Mitigating Alzheimer’s Disease with Natural Polyphenols: A Review

Author(s): Roger Gaudreault* , Normand Mousseau* .

Journal Name: Current Alzheimer Research

Volume 16 , Issue 6 , 2019

  Journal Home
Translate in Chinese
Become EABM
Become Reviewer

Abstract:

According to Alzheimer’s Disease International (ADI), nearly 50 million people worldwide were living with dementia in 2017, and this number is expected to triple by 2050. Despite years of research in this field, the root cause and mechanisms responsible for Alzheimer’s disease (AD) have not been fully elucidated yet. Moreover, promising preclinical results have repeatedly failed to translate into patient treatments. Until now, none of the molecules targeting AD has successfully passed the Phase III trial. Although natural molecules have been extensively studied, they normally require high concentrations to be effective; alternately, they are too large to cross the blood-brain barrier (BBB).

In this review, we report AD treatment strategies, with a virtually exclusive focus on green chemistry (natural phenolic molecules). These include therapeutic strategies for decreasing amyloid-β (Aβ) production, preventing and/or altering Aβ aggregation, and reducing oligomers cytotoxicity such as curcumin, (-)-epigallocatechin-3-gallate (EGCG), morin, resveratrol, tannic acid, and other natural green molecules. We also examine whether consideration should be given to potential candidates used outside of medicine and nutrition, through a discussion of two intermediate-sized green molecules, with very similar molecular structures and key properties, which exhibit potential in mitigating Alzheimer’s disease.

Keywords: Alzheimer's disease, beta-amyloid, polyphenols, green chemistry, corilagin, 1, 3, 6-tri-O-galloy-β-D-glucose (TGG).

[1]
LaFerla FM, Green KN, Oddo S. Intracellular amyloid-β in Alzheimer’s disease. Nat Rev Neurosci 8(7): 499-509. (2007)
[2]
Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet 390(10113): 2673-34. (2017)
[3]
Matthews F, Stephan B, Robinson L, Jagger C, Barnes LE, Arthur A, et al. A two decade dementia incidence comparison from the cognitive function and ageing studies I and II. Nat Commun 7: 11398. (2016)
[4]
Sohn E. How the evidence stacks up for preventing Alzheimer’s disease. Nature 559: S18-20. (2018)
[5]
Alzheimer A. Uber eine eigenartige erkrankung der hirnrinde. Allgemeine Zeitschrife Psychiatrie 64: 146-8. (1907)
[6]
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120(3): 885-90. (1984)
[7]
Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K. Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci 82(12): 4245-9. (1985)
[8]
Goedert M, Wischik C, Crowther R, Walker J, Klug A. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci 85(11): 4051-5. (1988)
[9]
Bekris LM, Yu C-E, Bird TD, Tsuang DW. Genetics of Alzheimer disease. J Geriatr Psychiatry Neurol 23(4): 213-27. (2010)
[10]
Sacchettini JC, Kelly JW. Therapeutic strategies for human amyloid diseases. Nat Rev Drug Discov 1(4): 267. (2002)
[11]
Golde TE, Eckman CB, Younkin SG. Biochemical detection of Aβ isoforms: Implications for pathogenesis, diagnosis, and treatment of Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)-. Molecular Basis of Disease 1502(1): 172-87. (2000)
[12]
Grundke-Iqbal I, Iqbal K, Tung Y-C, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci 83(13): 4913-7. (1986)
[13]
Stratmann K, Heinsen H, Korf H-W, Del Turco D, Ghebremedhin E, Seidel K, et al. Precortical phase of Alzheimer’s disease (AD)-related tau cytoskeletal pathology. Brain Pathol 26(3): 371-86. (2016)
[14]
Dorostkar MM, Zou C, Blazquez-Llorca L, Herms J. Analyzing dendritic spine pathology in Alzheimer’s disease: problems and opportunities. Acta Neuropathol 130(1): 1-19. (2015)
[15]
Fernandez-Funez P, Mena Lde, Rincon-Limas DE. Modeling the complex pathology of Alzheimer’s disease in drosophila. Exp Neurol 274: 5-71. (2015)
[16]
Zou C, Montagna E, Shi Y, Peters F, Blazquez-Llorca L, Shi S, et al. Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer’s disease. Acta Neuropathol 129(6): 909-20. (2015)
[17]
Castillo-Carranza DL, Guerrero-Muñoz MJ, Sengupta U, Hernandez C, Barrett AD, Dineley K, et al. Tau immunotherapy modulates both pathological tau and upstream amyloid pathology in an Alzheimer’s disease mouse model. J Neurosci 35(12): 4857-68. (2015)
[18]
Holtzman DM, Morris JC, Goate AM. Alzheimer’s Disease: the challenge of the second century. Sci Trans Med 3(77): 77sr1-77sr1. (2011)
[19]
Polanco JC, Li C, Bodea L-G, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity-—towards improved biomarkers and targeted therapies. Nat Rev Neurol 14(1): 22. (2018)
[20]
