Multifaceted Synthesis, Properties and Applications of Polyurethanes and its Composites

Author(s): Shivang K. Desai, Smritilekha Bera, Dhananjoy Mondal*.

Journal Name: Current Organic Chemistry

Volume 23 , Issue 4 , 2019

Become EABM
Become Reviewer

Graphical Abstract:


Abstract:

The primary aim of this article is to update many important synthetic pathways, properties and applications of the polyurethanes and its composites. Polyurethanes (PUs) are a special group of versatile materials with a great potential for different use in the development of modern, healthy and clean society, including its multifaceted use in the fields of construction and building related work, transportation, furniture and bedding, appliances, packaging, textiles, fibres, apparel, machinery and foundry, electronics, footwear, medical and so forth. Over the last 8-9 decades, several synthetic strategies of the diverse polyurethanes (PUs) are maturely designed and actively executed using various sustainable and non-sustainable methods for miscellaneous applications in different areas. The major advantages of the modern PUs are to impose desired properties in the materials pertinent to the field of work during their preparation by changing a different kind of monomers and additives. Briefly, this review summarizes the overall accounts, importance, synthetic approaches, properties, and miscellaneous applications in the desired scenario in details.

Keywords: Polyurethanes, diisocyanates, polyols, composites, synthesis and applications.

[1]
Miller, M. Polymers in Cementitious Materials; Rapa Technology Limited: U.K., 2005.
[2]
Sharmin, E.; Zafar, F. Polyurethane: An introduction; In Polyurethane, InTech. , 2012, p. pp. 1-16.
[3]
Yi, J.; Boyce, M.C.; Lee, G.F.; Balizer, E. Large deformation rate-dependent stress–strain behavior of polyurea and polyurethanes. Polymer., 2006, 47(1), 319-329.
[4]
Saxena, P.K.; Raut, K.G.; Srinivasan, S.R.; Sivaram, S.; Rawat, R.S.; Jain, R.K. Polyurethane waterproofing coating for building applications. Constr. Build. Mater., 1991, 5(4), 208-210.
[5]
The Economic Benefits of the U.S. Polyurethanes Industry 2017. Economics & Statistics Department. American Chemistry Council. October 2018. Economics & Statistics Department. American Chemistry Council. https://polyurethane.americanchemistry.com/Resources-and-Document-Library/Economic-Benefits-of-Polyurethane-Full-Report.pdf (accessed 17 Jan, 2019).
[6]
(a)Bayer, O. Das di-isocyanat-polyadditionsverfahren-(polyurethane),. Angew. Chem., 1947, 59(9), 257-272.
(b)Somarathna, H.M.C.C.; Raman, S.N.; Mohotti, D.; Mutalib, A.A.; Badri, K.H. The use of polyurethane for structural and infrastructural engineering applications: A state-of-the-art review. Constr. Build. Mater., 2018, 190, 995-1014.
(c)Haponiuk, J.T.; Formela, K.P.U. Polymers, Their Composites, and Nanocomposites in. State of the Art and New Challenges, Thomas, S.; Datta, J. Haponiuk, J.T.; Reghunadhan A. Ed., Polyurethane Polymers, Elsevier. 2017, pp. 1-20.
[7]
Gunther, N.; Muller, K.E. Storage stable mixture of a diisocyanate and the reaction product of a polyester, a glycol and a diisocyanate, and method of making same. U.S. Patent 2,912,408, Nov. 10, 1959.
[8]
Dodiuk, H.; Goodman, S.H. Polyurethanes in. Handbook of Thermoset Plastics, Janik, H.; Sienkiewicz, M.; Kucinska-Lipka, Eds. 2014, 3rd ed, Elsevier, pp. 253-295.
[9]
Dominquez, R.J.G.; Rice, D.M.; Lloyd, R.F. Reaction injection molded elastomer containing an internal mold release made by a two-stream system, U.S. Patent 4,396,729, 2 August,. 1983.
[10]
Protocol, M. Protocol on substances that deplete the ozone layer. I.L.M, 1987, 26, 1550-1561.
[11]
Desai, S.K.; Bera, S.; Singh, M.; Mondal, D. Polyurethane-functionalized starch nanoparticles for the purification of biodiesel. J. Appl. Polym. Sci, 2017, 134, (7), 44463 (1 of 9).
