Screening and Identification of PLK1-Polo Box Binding Peptides by High-Throughput Sequencing of Phage-Selected Libraries

Author(s): Nousheen Bibi* , Hafsa Niaz , Ted Hupp , Mohammad Amjad Kamal , Sajid Rashid* .

Journal Name: Protein & Peptide Letters

Volume 26 , Issue 8 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

Background: Human proteome contains a plethora of short linear peptide motifs that is crucial for signaling and other cellular processes. These motifs are difficult to identify due to lack of systematic approach for their detection.

Objectives: Here we demonstrate the use of peptide phage display in combination with high throughput next generation sequencing to identify enriched peptide sequences through biopanning process against polo box domain (PBD) of mitotic polo like kinase 1 (Plk1).

Methods: Purified recombinant Plk1 and two unrelated controls namely B-lymphocyte antigen (CD20) and fluorescent protein (mCherry) were subjected to peptide phage display analysis. Bacterially-propagated phage DNA was amplified by PCR using triplet bar coded primers to tag the pool from each amplicon.

Results: Proteomic peptide phage display along with next generation sequencing and Bioinformatics analysis demonstrated several known and putative novel interactions which were potentially related to Plk1-PBD. With our strategy, we were able to identify and characterize several Plk1-PBD binding peptides, as well as define more precisely, consensus sequences.

Conclusion: We believe that this information could provide valuable tools for exploring novel interaction involved in Plk1 signaling as well as to choose peptides for Plk1 specific drug development.

Keywords: Plk1 polo box domain, peptide phage display, human proteome, next generation sequencing, consensus binding motif, peptide motifs.