DeBoer SR, Dolios G, Wang R, Sisodia SS. Differential release of β-amyloid from dendrite-versus axon-targeted APP. J Neurosci 34(37): 12313-27. (2014)
[21]
Niederst ED, Reyna SM, Goldstein LS. Axonal amyloid precursor protein and its fragments undergo somatodendritic endocytosis and processing. Mol Biol Cell 26(2): 205-17. (2015)
[22]
Jack Jr CR. Alzheimer Disease: new concepts on its neurobiology and the clinical role imaging will play. Radiology 263(2): 344-61. (2012)
[23]
Musiek ES, Holtzman DM. Origins of Alzheimer’s Disease: reconciling CSF biomarker and neuropathology data regarding the temporal sequence of Aβ and tau involvement. Curr Opin Neurol 25(6): 715. (2012)
[24]
Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer’s Disease: progress and problems on the road to therapeutics. Science 297(5580): 353-6. (2002)
[25]
Jack Jr CR, Knopman DS, Jagust WJ, Shaw LM, Aisen PS, Weiner MW, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9(1): 119-28. (2010)
[26]
Jack Jr CR, Knopman DS, Jagust WJ, Petersen RC, Weiner MW, Aisen PS, et al. Tracking pathophysiological processes in Alzheimer’s Disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurol 12(2): 207-16. (2013)
[27]
Jack CR, Vemuri P. Amyloid-β a reflection of risk or a preclinical marker? Nat Rev Neurol 1-2. (2018)
[28]
Sarkar D, Fisher PB. Molecular mechanisms of aging-associated inflammation. Cancer Lett 236(1): 13-23. (2006)
[29]
Belkacemi A, Doggui S, Dao L, Ramassamy C. Challenges associated with curcumin therapy in Alzheimer disease. Exp Rev Mol Med 13: (2011)
[30]
Scalbert A, Johnson IT, Saltmarsh M. Polyphenols: antioxidants and beyond. Am J Clin Nutr 81(1): 215S-7S. (2005)
[31]
Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer’s disease: bioavailability, metabolism, and cellular and molecular mechanisms. J Agric Food Chem 56(13): 4855-73. (2008)
[32]
Kang J, Lemaire H-G, Unterbeck A, Salbaum JM, Masters CL, Grzeschik K-H, et al. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325(6106): 733. (1987)
[33]
Association A. others. 2013 Alzheimer’s disease facts and figures. Alzheimers Dement 9(2): 208-45. (2013)
[34]
Kanekiyo T, Xu H, Bu G. ApoE and Aβ in Alzheimer’s disease: Accidental encounters or partners? Neuron 81(4): 740-54. (2014)
[35]
Namba Y, Tomonaga M, Kawasaki H, Otomo E, Ikeda K. Apolipoprotein E immunoreactivity in cerebral amyloid deposits and neurofibrillary tangles in Alzheimer’s disease and kuru plaque amyloid in Creutzfeldt-Jakob disease. Brain Res 541(1): 163-6. (1991)
[36]
Selkoe DJ. Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid β-protein. Ann New York Acad Sci 924(1): 17-25. (2000)
[37]
Selkoe DJ. Alzheimer’s Disease: genes, proteins, and therapy. Physiol Rev 81(2): 741-66. (2001)
[38]
Hodson R. Alzheimer’s disease. Nature 559(7715)(Suppl.): S1. (2018)
[39]
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 1. (2019)
[40]
Gaudreault R, Safari S. ran de van Theogm, Junghanns M. Control of deposition risks in high-silica boiler waters: a novel approach using purified tannin chemistry. In 2016 AWT annual convention and exposition, San Diego, CA (2016)
[41]
Gaudreault R, van de Ven Theo GM, Whitehead MA. Mechanisms of flocculation with poly (ethylene oxide) and novel cofactors. Colloids and Surfaces A Physicochemical and Engineering Aspects 268(1-3): 131-46. (2005)
[42]
Gaudreault R, Whitehead MA, van de Ven Theo GM. Mechanisms of flocculation of microcrystalline cellulose by poly (ethylene oxide) and cofactor corilagin. In 13th Fundamental Research Symposium. Cambridge. 1269-92. (2005)
[43]
Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products. Neuromol Med 12(1): 1-12. (2010)
[44]
DeMattos RB, Bales KR, Cummins DJ, Paul SM, Holtzman DM. Brain to plasma amyloid-β efflux: A measure of brain amyloid burden in a mouse model of Alzheimer’s disease. Science 295(5563): 2264-7. (2002)
[45]
Wang J, Gu BJ, Masters CL, Wang Y-J. A systemic view of Alzheimer disease-insights from amyloid-β metabolism beyond the brain. Nat Rev Neurol 13(10): 612. (2017)
[46]
Jarrett JT, Berger EP, Lansbury Jr PT. The carboxy terminus of the β-amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer’s disease. Biochemistry 32(18): 4693-7. (1993)
[47]
Gravina SA, Ho L, Eckman CB, Long KE, Otvos L, Younkin LH, et al. Amyloid βprotein (Aβ) in Alzheimer’s disease brain biochemical and immunocytochemical analysis with antibodies specific for forms ending at Aβ40 or Aβ42 (43). J Biol Chem 270(13): 7013-6. (1995)
[48]
Zheng W, Tsai M-Y, Wolynes PG. Comparing the aggregation free energy landscapes of amyloid beta (1-42) and amyloid beta (1-40). J Am Chem Soc 139: 16666-76. (2017)
[49]
Tycko R. Amyloid polymorphism: Structural basis and neurobiological relevance. Neuron 86(3): 632-45. (2015)