[12]
Muzaffar, S.; Bhatti, I.A.; Zuber, M.; Bhatti, H.N.; Shahid, M. Synthesis, characterization and efficiency evaluation of chitosan-polyurethane based textile finishes. Int. J. Biol. Macromol., 2016, 93, 145-155.
[13]
Uğur, Ş.; Sariişik, A. Nano polyurethane based surface modification on the anti-felting functionalization of wool fabrics. Prog. Org. Coat., 2014, 77(8), 1249-1252.
[14]
Valodkar, M.; Thakore, S. Isocyanate crosslinked reactive starch nanoparticles for thermo-responsive conducting applications. Carbohydr. Res., 2010, 345(16), 2354-2360.
[15]
(a) Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnama, N. Yuvarajc, A.R. Polyurethane types, synthesis and applications –a review RSC Adv.,, 2016, 6, 114453-114482.https://www.grandviewresearch.com/ industry-analysis/north-america-polyurethane-market (Accessed Jan 17, 2019).
[16]
Cherng, J.Y.; Hou, T.Y.; Shih, M.F.; Talsma, H.; Hennink, W.E. Polyurethane-based drug delivery systems. Int. J. Pharm., 2013, 450(1-2), 145-162.
[17]
Caraculacu, A.; Coseri, S. Isocyanates in polyaddition processes. Structure and reaction mechanisms. Prog. Polym. Sci., 2001, 26(5), 799-851.
[18]
Chattopadhyay, D.K.; Raju, K. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci., 2007, 32(3), 352-418.
[19]
Delebecq, E.; Pascault, J.P.; Boutevin, B.; Ganachaud, F. On the versatility of urethane/urea bonds: Reversibility, blocked isocyanate, and non-isocyanate polyurethane. Chem. Rev., 2012, 113(1), 80-118.
[20]
Engels, H.W.; Pirkl, H.G.; Albers, R.; Albach, R.W.; Krause, J.; Hoffmann, A.; Casselmann, H.; Dormish, J. Polyurethanes: Versatile materials and sustainable problem solvers for today’s challenges. Angew. Makromol. Chem., 2013, 52(36), 9422-9441.
[21]
Kozak, N.; Hubina, A. Polyglucanurethanes: Cross-Linked Polyurethanes Based on Microbial Exopolysaccharide Xanthan; Polyurethane. InTech, 2012, pp. 431-446.
[22]
Ward, S.A.; Pethrick, R.A. Positron annihilation lifetime spectroscopy and large molecule diffusion into a polyurethane matrix. Macromolecules, 2011, 44(21), 8479-8486.
[23]
Xu, M.; Zhang, T.; Gu, B.; Wu, J.; Chen, Q. Synthesis and properties of novel polyurethane− urea/multiwalled carbon nanotube composites. Macromolecules, 2006, 39(10), 3540-3545.
[24]
Zhou, X.; Fang, C.; Lei, W.; Du, J.; Huang, T.; Li, Y.; Cheng, Y. Various nanoparticle morphologies and surface properties of waterborne polyurethane controlled by water. Sci. Rep, 2016, 6, 34574 (1 of 6)..
[25]
(a)Pérez-Limiñana, M.A.; Aran, P.; Torró-Palau, A.M.; Orgilés-Barcel, C.; Martin-Martinez, J.M. Influence of the hard-to-soft segment ratio on the adhesion of water-borne polyurethane adhesive. J. Adhes. Sci. Technol., 2007, 21(8), 755-773.
(b)Lligadas, G.; Ronda, J.C.; Galia, M.; Cádiz, V. Plant oils as platform chemicals for polyurethane synthesis: Current state-of-the-art. Biomacromolecules, 2010, 11(11), 2825-2835.
[26]
Desroches, M.; Escouvois, M.; Auvergne, R.; Caillol, S.; Boutevin, B. From vegetable oils to polyurethanes: Synthetic routes to polyols and main industrial products. Polym. Rev., 2012, 52(1), 38-79.
[27]
Barikani, M.; Barmar, M. Thermoplastic polyurethane elastomers: Synthesis, and study of effective structural parameters. Iran. Polym. J., 1996, 5, 231-235.
[28]
Donnelly, M.; Stanford, J.; Still, R. The conversion of polysaccharides into polyurethanes: A review. Carbohydr. Polym., 1991, 14(3), 221-240.
[29]
Rahman, M.M.; Kim, H.D. Synthesis and characterization of waterborne polyurethane adhesives containing different amount of ionic groups (I). J. Appl. Polym. Sci., 2006, 102(6), 5684-5691.