[1]
Glover, D.M. Polo kinase and progression through M phase in Drosophila: a perspective from the spindle poles. Oncogene, 2005, 24(2), 230-237.
[http://dx.doi.org/10.1038/sj.onc.1208279] [PMID: 15640838]
[2]
van de Weerdt, B.C.; Medema, R.H. Polo-like kinases: a team in control of the division. Cell Cycle, 2006, 5(8), 853-864.
[http://dx.doi.org/10.4161/cc.5.8.2692] [PMID: 16627997]
[3]
Barr, F.A.; Silljé, H.H.; Nigg, E.A. Polo-like kinases and the orchestration of cell division. Nat. Rev. Mol. Cell Biol., 2004, 5(6), 429-440.
[http://dx.doi.org/10.1038/nrm1401] [PMID: 15173822]
[4]
Cheng, K.Y.; Lowe, E.D.; Sinclair, J.; Nigg, E.A.; Johnson, L.N. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J., 2003, 22(21), 5757-5768.
[http://dx.doi.org/10.1093/emboj/cdg558] [PMID: 14592974]
[5]
Lee, K.S.; Grenfell, T.Z.; Yarm, F.R.; Erikson, R.L. Mutation of the polo-box disrupts localization and mitotic functions of the mammalian polo kinase Plk. Proc. Natl. Acad. Sci. USA, 1998, 95(16), 9301-9306.
[http://dx.doi.org/10.1073/pnas.95.16.9301] [PMID: 9689075]
[6]
Archambault, V.; Glover, D.M. Polo-like kinases: conservation and divergence in their functions and regulation. Nat. Rev. Mol. Cell Biol., 2009, 10(4), 265-275.
[http://dx.doi.org/10.1038/nrm2653] [PMID: 19305416]
[7]
Petronczki, M.; Lénárt, P.; Peters, J.M. Polo on the Rise-from Mitotic Entry to Cytokinesis with Plk1. Dev. Cell, 2008, 14(5), 646-659.
[http://dx.doi.org/10.1016/j.devcel.2008.04.014] [PMID: 18477449]
[8]
Bibi, N.; Parveen, Z.; Rashid, S. Identification of potential Plk1 targets in a cell-cycle specific proteome through structural dynamics of kinase and Polo box-mediated interactions. PLoS One, 2013, 8(8)e70843
[http://dx.doi.org/10.1371/journal.pone.0070843] [PMID: 23967120]
[9]
Lowery, D.M.; Clauser, K.R.; Hjerrild, M.; Lim, D.; Alexander, J.; Kishi, K.; Ong, S.E.; Gammeltoft, S.; Carr, S.A.; Yaffe, M.B. Proteomic screen defines the Polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J., 2007, 26(9), 2262-2273.
[http://dx.doi.org/10.1038/sj.emboj.7601683] [PMID: 17446864]
[10]
Park, J.E.; Soung, N.K.; Johmura, Y.; Kang, Y.H.; Liao, C.; Lee, K.H.; Park, C.H.; Nicklaus, M.C.; Lee, K.S. Polo-box domain: a versatile mediator of polo-like kinase function. Cell. Mol. Life Sci., 2010, 67(12), 1957-1970.
[http://dx.doi.org/10.1007/s00018-010-0279-9] [PMID: 20148280]
[11]
Griffiths, A.D.; Williams, S.C.; Hartley, O.; Tomlinson, I.M.; Waterhouse, P.; Crosby, W.L.; Kontermann, R.E.; Jones, P.T.; Low, N.M.; Allison, T.J. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J., 1994, 13(14), 3245-3260.
[http://dx.doi.org/10.1002/j.1460-2075.1994.tb06626.x] [PMID: 8045255]
[12]
Smith, G.P. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science, 1985, 228(4705), 1315-1317.
[http://dx.doi.org/10.1126/science.4001944] [PMID: 4001944]
[13]
Dias-Neto, E.; Nunes, D.N.; Giordano, R.J.; Sun, J.; Botz, G.H.; Yang, K.; Setubal, J.C.; Pasqualini, R.; Arap, W. Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS One, 2009, 4(12)e8338
[http://dx.doi.org/10.1371/journal.pone.0008338] [PMID: 20020040]
[14]
Hoen, P.A. Phage display screening without repetitious selection rounds. Anal. Biochem., 2011, 421, 622.
[15]
Matochko, W.L.; Chu, K.; Jin, B.; Lee, S.W.; Whitesides, G.M.; Derda, R. Deep sequencing analysis of phage libraries using Illumina platform. Methods, 2012, 58(1), 47-55.
[http://dx.doi.org/10.1016/j.ymeth.2012.07.006] [PMID: 22819855]
[16]
Huang, J.; Ru, B.; Li, S.; Lin, H.; Guo, F.B. SAROTUP: scanner and reporter of target-unrelated peptides. J. Biomed. Biotechnol., 2010, 2010101932
[http://dx.doi.org/10.1155/2010/101932] [PMID: 20339521]
[17]
Huang, J.; Ru, B.; Zhu, P.; Nie, F.; Yang, J.; Wang, X.; Dai, P.; Lin, H.; Guo, F.B.; Rao, N. MimoDB 2.0: a mimotope database and beyond. Nucleic Acids Res., 2012, 40(Database issue), D271-D277.
[http://dx.doi.org/10.1093/nar/gkr922] [PMID: 22053087]
[18]