[50]
Barz B, Urbanc B. Dimer formation enhances structural differences between amyloid β-protein (1–40) and (1–42): An explicit-solvent molecular dynamics study. PLoS One 7(4)e34345 (2012)
[51]
Côté S, Derreumaux P, Mousseau N. Distinct morphologies for amyloid beta protein monomer: Aβ 1–40, Aβ1–42, and Aβ 1–40 (D23n). J Chem Theory Comput 7(8): 2584-92. (2011)
[52]
Côté S, Laghaei R, Derreumaux P, Mousseau N. Distinct dimerization for various alloforms of the amyloid-beta protein: Aβ 1–40, Aβ 1–42, and Aβ 1–40 (D23n). J Phys Chem B 116(13): 4043-55. (2012)
[53]
Nasica-Labouze J, Nguyen PH, Sterpone F, Berthoumieu O, Buchete N-V, Coté S, et al. Amyloid β protein and Alzheimer’s disease: When computer simulations complement experimental studies. Chem Rev 115(9): 3518-63. (2015)
[54]
Serpell LC. Alzheimer’s amyloid fibrils: Structure and assembly. Biochimica et Biophysica Acta (BBA)-. Molecular Basis of Disease 1502(1): 16-30. (2000)
[55]
Kuo Y-M, Emmerling MR, Vigo-Pelfrey C, Kasunic TC, Kirkpatrick JB, Murdoch GH, et al. Water-soluble Aβ (N-40, N-42) oligomers in normal and Alzheimer disease brains. Journal of Biological Chemistry 271(8): 4077-81. (1996)
[56]
Sakono M, Zako T. Amyloid oligomers: Formation and toxicity of Aβ oligomers. FEBS J 277(6): 1348-58. (2010)
[57]
Kirkitadze MD, Condron MM, Teplow DB. Identification and characterization of key kinetic intermediates in amyloid β-protein fibrillogenesis. J Mol Biol 312(5): 1103-19. (2001)
[58]
Fu Z, Aucoin D, Ahmed M, Ziliox M, Van Nostrand WE, Smith SO. Capping of Aβ42 oligomers by small molecule inhibitors. Biochemistry 53(50): 7893-903. (2014)
[59]
Stine W, Snyder S, Ladror U, Wade W, Miller M, Perun T, et al. The nanometer-scale structure of amyloid-β visualized by atomic force microscopy. J Protein Chem 15(2): 193-203. (1996)
[60]
Schmidt M, Sachse C, Richter W, Xu C, Fändrich M, Grigorieff N. Comparison of Alzheimer Aβ (1–40) and Aβ (1–42) amyloid fibrils reveals similar protofilament structures. Proc Natl Acad Sci USA 106(47): 19813-8. (2009)
[61]
Tycko R. Progress towards a molecular-level structural understanding of amyloid fibrils. Curr Opin Struct Biol 14(1): 96-103. (2004)
[62]
Tjernberg LO, Lilliehöök C, Callaway DJ, Näslund J, Hahne S, Thyberg J, et al. Controlling amyloid β-peptide fibril formation with protease-stable ligands. J Biol Chem 272(19): 12601-5. (1997)
[63]
Tjernberg LO, Näslund J, Lindqvist F, Johansson J, Karlström AR, Thyberg J, et al. Arrest of β-amyloid fibril formation by a pentapeptide ligand. J Biol Chem 271(15): 8545-8. (1996)
[64]
Bett CK, Serem WK, Fontenot KR, Hammer RP, Garno JC. Effects of peptides derived from terminal modifications of the Aβ central hydrophobic core on Aβ fibrillization. ACS Chem Neurosci (10): 661-78. (2010)
[65]
Tycko R. Physical and structural basis for polymorphism in amyloid fibrils. Protein Sci 23(11): 1528-39. (2014)
[66]
Petkova AT, Leapman RD, Guo Z, Yau W-M, Mattson MP, Tycko R. Self-propagating, molecular-level polymorphism in Alzheimer’s ß-amyloid fibrils. Science 307(5707): 262-5. (2005)
[67]
Vestergaard M, Kerman K, Saito M, Nagatani N, Takamura Y, Tamiya E. A rapid label-free electrochemical detection and kinetic study of Alzheimer’s amyloid beta aggregation. J Am Chem Soc 127(34): 11892-3. (2005)
[68]
Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease. Nat Med 10(7): S10. (2004)
[69]
Hu D, Zhao W, Zhu Y, Ai H, Kang B. Bead-level characterization of early-stage amyloid β42 aggregates: nuclei and ionic concentration effects. Chemistry A European Journal (2017)
[70]
Harper JD, Lansbury Jr PT. Models of amyloid seeding in Alzheimer’s disease and scrapie: mechanistic truths and physiological consequences of the time-dependent solubility of amyloid proteins. Annu Rev Biochem 66(1): 385-407. (1997)
[71]
Jarrett JT, Lansbury Jr PT. Seeding “one-dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer’s disease and scrapie? Cell 73(6): 1055-8. (1993)
[72]
Burdick D, Soreghan B, Kwon M, Kosmoski J, Knauer M, Henschen A, et al. Assembly and aggregation properties of synthetic Alzheimer’s A4/beta amyloid peptide analogs. J Biol Chem Chem 267(1): 546-54. (1992)
[73]
Snyder SW, Ladror US, Wade WS, Wang GT, Barrett LW, Matayoshi ED, et al. Amyloid-beta aggregation: Selective inhibition of aggregation in mixtures of amyloid with different chain lengths. Biophys J 67(3): 1216-28. (1994)
[74]
Jarrett JT, Berger EP, Lansbury Jr PT. The C-terminus of the β protein is critical in amyloidogenesis. 695(1): 144-48. (1993)
[75]
Wood SJ, Maleeff B, Hart T, Wetzel R. Physical, morphological and functional differences between pH 5.8 and 7.4 aggregates of the Alzheimer’s amyloid peptide Aβ. J Mol Biol 256(5): 870-7. (1996)
[76]