[30]
Younes, U.E. Method for the preparation of rigid cast or transfer molded thermoset polyisocyanurate compositions. U.S. Patent No. 4,757,123. July 12. 1988.
[31]
Gogoi, S.; Karak, N. Biobased biodegradable waterborne hyperbranched polyurethane as an ecofriendly sustainable material. ACS Sustain. Chem.& Eng., 2014, 2(12), 2730-2738.
[32]
Wang, Y.; Li, T.; Wang, X.; Ma, P.; Bai, H.; Dong, W.; Xie, Y.; Chen, M. Superior performance of polyurethane based on natural melanin nanoparticles. Biomacromolecules, 2016, 17(11), 3782-3789.
[33]
Ke, J.; Li, X.; Wang, F.; Jiang, S.; Kang, M.; Wang, J.; Li, Q.; Wang, Z. Non-isocyanate polyurethane/epoxy hybrid materials with different and controlled architectures prepared from a CO 2-sourced monomer and epoxy via an environmentally-friendly route. RSC Adv., 2017, 7(46), 28841-28852.
[34]
Rokicki, G.; Parzuchowski, P.G.; Mazurek, M. Non‐isocyanate polyurethanes: Synthesis, properties, and applications. Polym. Adv. Technol., 2015, 26(7), 707-761.
[35]
Figovsky, O.; Shapovalov, L.; Leykin, A.; Birukova, O.; Potashnikova, R. Recent advances in the development of non-isocyanate polyurethanes based on cyclic carbonates. PU Magazine, 2013, 10(4), 1-9.
[36]
Liu, G.; Wu, G.; Huo, S.; Jin, C.; Kong, Z. Synthesis and properties of non-isocyanate polyurethane coatings derived from cyclic carbonate-functionalized polysiloxanes. Prog. Org. Coat., 2017, 112, 169-175.
[37]
Shen, J.; Okamoto, Y. Efficient separation of enantiomers using stereoregular chiral polymers. Chem. Rev., 2015, 116(3), 1094-1138.
[38]
Yang, Y.; Sun, C.; Zhou, Y.; Wang, T.; Zhang, Y. Optically active polyurethane based on tyrosine: synthesis, characterization and study of hydrogen bonding. Polym. J., 2016, 48(7), 807-812.
[39]
Gudeangadi, P.G.; Sakamoto, T.; Shichibu, Y.; Konishi, K.; Nakano, T. Chiral polyurethane synthesis leading to π-Stacked 2/1-Helical polymer and cyclic compounds. ACS Macro Lett., 2015, 4(9), 901-906.
[40]
Liu, J.H.; Tsai, F.R.; Lai, Y.C. Synthesis of chiral polymers having camphanediol moieties and their applications on the optical resolution of some racemates. J. Appl. Polym. Sci., 1995, 58(10), 1713-1720.
[41]
Liu, J.H.; Tsai, F.R.; Lai, Y.C. Synthesis and characteristics of chiral polymers with camphanediol moieties. Macromol. Chem. Phys., 1995, 231(1), 35-45.
[42]
Qiu, F.; Zhang, W.; Liu, J.; Yang, D. Optically active polyurethane containing asymmetric center: Preparation, characterization and thermo-optic properties. Polym. Plast. Technol. Eng., 2010, 49(15), 1521-1526.
[43]
Qiu, F.; Zhang, W.; Yang, D.; Zhao, M.; Cao, G.; Li, P. Synthesis, characterization, and thermo‐optical properties of azobenzene polyurethane containing chiral units. J. Appl. Polym. Sci., 2010, 115(1), 146-151.
[44]
Varkey, E.C.; Sreekumar, K. Isosorbide based chiral polyurethanes: Optical and thermal studies. J. Mater. Sci., 2010, 45(7), 1912-1920.
[45]
Chen, Y.; Lin, J.J. Optically‐active polyurethanes containing coumarin dimer component: Synthesis, characterization, and chiral recognition ability. J. Polym. Sci. A, 1992, 30(13), 2699-2707.
[46]
Kizuka, K.; Inoue, S.I. Synthesis and properties of chiral polyurethane elastomers using tartaric acids. Open J. Org. Polym. Mat., 2016, 6(01), 38-52.
[47]
Reh, B.D.; Weber, J. A Summary of health hazard evaluations; issues related to occupational exposure to isocyanates, 1989 to 2002. DHHS (NIOSH) Publication No. 2004-116, 2004.