Bailey, T.L.; Boden, M.; Buske, F.A.; Frith, M.; Grant, C.E.; Clementi, L.; Ren, J.; Li, W.W.; Noble, W.S. MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res., 2009 37(Web Server issue), W202-8.,
[http://dx.doi.org/[10.1093/nar/gkp335]] [PMID: 19458158]
[19]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[20]
Kaur, H.; Garg, A.; Raghava, G.P.S. PEPstr: a de novo method for tertiary structure prediction of small bioactive peptides. Protein Pept. Lett., 2007, 14(7), 626-631.
[http://dx.doi.org/10.2174/092986607781483859] [PMID: 17897087]
[21]
Thévenet, P.; Shen, Y.; Maupetit, J.; Guyon, F.; Derreumaux, P.; Tufféry, P. PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res., 2012, 40(Web Server issue), W288-93.,
[http://dx.doi.org/[10.1093/nar/gks419]] [PMID: 22581768]
[22]
Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Huang, C.C.; Ferrin, T.E. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics, 2006, 7, 339.
[http://dx.doi.org/10.1186/1471-2105-7-339] [PMID: 16836757]
[23]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[24]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res., 2005, 33(Web Server issue), W363-7.,
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[25]
Wallace, A.C.; Laskowski, R.A.; Thornton, J.M. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng., 1995, 8(2), 127-134.
[http://dx.doi.org/10.1093/protein/8.2.127] [PMID: 7630882]
[26]
Neduva, V.; Russell, R.B. Linear motifs: evolutionary interaction switches. FEBS Lett., 2005, 579(15), 3342-3345.
[http://dx.doi.org/10.1016/j.febslet.2005.04.005] [PMID: 15943979]
[27]
Cheng, K.Y.; Lowe, E.D.; Sinclair, J.; Nigg, E.A.; Johnson, L.N. The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J., 2003, 22(21), 5757-5768.
[http://dx.doi.org/10.1093/emboj/cdg558] [PMID: 14592974]
[28]
Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr., 2010, 66(Pt 4), 486-501.
[http://dx.doi.org/10.1107/S0907444910007493] [PMID: 20383002]
[29]
Rothe, A.; Hosse, R.J.; Power, B.E. In vitro display technologies reveal novel biopharmaceutics. FASEB J., 2006, 20(10), 1599-1610.
[http://dx.doi.org/10.1096/fj.05-5650rev] [PMID: 16873883]
[30]
Pant, S.; Weiner, R.; Marton, M.J. Navigating the rapids: the development of regulated next-generation sequencing-based clinical trial assays and companion diagnostics. Front. Oncol., 2014, 4, 78.
[http://dx.doi.org/10.3389/fonc.2014.00078] [PMID: 24860780]
[31]
Chen, C.; Khaleel, S.S.; Huang, H.; Wu, C.H. Software for pre-processing Illumina next-generation sequencing short read sequences. Source Code Biol. Med., 2014, 9, 8.
[http://dx.doi.org/10.1186/1751-0473-9-8] [PMID: 24955109]
[32]
Ren, X.; Liu, T.; Dong, J.; Sun, L.; Yang, J.; Zhu, Y.; Jin, Q. Evaluating de Bruijn graph assemblers on 454 transcriptomic data. PLoS One, 2012, 7(12)e51188
[http://dx.doi.org/10.1371/journal.pone.0051188] [PMID: 23236450]
[33]
Zhang, J.; Chiodini, R.; Badr, A.; Zhang, G. The impact of next-generation sequencing on genomics. J. Genet. Genomics, 2011, 38(3), 95-109.
[http://dx.doi.org/10.1016/j.jgg.2011.02.003] [PMID: 21477781]
[34]
Day, D.S.; Luquette, L.J.; Park, P.J.; Kharchenko, P.V. Estimating enrichment of repetitive elements from high-throughput sequence data. Genome Biol., 2010, 11(6), R69.
[http://dx.doi.org/10.1186/gb-2010-11-6-r69] [PMID: 20584328]
[35]
Tong, A.H.; Drees, B.; Nardelli, G.; Bader, G.D.; Brannetti, B.; Castagnoli, L.; Evangelista, M.; Ferracuti, S.; Nelson, B.; Paoluzi, S.; Quondam, M.; Zucconi, A.; Hogue, C.W.; Fields, S.; Boone, C.; Cesareni, G. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science, 2002, 295(5553), 321-324.
[http://dx.doi.org/10.1126/science.1064987] [PMID: 11743162]
[36]
Sweeney, S.M.; Middleton, A.A. Minimal spanning trees at the percolation threshold: a numerical calculation. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 2013, 88(3)032129
[http://dx.doi.org/10.1103/PhysRevE.88.032129] [PMID: 24125235]


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 26
ISSUE: 8
Year: 2019
Page: [620 - 633]
Pages: 14
DOI: 10.2174/0929866526666190318101054

Article Metrics

PDF: 18
HTML: 3
EPUB: 1
PRC: 1