Nichols MR, Moss MA, Reed DK, Lin W-L, Mukhopadhyay R, Hoh JH, et al. Growth of β-amyloid (1- 40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy. Biochemistry 41(19): 6115-27. (2002)
[77]
Jeon S-Y, Bae K, Seong Y-H, Song K-S. Green tea catechins as a BACE1 (β-secretase) inhibitor. Bioorganic & Medicinal Chemistry Letters 13(22): 3905-8. (2003)
[78]
Vassar R. BACE1 inhibitor drugs in clinical trials for Alzheimer’s disease. Alzheimers Research & Therapy 6(9): 89. (2014)
[79]
Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, et al. β-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286(5440): 735-41. (1999)
[80]
Zhao J, Paganini L, Mucke L, Gordon M, Refolo L, Carman M, et al. β-secretase processing of the β-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J Biol Chem 271(49): 31407-11. (1996)
[81]
Zhao J, Fu Y, Yasvoina M, Shao P, Hitt B, O’Connor T, et al. β-site amyloid precursor protein cleaving enzyme 1 levels become elevated in neurons around amyloid plaques: implications for Alzheimer’s disease pathogenesis. J Neurosci 27(14): 3639-49. (2007)
[82]
Kandalepas PC, Sadleir KR, Eimer WA, Zhao J, Nicholson DA, Vassar R. The Alzheimer’s β-secretase BACE1 localizes to normal presynaptic terminals and to dystrophic presynaptic terminals surrounding amyloid plaques. Acta Neuropathol 126(3): 329-52. (2013)
[83]
Lakey-Beitia J, Berrocal R, Rao K, Durant AA. Polyphenols as therapeutic molecules in Alzheimer’s disease through modulating amyloid pathways. Mol Neurobiol 51(2): 466-79. (2015)
[84]
Fukumoto H, Rosene DL, Moss MB, Raju S, Hyman BT, Irizarry MC. β-secretase activity increases with aging in human, monkey, and mouse brain. Am J Pathol 164(2): 719-25. (2004)
[85]
Van Marum RJ. Current and future therapy in Alzheimer’s disease. Fundam Clin Pharmacol 22(3): 265-74. (2008)
[86]
Sisodia SS, St George-Hyslop PH. γ-secretase, Notch, Aβ and Alzheimer’s disease: where do the presenilins fit in? Nat Rev Neurosci 3(4): 281. (2002)
[87]
De Strooper B, Vassar R, Golde T. The secretases: Enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol 6(2): 99. (2010)
[88]
Wang Q, Yu X, Li L, Zheng J. Inhibition of amyloid-β aggregation in Alzheimer’s disease. Curr Pharm Des 20(8): 1223-43. (2014)
[89]
Ngo ST, Li MS. Top-leads from natural products for treatment of Alzheimer’s disease: docking and molecular dynamics study. Mol Simul 39(4): 279-91. (2013)
[90]
Youdim KA, Dobbie MS, Kuhnle G, Proteggente AR, Abbott NJ, Rice-Evans C. Interaction between flavonoids and the blood–brain barrier: In vitro studies. J Neurochem 85(1): 180-92. (2003)
[91]
Suganuma M, Okabe S, Oniyama M, Tada Y, Ito H, Fujiki H. Wide distribution of [3H](-)-epigallocatechin gallate, a cancer preventive tea polyphenol, in mouse tissue. Carcinogenesis 19(10): 1771-6. (1998)
[92]
Youdim KA, Shukitt-Hale B, Joseph JA. Flavonoids and the brain: Interactions at the blood–brain barrier and their physiological effects on the central nervous system. Free Radic Biol Med 37(11): 1683-93. (2004)
[93]
Schaffer S, Halliwell B. Do polyphenols enter the brain and does it matter? Some theoretical and practical considerations. Genes & Nutr 7(2): 99. (2012)
[94]
Pérez-Jiménez J, Neveu V, Vos F, Scalbert A. Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: An application of the phenol-explorer database. J Agric Food Chem 58(8): 4959-69. (2010)
[95]
Ross JA, Kasum CM. Dietary flavonoids: bioavailability, metabolic effects, and safety. Annu Rev Nutr 22(1): 19-34. (2002)
[96]
Porat Y, Abramowitz A, Gazit E. Inhibition of amyloid fibril formation by polyphenols: Structural similarity and aromatic interactions as a common inhibition mechanism. Chem Biol Drug Des 67(1): 27-37. (2006)
[97]
Hirohata M, Hasegawa K, Tsutsumi-Yasuhara S, Ohhashi Y, Ookoshi T, Ono K, et al. The anti-amyloidogenic effect is exerted against Alzheimer’s β-amyloid fibrils in vitro by preferential and reversible binding of flavonoids to the amyloid fibril structure. Biochemistry 46(7): 1888-99. (2007)
[98]
Ge J-F, Qiao J-P, Qi C-C, Wang C-W, Zhou J-N. The binding of resveratrol to monomer and fibril amyloid beta. Neurochem Int 61(7): 1192-201. (2012)
[99]
Yang F, Lim GP, Begum AN, Ubeda OJ, Simmons MR, Ambegaokar SS, et al. Curcumin inhibits formation of amyloid β oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J Biol Chem 280(7): 5892-901. (2005)
[100]
Serrano J, Puupponen-Pimiä R, Dauer A, Aura A-M, Saura-Calixto F. Tannins: current knowledge of food sources, intake, bioavailability and biological effects. Mol Nutr Food Res 53(S2): S310-29. (2009)
[101]
Ono K, Hasegawa K, Naiki H, Yamada M. Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s β amyloid fibrils in vitro. Biochimica et Biophysica Acta (BBA)-. Mol Basis Dis 1690(3): 193-202. (2004)