[48]
Wazarkar, K.; Kathalewar, M.; Sabnis, A. Development of epoxy-urethane hybrid coatings via non-isocyanate route. Polym. J., 2016, 84, 812-827.
[49]
Tryznowski, M.; Świderska, A.; Żołek-Tryznowska, Z.; Gołofit, T.; Parzuchowski, P.G. Facile route to multigram synthesis of environmentally friendly non-isocyanate polyurethanes. Polymer., 2015, 80, 228-236.
[50]
Groszos, S.J.; Drechsel, E.K. Method of preparing a polyurethane. US Pat 2,802,022, August 6,. 1957.
[51]
Hahn, C.; Keul, H.; Möller, M. Hydroxyl‐functional polyurethanes and polyesters: Synthesis, properties and potential biomedical application. Polym. Int., 2012, 61(7), 1048-1060.
[52]
Pyo, S.H.; Persson, P.; Mollaahmad, M.A.; Sörensen, K.; Lundmark, S.; Hatti-Kaul, R. Cyclic carbonates as monomers for phosgene-and isocyanate-free polyurethanes and polycarbonates. Pure Appl. Chem., 2011, 84(3), 637-661.
[53]
Benyahya, S.; Desroches, M.; Auvergne, R.; Carlotti, S.; Caillol, S.; Boutevin, B. Synthesis of glycerin carbonate-based intermediates using thiol–ene chemistry and isocyanate free polyhydroxyurethanes therefrom. Polym. Chem., 2011, 2(11), 2661-2667.
[54]
Helou, M.; Carpentier, J.F.; Guillaume, S.M. Poly (carbonate-urethane): An isocyanate-free procedure from α, ω-di (cyclic carbonate) telechelic poly (trimethylene carbonate) s. Green Chem., 2011, 13(2), 266-271.
[55]
Hall, Jr., H; Schneider, A. Polymerization of cyclic esters, urethans, ureas and imides. J. Am. Chem. Soc., 1958, 80(23), 6409-6412.
[56]
Neffgen, S.; Kušan, J.; Fey, T.; Keul, H.; Höcker, H. Synthesis and thermal properties of [n]‐polyurethanes. Macromol. Chem. Phys., 2000, 201(16), 2108-2114.
[57]
Sakakura, T.; Choi, J.C.; Yasuda, H. Transformation of carbon dioxide. Chem. Rev., 2007, 107(6), 2365-2387.
[58]
Bhanage, B.M.; Fujita, S.I.; Ikushima, Y.; Arai, M. Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem., 2003, 5(3), 340-342.
[59]
Ihata, O.; Kayaki, Y.; Ikariya, T. Control of thermoresponsive behavior of poly (urethane-amine) s prepared by copolymerization of supercritical carbon dioxide and aziridines. Kobunshi Ronbunshu, 2005, 62(4), 196-199.
[60]
Ain, H.N.; Maznee, T.T.N.; Norhayati, M.; Noor, M.M.; Adnan, S.; Devi, P.K.; Norhisham, S.M.; Yeong, S.; Hazimah, A.; Campara, I. Natural palm olein polyol as a replacement for polyether polyols in viscoelastic polyurethane foam. J. Am. Oil Chem. Soc., 2016, 93(7), 983-993.
[61]
Karaboyaci, M. Usage of nano pulyuretahne as anti pilling agent for hand knitting yarns. J. Textil. Inst., 2010, 77(17), 1-5.
[62]
Scott, D.W. Thermal rearrangement of branched-chain methylpolysiloxane. J. Am. Chem. Soc., 1946, 68(3), 356-358.
[63]
Cordes, D.B.; Lickiss, P.D.; Rataboul, F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem. Rev., 2010, 110(4), 2081-2173.
[64]
Diao, S.; Mao, L.; Zhang, L.; Wang, Y. POSS/Polyurethane hybrids and nanocomposites: A review on preparation, structure and performance. Elastomers Composites, 2015, 50(1), 35-48.
[65]
Hao, W.; Fang, C.; Yu, J.; Zhang, L.; Xue, T.; Yang, W. Polyurethane electrospun mats strengthened and toughened by physically blended polyhedral oligomeric silsesquioxane. J. Appl. Polym. Sci., 2014, 131(20), 40902.
[66]
Patten, W.; Sha, S.; Mo, C. A vibrational model of open celled polyurethane foam automotive seat cushions. J. Sound Vibrat., 1998, 217(1), 145-161.
