanocytes. Pigment Cell Res., 2000, 13, 170-174.
[53]
Chakraborty, A.K.; Funasaka, Y.; Slominski, A.; Ermak, G.; Hwang, J.; Pawelek, J.M.; Ichihashi, M. Production and release of proopiomelanocortin (POMC) derived peptides by human melanocytes and keratinocytes in culture: Regulation by ultraviolet B. Acta. Mol. Cell Res., 1996, 1313, 130-138.
[54]
Chou, T.H.; Ding, H.Y.; Hung, W.J.; Liang, C.H. Antioxidative characteristics and inhibition of α‐melanocyte‐stimulating hormone‐stimulated melanogenesis of vanillin and vanillic acid from Origanum vulgare. Exp. Dermatol., 2010, 19, 742-750.
[55]
Yanase, H.; Ando, H.; Horikawa, M.; Watanabe, M.; Mori, T.; Matsuda, N. Possible involvement of ERK 1/2 in UVA-induced melanogenesis in cultured normal human epidermal melanocytes. Pigment Cell Res., 2001, 14, 103-109.
[56]
Barbazuk, W.B.; Korf, K.; Heyen, J.; Tate, S.; Wun, E.; Bedell, J.A.; McPherson, J.D.; Johnson, S.L. The syntenic relationship of the zebrafish and human genomes. Genome Res., 2000, 10, 1351-1358.
[57]
Tassabehji, M.; Newton, V.E.; Read, A.P. Waardenburg syndrome type 2 caused by mutations in the human microphthalmia (MITF) gene. Nat. Genet., 1994, 8, 251-255.
[58]
Lister, J.A.; Robertson, C.P.; Lepage, T.; Johnson, S.L.; Raible, D.W. Nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development, 1999, 126, 3757-3767.
[59]
Chi, H.H.; Zhi, H.W.; Chang, S.L.; Govindasamy, A. Zebrafish: A complete animal model for in vivo drug discovery and development. Curr. Drug Metab., 2009, 10, 116-124.
[60]
Ulrich, R.; Friend, S.H. Toxicogenomics and drug discovery: Will new technologies help us produce better drugs? Nat. Rev. Drug Discov., 2002, 1, 84-88.
[61]
Llorens, O.; Perez, J.J.; Villar, H.O. Toward the design of chemical libraries for mass screening biased against mutagenic compounds. J. Med. Chem., 2001, 44, 2793-2804.
[62]
Pritchard, J.F.; Jurima-Romet, M.; Reimer, M.L.; Mortimer, E.; Rolfe, B.; Cayen, M.N. Making better drugs: Decision gates in nonclinical drug development. Nat. Rev. Drug Discov., 2003, 2, 542-553.
[63]
Spitsbergen, J.M.; Kent, M.L. The state of the art of the zebrafish model for toxicology and toxicologic pathology research-advantages and current limitations. Toxicol. Pathol., 2003, 31, 62-87.
[64]
Rubinstein, A.L. Zebrafish assays for drug toxicity screening. Expert Opin. Drug Metab. Toxicol., 2006, 2, 231-240.
[65]
Tae-Young, C.; Jin-Hwa, K.; Dong, H. Ko.; Cheol-Hee, K.; Jae-Sung, H.; Soomi, A.; Sun, Y.K.; Chang-Deok, K.; Jeung-Hoon, L.; Tae-Jin, Y. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds. Pigment Cell Res., 2006, 20, 120-127.
[66]
Huang, H.C.; Chang, T.Y.; Chang, L.Z.; Wang, H.F.; Yih, K.H.; Hsieh, W.Y.; Chang, T.M. Inhibition of melanogenesis versus antioxidant properties of essential oil extracted from leaves of Vitex negundo linn and chemical composition analysis by GC-MS. Molecules, 2012, 17, 3902-3916.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 15
ISSUE: 7
Year: 2019
Page: [715 - 728]
Pages: 14
DOI: 10.2174/1573406415666190319101329
Price: $65

Article Metrics

PDF: 33
HTML: 3