[102]
Ono K, Hamaguchi T, Naiki H, Yamada M. Anti-amyloidogenic effects of antioxidants: implications for the prevention and therapeutics of Alzheimer’s disease. Biochimica et Biophysica Acta (BBA)-. Mol Basis Dis 1762(6): 575-86. (2006)
[103]
Porat Y, Mazor Y, Efrat S, Gazit E. Inhibition of islet amyloid polypeptide fibril formation: A potential role for heteroaromatic interactions. Biochemistry 43(45): 14454-62. (2004)
[104]
Yamada H, Nagao K, Dokei K, Kasai Y, Michihata N. Total synthesis of (-)-corilagin. J Am Chem Soc 130(24): 7566-7. (2008)
[105]
Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res 2(2): 131-6. (2005)
[106]
Goozee K, Shah T, Sohrabi HR, Rainey-Smith S, Brown B, Verdile G, et al. Examining the potential clinical value of curcumin in the prevention and diagnosis of Alzheimer’s disease. Br J Nutr 115(3): 449-65. (2016)
[107]
Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “curecumin”: From kitchen to clinic. Biochem Pharmacol 75(4): 787-809. (2008)
[108]
Kuttan R, Bhanumathy P, Nirmala K, George M. Potential anticancer activity of turmeric (curcuma longa). Cancer Lett 29(2): 197-202. (1985)
[109]
Sharma O. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol 25(15): 1811. (1976)
[110]
Toda S, Miyase T, Arichi H, Tanizawa H, Takino Y. Natural antioxidants. III. Antioxidative components isolated from rhizome of curcuma longa L. Chem Pharm Bull 33(4): 1725-8. (1985)
[111]
Srimal R, Dhawan B. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol 25(6): 447-52. (1973)
[112]
Satoskar R, Shah S, Shenoy S. Evaluation of anti-inflammatory property of curcumin (diferuloyl methane) in patients with postoperative inflammation. Intern J Clin Pharmacol Therap Toxicol 24(12): 651-4. (1986)
[113]
Maheshwari RK, Singh AK, Gaddipati J, Srimal RC. Multiple biological activities of curcumin: a short review. Life Sci 78(18): 2081-7. (2006)
[114]
Sidhu GS, Singh AK, Thaloor D, Banaudha KK, Patnaik GK, Srimal RC, et al. Enhancement of wound healing by curcumin in animals. Wound Repair Regen 6(2): 167-77. (1998)
[115]
Holder GM, Plummer JL, Ryan AJ. The metabolism and excretion of curcumin (1, 7-bis-(4-hydroxy-3-methoxyphenyl)-1, 6-heptadiene-3, 5-dione) in the rat. Xenobiotica 8(12): 761-8. (1978)
[116]
Aggarwal BB, Deb L, Prasad S. Curcumin differs from tetrahydrocurcumin for molecular targets, signaling pathways and cellular responses. Molecules 20(1): 185-205. (2014)
[117]
Singh U, Barik A, Singh BG, Priyadarsini KI. Reactions of reactive oxygen species (ROS) with curcumin analogues: structure-activity relationship. Free Radic Res 45(3): 317-25. (2011)
[118]
Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol 41(1): 40-59. (2009)
[119]
Garcia-Alloza M, Borrelli L, Rozkalne A, Hyman B, Bacskai B. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem 102(4): 1095-104. (2007)
[120]
Tang M, Taghibiglou C. The mechanisms of action of curcumin in Alzheimer’s disease. J Alzheimers Dis 58(4): 1003-16. (2017)
[121]
Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: A future nanomedicine for cancer. Drug Discov Today 17(1-2): 71-80. (2012)
[122]
Zhang F, Koh GY, Jeansonne DP, Hollingsworth J, Russo PS, Vicente G, et al. A novel solubility-enhanced curcumin formulation showing stability and maintenance of anticancer activity. J Pharm Sci 100(7): 2778-89. (2011)
[123]
Lao CD, Ruffin MT, Normolle D, Heath DD, Murray SI, Bailey JM, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med 6(1): 10. (2006)
[124]
Tønnesen HH, Másson M, Loftsson T. Studies of curcumin and curcuminoids. XXVII. Cyclodextrin complexation: Solubility, chemical and photochemical stability. Int J Pharm 244(1-2): 127-35. (2002)
[125]
Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, et al. Polymeric nanoparticle-encapsulated curcumin (“ nanocurcumin”): A novel strategy for human cancer therapy. J Nanobiotechnology 5(1): 3. (2007)
[126]
Ray B, Bisht S, Maitra A, Maitra A, Lahiri DK. Neuroprotective and neurorescue effects of a novel polymeric nanoparticle formulation of curcumin (NanoCurc™) in the neuronal cell culture and animal model: Implications for Alzheimer’s disease. J Alzheimers Dis 23(1): 61-77. (2011)
[127]
Kim H, Park B-S, Lee K-G, Choi CY, Jang SS, Kim Y-H, et al. Effects of naturally occurring compounds on fibril formation and oxidative stress of β-amyloid. J Agric Food Chem 53(22): 8537-41. (2005)
[128]
Ono K, Hasegawa K, Naiki H, Yamada M. Curcumin has potent anti-amyloidogenic effects for Alzheimer’s β-amyloid fibrils in vitro. J Neurosci Res 75(6): 742-50. (2004)
[129]
Sylla T, Pouységu L, Da Costa G, Deffieux D, Monti J-P, Quideau S. Gallotannins and tannic acid: first chemical syntheses and in vitro inhibitory activity on Alzheimer’s amyloid β-peptide aggregation. Angew Chem 127(28): 8335-9. (2015)