[67]
Deng, R.; Davies, P.; Bajaj, A. Flexible polyurethane foam modelling and identification of viscoelastic parameters for automotive seating applications. J. Sound Vibrat., 2003, 262(3), 391-417.
[68]
Kumar, M.; Kaur, R. Effect of different formulations of MDI on rigid polyurethane foams based on castor oil. Int. J. Sci. Res. Rev., 2013, 2(1), 29-42.
[69]
(a)Kausar, A. Effect of nanofiller dispersion on morphology, mechanical and conducting properties of electroactive shape memory Poly (urethane-urea)/functional nanodiamond composite. Adv. Mat. Sci., 2015, 15(4), 14-28.
(b)Kausar, A. Polyurethane composite foams in high-performance applications: A review. Polym. Plast. Technol. Eng., 2018, 57(4), 346-369.
(c)Rane, A.V.; Kanny, K.; Abitha, V.K.; Jadhav, S.; Mulge, S.; Thomas, S. Applications of Polyurethane Based Composites and Nanocomposites in Plolyurethane Ploymers Composites and Nanocomposites, Thomas, S.; Datta, J.; Haponiuk, J.T.; Reghunadhan. A. Ed.; Polyurethane Polymers, Elsevier. 2017, 1st ed. pp. 559-573.
[70]
Kuo, C.H.; Cheng, W.K.; Lin, K.R.; Leung, M.K.; Hsieh, K.H. High‐efficiency poly (phenylenevinylene)‐co‐fluorene copolymers incorporating a triphenylamine as the end group for white‐light‐emitting diode applications. J. Polym. Sci. A, 2007, 45(19), 4504-4513.
[71]
Wang, Z.; Chen, B.; Zhu, M.; Kershaw, S.V.; Zhi, C.; Zhong, H.; Rogach, A.L. Stretchable and thermally stable dual emission composite films of on-purpose aggregated copper nanoclusters in carboxylated polyurethane for remote white light-emitting devices. ACS Appl. Mater. Interfaces, 2016, 8(49), 33993-33998.
[72]
Li, Y.; Zhu, Z.; Yu, J.; Ding, B. Carbon nanotubes enhanced fluorinated polyurethane macroporous membranes for waterproof and breathable application. ACS Appl. Mater. Interfaces, 2015, 7(24), 13538-13546.
[73]
Schreuder-Gibson, H.; Gibson, P.; Senecal, K.; Tsai, P. in: Protective Materials Based on Electrospun Nanofibers, Proceedings of the 39th International Man-made Congress, Dombirn/Austria. September, 13th 2000 Journal of Advanced Materials. 34, pp, 44-55
[74]
Demir, M.M.; Yilgor, I.; Yilgor, E.; Erman, B. Electrospinning of polyurethane fibers. Polymer., 2002, 43(11), 3303-3309.
[75]
Gibson, P.; Schreuder-Gibson, H.; Rivin, D. Transport properties of porous membranes based on electrospun nanofibers. Colloids Surf. A., 2001, 187, 469-481.
[76]
Jeong, J.H.; Han, Y.C.; Yang, J.H.; Kwak, D.S.; Jeong, H.M. Waterborne polyurethane modified with poly (ethylene glycol) macromer for waterproof breathable coating. Prog. Org. Coat., 2017, 103, 69-75.
[77]
Wang, Z.; Huang, Y.; Sun, J.; Huang, Y.; Hu, H.; Jiang, R.; Gai, W.; Li, G.; Zhi, C. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces, 2016, 8(37), 24837-24843.
[78]
Chaudhari, A.; Anand, A.; Rajput, S.; Kulkarni, R.; Gite, V. Synthesis, characterization and application of Azadirachta indica juss (neem oil) fatty amides (AIJFA) based polyurethanes coatings: A renewable novel approach. Prog. Org. Coat., 2013, 76(12), 1779-1785.
[79]
Rahman, O.U.; Ahmad, S. Soy polyester urethane/TiO 2 and Ce-TiO 2 nanocomposites: Preparation, characterization and evaluation of electrochemical corrosion resistance performance. RSC Adv., 2016, 6(13), 10584-10596.
[80]
Ghosh, B.; Gogoi, S.; Thakur, S.; Karak, N. Bio-based waterborne polyurethane/carbon dot nanocomposite as a surface coating material. Prog. Org. Coat., 2016, 90, 324-330.