[130]
Battisti A, Piccionello AP, Sgarbossa A, Vilasi S, Ricci C, Ghetti F, et al. Curcumin-like compounds designed to modify amyloid beta peptide aggregation patterns. RSC Advances 7(50): 31714-24. (2017)
[131]
Lim GP, Chu T, Yang F, Beech W, Frautschy SA, Cole GM. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci 21(21): 8370-7. (2001)
[132]
Serafini MM, Catanzaro M, Rosini M, Racchi M, Lanni C. Curcumin in Alzheimer’s disease: can we think to new strategies and perspectives for this molecule? Pharm Res 124: 146-55. (2017)
[133]
Srinivasan K. Black pepper and its pungent principle-piperine: A review of diverse physiological effects. Crit Rev Food Sci Nutr 47(8): 735-48. (2007)
[134]
Suresh D, Srinivasan K. Tissue distribution & elimination of capsaicin, piperine & curcumin following oral intake in rats. Indian J Med Res 131: 682-91. (2010)
[135]
Parachikova A, Green KN, Hendrix C, LaFerla FM. Formulation of a medical food cocktail for Alzheimer’s disease: Beneficial effects on cognition and neuropathology in a mouse model of the disease. PLoS One 5(11)e14015 (2010)
[136]
Ota S, Fujimori M, Ishimura H, Shulga S, Kurita N. Proposal for novel curcumin derivatives as potent inhibitors against Alzheimer’s disease: Ab initio molecular simulations on the specific interactions between amyloid-beta peptide and curcumin. Chem Phy Lett (2017)
[137]
Mandel SA, Amit T, Kalfon L, Reznichenko L, Weinreb O, Youdim MB. Cell signaling pathways and iron chelation in the neurorestorative activity of green tea polyphenols: Special reference to epigallocatechin gallate (EGCG). J Alzheimers Dis 15(2): 211-22. (2008)
[138]
Awasthi M, Singh S, Pandey VP, Dwivedi UN. Alzheimer’s disease: an overview of amyloid beta dependent pathogenesis and its therapeutic implications along with in silico approaches emphasizing the role of natural products. J Neurol Sci 361: 256-71. (2016)
[139]
Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, et al. Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25(38): 8807-14. (2005)
[140]
Ngo ST, Truong DT, Tam NM, Nguyen MT. EGCG inhibits the oligomerization of amyloid beta (16-22) hexamer: Theoretical studies. J Mol Graph Model 76: 1-10. (2017)
[141]
Ehrnhoefer DE, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, et al. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nat Struct Mol Biol 15(6): 558. (2008)
[142]
Bieschke J, Russ J, Friedrich RP, Ehrnhoefer DE, Wobst H, Neugebauer K, et al. EGCG remodels mature -synuclein and amyloid-β fibrils and reduces cellular toxicity. Proc Natl Acad Sci USA 107(17): 7710-5. (2010)
[143]
Takaoka M. Of the phenolic substrate of hellebore (veratrum grandiflorum loes. Fil.). J Fac Sci Hokkaido Imper Univ 3: 1-16. (1940)
[144]
Li F, Gong Q, Dong H, Shi J. Resveratrol, a neuroprotective supplement for Alzheimer’s disease. Curr Pharm Des 18(1): 27-33. (2012)
[145]
Siemann E, Creasy L. Concentration of the phytoalexin resveratrol in wine. Am J Enol Vitic 43(1): 49-52. (1992)
[146]
Moreno-Labanda JF, Mallavia R, Pérez-Fons L, Lizama V, Saura D, Micol V. Determination of piceid and resveratrol in spanish wines deriving from monastrell (vitis vinifera L.) grape variety. J Agric Food Chem 52(17): 5396-403. (2004)
[147]
Orallo F. Comparative studies of the antioxidant effects of cis-and trans-resveratrol. Curr Med Chem 13(1): 87-98. (2006)
[148]
Marambaud P, Zhao H, Davies P. Resveratrol promotes clearance of Alzheimer’s disease amyloid-β peptides. J Biol Chem 280(45): 37377-82. (2005)
[149]
Karuppagounder SS, Pinto JT, Xu H, Chen H-L, Beal MF, Gibson GE. Dietary supplementation with resveratrol reduces plaque pathology in a transgenic model of Alzheimer’s disease. Neurochem Int 54(2): 111-8. (2009)
[150]
Feng Y, Wang X-p, Yang S-g, Wang Y-j, Zhang X, Du X-t, et al. Resveratrol inhibits beta-amyloid oligomeric cytotoxicity but does not prevent oligomer formation. Neurotoxicology 30(6): 986-95. (2009)
[151]
Wang J, Bi W, Cheng A, Freire D, Vempati P, Zhao W, et al. Targeting multiple pathogenic mechanisms with polyphenols for the treatment of Alzheimer’s disease-experimental approach and therapeutic implications. Front Aging Neurosci 6: 42. (2014)
[152]
Mori T, Rezai-Zadeh K, Koyama N, Arendash GW, Yamaguchi H, Kakuda N, et al. Tannic acid is a natural β-secretase inhibitor that prevents cognitive impairment and mitigates Alzheimer-like pathology in transgenic mice. J Biol Chem 287(9): 6912-27. (2012)
[153]
Braidy N, Jugder B-E, Poljak A, Jayasena T, Nabavi SM, Sachdev P, et al. Molecular targets of tannic acid in Alzheimer’s disease. Curr Alzheimer Res 14(8): 861. (2017)
[154]