[81]
Rutkowska, M.; Krasowska, K.; Heimowska, A.; Steinka, I.; Janik, H. Degradation of polyurethanes in sea water. Polym. Degrad. Stabil., 2002, 76(2), 233-239.
[82]
Davies, P.; Evrard, G. Accelerated ageing of polyurethanes for marine applications. Polym. Degrad. Stabil., 2007, 92(8), 1455-1464.
[83]
(a)Anderson, J.M.; Hiltner, A.; Wiggins, M.J.; Schubert, M.A.; Collier, T.O.; Kao, W.J.; Mathur, A.B. Recent advances in biomedical polyurethane biostability and biodegradation. Polym. Int., 1998, 46(3), 163-171.
(b)Hu, J.; Tan, L. Polyurethane Composites and Nanocomposites for Biomedical Applications in: Polyurethane Ploymers Composites and Nanocomposites, Thomas, S.; Datta, J.; Haponiuk, J.T.; Reghunadhan, A. Eds.; Elsevier, 2017, pp. 1st ed, 477-498.
[84]
Gorna, K.; Gogolewski, S. Biodegradable polyurethanes for implants. II. In vitro degradation and calcification of materials from poly (ϵ‐caprolactone)–poly (ethylene oxide) diols and various chain extenders. J. Biomed. Mater. Res. B: J Biomed Mater Res A., J Biomed Mater Res A. J. Biomed. Mater. Res. A, 2002, 60(4), 592-606.
[85]
Gorna, K.; Gogolewski, S. Preparation, degradation, and calcification of biodegradable polyurethane foams for bone graft substitutes. J. Biomed Mater Res A, J. Biomed. Mater. Res. AJ Biomed. Mater. Res. A., J. Biomed. Mater. Res A. J. Biomed. Mater. Res. A, 2003, 67(3), 813-827.
[86]
Gorna, K.; Polowinski, S.; Gogolewski, S. Synthesis and characterization of biodegradable poly (ϵ‐caprolactone urethane) s. I. Effect of the polyol molecular weight, catalyst, and chain extender on the molecular and physical characteristics. J. Polym. Sci. A Polym. Chem., 2002, 40(1), 156-170.
[87]
Jung, Y.C.; Cho, J.W. Application of shape memory polyurethane in orthodontic. J. Mater. Sci. Mater. Med., 2010, 21(10), 2881-2886.
[88]
Wang, R.; Xiang, T.; Zhao, W.F.; Zhao, C.S. A facile approach toward multi-functional polyurethane/polyethersulfone composite membranes for versatile applications. Mater. Sci. Eng. C, 2016, 59, 556-564.
[89]
Liu, H.; Zhang, L.; Li, J.; Zou, Q.; Zuo, Y.; Tian, W.; Li, Y. Physicochemical and biological properties of nano-hydroxyapatite-reinforced aliphatic polyurethanes membranes. J. Biomater. Sci. Polym. Ed., 2010, 21(12), 1619-1636.
[90]
Geary, C.; Birkinshaw, C.; Jones, E. Characterisation of Bionate polycarbonate polyurethanes for orthopaedic applications. J. Mater. Sci. Mater. Med., 2008, 19(11), 3355-3363.
[91]
Hassan, M.K.; Mauritz, K.A.; Storey, R.F.; Wiggins, J.S. Biodegradable aliphatic thermoplastic polyurethane based on poly (ε‐caprolactone) and l‐lysine diisocyanate. J. Polym. Sci. A, 2006, 44(9), 2990-3000.
[92]
Adhikari, R.; Gunatillake, P.A.; Griffiths, I.; Tatai, L.; Wickramaratna, M.; Houshyar, S.; Moore, T.; Mayadunne, R.T.; Field, J.; McGee, M. Biodegradable injectable polyurethanes: Synthesis and evaluation for orthopaedic applications. Biomaterials, 2008, 29(28), 3762-3770.
[93]
Pompei, S.; Evangelidou, D.; Arelli, F.; Ferrante, G. The modern polyurethane-coated implant in breast augmentation: long-term clinical experience. Aesthet. Surg. J., 2016, 36(10), 1124-1129.
[94]
Liang, R.C.; Fang, F.; Wang, Y.C.; Song, N.J.; Li, J.H.; Zhao, C.J.; Peng, X.C.; Tong, A.P.; Fang, Y.; He, M. Gemini quaternary ammonium-incorporated biodegradable multiblock polyurethane micelles for brain drug delivery. RSC Adv., 2015, 5(8), 6160-6171.