Mingshu L, Kai Y, Qiang H, Dongying J. Biodegradation of gallotannins and ellagitannins. J Basic 46(1): 68-84. (2006)
[155]
Yao J, Gao X, Sun W, Yao T, Shi S, Ji L. Molecular hairpin: A possible model for inhibition of tau aggregation by tannic acid. Biochemistry 52(11): 1893-902. (2013)
[156]
Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada M. Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: iImplications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87(1): 172-81. (2003)
[157]
Lemkul JA, Bevan DR. Destabilizing Alzheimer’s Aβ42 protofibrils with morin: mechanistic insights from molecular dynamics simulations. Biochemistry 49(18): 3935-46. (2010)
[158]
Lemkul JA, Bevan DR. Morin inhibits the early stages of amyloid β-peptide aggregation by altering tertiary and quaternary interactions to produce off-pathway structures. Biochemistry 51(30): 5990-6009. (2012)
[159]
Lu Z, Nie G, Belton PS, Tang H, Zhao B. Structure–activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives. Neurochem Int 48(4): 263-74. (2006)
[160]
Habtemariam S. Rutin as a natural therapy for Alzheimer’s disease: Insights into its mechanisms of action. Curr Med Chem 23(9): 860-73. (2016)
[161]
Sando CE, Lloyd JU. The isolation and identification of rutin from the flowers of elder (sambucus canadensis L.). J Biol Chem 58(3): 737-45. (1924)
[162]
Sabogal-Guáqueta AM, Munoz-Manco JI, Ramírez-Pineda JR, Lamprea-Rodriguez M, Osorio E, Cardona-Gómez GP. The flavonoid quercetin ameliorates Alzheimer’s disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer’s disease model mice. Neuropharmacology 93: 134-45. (2015)
[163]
Javed H, Khan M, Ahmad A, Vaibhav K, Ahmad M, Khan A, et al. Rutin prevents cognitive impairments by ameliorating oxidative stress and neuroinflammation in rat model of sporadic dementia of Alzheimer type. Neuroscience 210: 340-52. (2012)
[164]
Berhanu WM, Masunov AE. Natural polyphenols as inhibitors of amyloid aggregation. Molecular dynamics study of GNNQQNY heptapeptide decamer. Biophys Chem 149(1): 12-21. (2010)
[165]
Rigacci S, Guidotti V, Bucciantini M, Nichino D, Relini A, Berti A, et al. Aβ (1-42) aggregates into non-toxic amyloid assemblies in the presence of the natural polyphenol oleuropein aglycon. Curr Alzheimer Res 8(8): 841-52. (2011)
[166]
Shimmyo Y, Kihara T, Akaike A, Niidome T, Sugimoto H. Flavonols and flavones as BACE-1 inhibitors: Structure-activity relationship in cell-free, cell-based and in silico studies reveal novel pharmacophore features. Biochimica et Biophysica Acta (BBA)-. General Subjects 1780(5): 819-25. (2008)
[167]
Chakraborty S, Kumar S, Basu S. Conformational transition in the substrate binding domain of β-secretase exploited by NMA and its implication in inhibitor recognition: BACE1-myricetin a case study. Neurochem Int 58(8): 914-23. (2011)
[168]
Passamonti S, Vrhovsek U, Vanzo A, Mattivi F. Fast access of some grape pigments to the brain. J Agric Food Chem 53(18): 7029-34. (2005)
[169]
Joseph JA, Arendash G, Gordon M, Diamond D, Shukitt-Hale B, Morgan D, et al. Blueberry supplementation enhances signaling and prevents behavioral deficits in an Alzheimer disease model. Nutr Neurosci 6(3): 153-62. (2003)
[170]
Afshari AR, Sadeghnia HR, Mollazadeh H. A review on potential mechanisms of terminalia chebula in Alzheimer’s disease. Adv Pharmacol Sci 20168964849 (2016)
[171]
Cunningham DF, O’Connor B. Proline specific peptidases. Biochimica et Biophysica Acta (BBA)-. Protein Struc Mol Enzymol 1343(2): 160-86. (1997)
[172]
Lee S-H, Jun M, Choi J-Y, Yang E-J, Hur J-M, Bae K, et al. Plant phenolics as prolyl endopeptidase inhibitors. Arch Pharm Res 30(7): 827-33. (2007)
[173]
Stewart JJ. Optimization of parameters for semi-empirical methods i. Method. J Comput Chem 10(2): 209-20. (1989)
[174]
Stewart JJ. Optimization of parameters for semiempirical methods ii. Applications. J Comput Chem 10(2): 221-64. (1989)
[175]
Gaudreault R. van de Ven, Theo GM, Whitehead MA. Molecular modeling of poly (ethylene oxide) model cofactors; 1, 3, 6-tri-O-galloyl-ß-D-glucose and corilagin. J Mol Model 8(3): 73-80. (2002)
[176]
Gaudreault R, Whitehead MA. van de Ven, Theo GM. Molecular orbital studies of gas-phase interactions between complex molecules. The Journal of Phys Chem A 110(10): 3692-702. (2006)
[177]
Dargahi M, Olsson A, Tufenkji N, Gaudreault R. Green technology: Tannin-based corrosion inhibitor for protection of mild steel. Corrosion 71(11): 1321-9. (2015)
[178]
Spencer CM, Cai Y, Martin R, Lilley TH, Haslam E. The metabolism of gallic acid and hexahydroxydiophenic acid in higher plants part 4; polyphenol interactions part 3. Spectroscopic and physical properties of esters of gallic acid and (S)-hexahydroxydiphenic acid with D-glucopyranose (4C1). J Chem Soc, Perkin Trans 2 (4): 651-60. (1990)