[95]
Aleksieva, G.; Hollweck, T.; Thierfelder, N.; Haas, U.; Koenig, F.; Fano, C.; Dauner, M.; Wintermantel, E.; Reichart, B.; Schmitz, C.; Akra, B. Use of a special bioreactor for the cultivation of a new flexible polyurethane scaffold for aortic valve tissue engineering. Biomed. Eng. Online, 2012, 11(1), 92-103.
[96]
Girouard, N.M.; Xu, S.; Schueneman, G.T.; Shofner, M.L.; Meredith, J.C. Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites. ACS Appl. Mater. Interfaces, 2016, 8(2), 1458-1467.
[97]
Buruiana, T.; Melinte, V.; Aldea, H.; Pelin, I.M.; Buruiana, E.C. A new fluorinated urethane dimethacrylate with carboxylic groups for use in dental adhesive compositions. Mater. Sci. Eng. C, 2016, 62, 96-104.
[98]
Jagielski, N.; Sharma, S.; Hombach, V.; Mailänder, V.; Rasche, V.; Landfester, K. Nanocapsules synthesized by miniemulsion technique for application as new contrast agent materials. Macromol. Chem. Phys., 2007, 208(19‐20), 2229-2241.
[99]
Shin, J.H.; Marxer, S.M.; Schoenfisch, M.H. Nitric oxide-releasing sol− gel particle/polyurethane glucose biosensors. Anal. Chem., 2004, 76(15), 4543-4549.
[100]
Ding, M.; Zeng, X.; He, X.; Li, J.; Tan, H.; Fu, Q. Cell internalizable and intracellularly degradable cationic polyurethane micelles as a potential platform for efficient imaging and drug delivery. Biomacromolecules, 2014, 15(8), 2896-2906.
[101]
Park, S.; Lee, Y.; Kim, Y.S.; Lee, H.M.; Kim, J.H.; Cheong, I.W.; Koh, W.G. Magnetic nanoparticle-embedded PCM nanocapsules based on paraffin core and polyurea shell. Colloids Surf. A., 2014, 450, 46-51.
[102]
Fayaz, A.M.; Ao, Z.; Girilal, M.; Chen, L.; Xiao, X.; Kalaichelvan, P.; Yao, X. Inactivation of microbial infectiousness by silver nanoparticles-coated condom: a new approach to inhibit HIV-and HSV-transmitted infection. Int. J. Nanomedicine, 2012, 7, 5007-5018.
[103]
Moe, W.M.; Irvine, R.L. Polyurethane foam medium for biofiltration. I: Characterization. J. Environ. Eng., 2000, 126(9), 815-825.
[104]
Moe, W.M.; Irvine, R.L. Polyurethane foam medium for biofiltration. II: operation and performance. J. Environ. Eng., 2000, 126(9), 826-832.
[105]
Mekewi, M.A.; Ramadan, A.M.; ElDarse, F.M.; Rehim, M.H.A.; Mosa, N.A.; Ibrahim, M.A. Preparation and characterization of polyurethane plasticizer for flexible packaging applications: natural oils affirmed access. Egypt J. Pet., 2017, 26(1), 9-15.
[106]
Riaz, T.; Ahmad, A.; Saleemi, S.; Adrees, M.; Jamshed, F.; Hai, A.M.; Jamil, T. Synthesis and characterization of polyurethane-cellulose acetate blend membrane for chromium (VI) removal. Egypt J. Pet., 2016, 153, 582-591.
[107]
Soriano, S.; Cassella, R.J. Solid-phase extraction of Cu (II) using polyurethane foam and eriochrome black T as ligand for its determination in waters by flame atomic absorption spectrometry. J. Braz. Chem. Soc., 2013, 24(7), 1172-1179.
[108]
Yao, B.J.; Jiang, W.L.; Dong, Y.; Liu, Z.X.; Dong, Y.B. Post‐synthetic polymerization of uio‐66‐nh2 nanoparticles and polyurethane oligomer toward stand‐alone membranes for dye removal and separation. Chem. Eur. J, 2016, 22(30), 10565-10571.
[109]
Fujimura, K.; Ueda, T.; Ando, T. Retention behavior of some aromatic compounds on chemically bonded cyclodextrin silica stationary phase in liquid chromatography. Anal. Chem., 1983, 55(3), 446-450.