[179]
Schmidt OT, Lademann R. Corilagin, ein weiterer kristallisierter gerbstoff aus dividivi. X. Mitteilung über natürliche gerbstoffe. Justus Liebigs Annalen der Chem 571(3): 232-7. (1951)
[180]
Salih E, Kanninen M, Sipi M, Luukkanen O, Hiltunen R, Vuorela H, et al. Tannins, flavonoids and stilbenes in extracts of african savanna woodland trees terminalia brownii, terminalia laxiflora and anogeissus leiocarpus showing promising antibacterial potential. South African J Bot 108: 370-86. (2017)
[181]
Wu N, Zu Y, Fu Y, Kong Y, Zhao J, Li X, et al. Antioxidant activities and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds obtained from geranium Sibiricum L. J Agric Food Chem 58(8): 4737-43. (2010)
[182]
Li X, Deng Y, Zheng Z, Huang W, Chen L, Tong Q, et al. Corilagin, a promising medicinal herbal agent. Biomed Pharmacother 99: 43-50. (2018)
[183]
Jochims JC, Taigel G, Schmidt OT. Über natürliche gerbstoffe, xli. Protonenresonanz-spektren und konformationsbestimmung einiger natürlicher gerbstoffe. Eur J Org Chem 717(1): 169-85. (1968)
[184]
Yoshida T, Okuda T. C-13 nuclear magnetic-resonance spectra of corilagin and geraniin. Heterocycles 14(11): 1743-9. (1980)
[185]
Chung S-K, Nam J-A, Jeon S-Y, Kim S-I, Lee H-J, Chung TH, et al. A prolyl endopeptidase-inhibiting antioxidant from Phyllanthus ussurensis. Arch Pharm Res 26(12): 1024-8. (2003)
[186]
Lin T-c. Hsu F-l, Cheng J-T. Antihypertensive activity of corilagin and chebulinic acid, tannins from lumnitzera, racemosa. J Nat Prod 56(4): 629-32. (1993)
[187]
Cheng J-T, Lin T-C, Hsu F-L. Antihypertensive effect of corilagin in the rat. Can J Physiol Pharmacol 73(10): 1425-9. (1995)
[188]
Jia L, Jin H, Zhou J, Chen L, Lu Y, Ming Y, et al. A potential anti-tumor herbal medicine, corilagin, inhibits ovarian cancer cell growth through blocking the TGF-β signaling pathways. BMC Complement Altern Med 13(1): 33. (2013)
[189]
Okabe S, Suganuma M, Imayoshi Y, Taniguchi S, Yoshida T, Fujiki H. New TNF-α releasing inhibitors, geraniin and corilagin, in leaves of acer nikoense, megusurino-ki. Biol Pharm Bull 24(10): 1145-8. (2001)
[190]
Zhao L, Zhang S-L, Tao J-Y, Pang R, Jin F, Guo Y-J, et al. Preliminary exploration on anti-inflammatory mechanism of corilagin (beta-1-O-galloyl-3, 6-(R)-hexahydroxydiphenoyl-D-glucose) in vitro. Int Immunopharmacol 8(7): 1059-64. (2008)
[191]
Guo Y-J, Zhao L, Li X-F, Mei Y-W, Zhang S-L, Tao J-Y, et al. Effect of corilagin on anti-inflammation in HSV-1 encephalitis and HSV-1 infected microglias. Eur J Pharmacol 635(1-3): 79-86. (2010)
[192]
Youn K, Lee S, Jeong W-S, Ho C-T, Jun M. Protective role of corilagin on Aβ25–35-induced neurotoxicity: suppression of NF-κB signaling pathway. J Med Food 19(10): 901-11. (2016)
[193]
Liu KCC, Lin M-T, Lee S-S, Chiou J-F, Ren S, Lien EJ. Antiviral tannins from two Phyllanthus species Planta Medica 65(01): 043-6. (1999)
[194]
Notka F, Meier G, Wagner R. Inhibition of wild-type human immunodeficiency virus and reverse transcriptase inhibitor-resistant variants by Phyllanthus amarus. Antiviral Res 58(2): 175-86. (2003)
[195]
Li N, Luo M, Fu Y-j, Zu Y-g. Wei, Zhang L, et al Effect of corilagin on membrane permeability of Escherichia coli, Staphylococcus aureus and Candida albicans. Phytother Res 27(10): 1517-23. (2013)
[196]
Yeo S-G, Song JH, Hong E-H, Lee B-R, Kwon YS, Chang S-Y, et al. Antiviral effects of Phyllanthus urinaria containing corilagin against human enterovirus 71 and coxsackievirus A16 in vitro. Arch Pharm Res 38(2): 193-202. (2015)
[197]
Dong X-R, Luo M, Fan L, Zhang T, Liu L, Dong J-H, et al. Corilagin inhibits the double strand break-triggered NF-κB pathway in irradiated microglial cells. Int J Mol Med 25(4): 531-6. (2010)
[198]
Tong F, Zhang J, Liu L, Gao X, Cai Q, Wei C, et al. Corilagin attenuates radiation-induced brain injury in mice. Mol Neurobiol 53(10): 6982-96. (2016)
[199]
Yang MH, Vasquez Y, Ali Z, Khan IA, Khan SI. Constituents from terminalia species increase PPARα and PPARγ levels and stimulate glucose uptake without enhancing adipocyte differentiation. J Ethnopharmacol 149(2): 490-8. (2013)
[200]
Yang C-M, Cheng H-Y, Lin T-C, Chiang L-C, Lin C-C. Hippomanin a from acetone extract of phyllanthus urinaria inhibited HSV-2 but not HSV-1 infection in vitro. Phytother Res 21(12): 1182-6. (2007)
[201]
Youn K, Jun M. In vitro BACE1 inhibitory activity of geraniin and corilagin from Geranium thunbergii. Planta Med 79(12): 1038-42. (2013)


Rights & PermissionsPrintExport Cite as

Article Details

VOLUME: 16
ISSUE: 6
Year: 2019
Page: [529 - 543]
Pages: 15
DOI: 10.2174/1567205016666190315093520
Price: $58

Article Metrics

PDF: 32
HTML: 2