[110]
Fujimura, K.; Suzuki, S.; Hayashi, K.; Masuda, S. Retention behavior and chiral recognition mechanism of several cyclodextrin-bonded stationary phases for dansyl amino acids. Anal. Chem., 1990, 62(20), 2198-2205.
[111]
Dai, Y.; Tang, W.; Wang, Y.; Ng, S.C. Chromatographic separations and analysis: New stationary phases in. Chirality, Carreira, E.M.; Yamamoto H., Ed.; Elsevier BV. 2012, Vol. 1, 286-310.
[112]
Muderawan, I.W.; Ong, T.T.; Ng, S.C. Urea bonded cyclodextrin derivatives onto silica for chiral HPLC. J. Sep. Sci., 2006, 29(12), 1849-1871.
[113]
Zhang, L.F.; Chen, L.; Lee, T.C.; Ng, S.C. A facile route into 6A-mono-ω-alkenylcarbamido-6A-deoxy-perfunctionalised cyclodextrin: key intermediate for further reactive functionalisations. Tetrahedron Asymmetry, 1999, 10(21), 4107-4113.
[114]
Mallakpour, S.; Sabzalian, M.R. In vitro degradation assessment of optically active poly (urethane-imide) s based on α-amino acids. Polym. Bull., 2013, 70(12), 3425-3441.
[115]
Tatewaki, Y.; Watanabe, T.; Watanabe, K.; Kikuchi, K.; Okada, S. Synthesis and nanostructures of several tetrathiafulvalene derivatives having the side chains composed of chiral and hydrogen-bonding groups and their charge-transfer complexes. Dalton Trans., 2013, 42(45), 16121-16127.
[116]
Peng, C.H.; Hwang, C.C.; Wan, J.; Tsai, J.S.; Chen, S.Y. Microwave-absorbing characteristics for the composites of thermal-plastic polyurethane (TPU)-bonded NiZn-ferrites prepared by combustion synthesis method. Mater. Sci. Eng. B, 2005, 117, 27-36.
[117]
Çelebi, F.; Polat, O.; Aras, L.; Gündüz, G.; Akhmedov, I.M. Synthesis and characterization of water‐dispersed flame‐retardant polyurethane resin using phosphorus‐containing chain extender. J. Appl. Polym. Sci., 2004, 91(2), 1314-1321.
[118]
Wu, G.; Li, J.; Luo, Y. Flame retardancy and thermal degradation mechanism of a novel post-chain extension flame retardant waterborne polyurethane. Polym. Degrad. Stabil., 2016, 123, 36-46.
[119]
Manjari, R.; Somasundaran, U.; Joseph, V.; Sriram, T. Structure‐property relationship of HTPB‐based propellants. II. Formulation tailoring for better mechanical properties. Polym. Degrad. Stabil., 1993, 48(2), 279-289.
[120]
Apyari, V.V.; Arkhipova, V.V.; Gorbunova, M.V.; Volkov, P.A.; Isachenko, A.I.; Dmitrienko, S.G.; Zolotov, Y.A. Towards the development of solid-state platform optical sensors: Aggregation of gold nanoparticles on polyurethane foam. Talanta, 2016, 161, 780-788.
[121]
Behrendt, G.; Naber, B.W. The chemical recycling of polyurethanes. J. Univ. Chem. Technol. Metallurgy, 2009, 44(1), 3-23.
[122]
Kang, J.; Lee, J.; Yang, W.; Park, S.; Alam, M.; Back, S.; Choi, H.; Seo, Y.; Yun, Y.; Gu, J. A study on environmental assessment of residue from gasification of polyurethane waste in e-waste recycling process. Procedia Environ. Sci., 2016, 35, 639-642.
[123]
Nikje, M.M.A.; Garmarudi, A.B.; Idris, A.B. Polyurethane waste reduction and recycling: from bench to pilot scales. Des. Monomers Polym., 2011, 14(5), 395-421.
[124]
Yang, W.; Dong, Q.; Liu, S.; Xie, H.; Liu, L.; Li, J. Recycling and disposal methods for polyurethane foam wastes. Procedia Environ. Sci., 2012, 16, 167-175.


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 23
ISSUE: 4
Year: 2019
Page: [361 - 389]
Pages: 29
DOI: 10.2174/1385272823666190315160000
Price: $58

Article Metrics

PDF: 30
HTML: 4